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Abstract

We construct a generic, simple, and efficient scheduling policy for stochastic processing
networks, and provide a general framework to establish its stability. Our policy is randomized
and prioritized: with high probability it prioritizes jobs which have been least routed through
the network. We show that the network is globally stable under this policy if there exists an
appropriate quadratic ‘local’ Lyapunov function that provides a negative drift with respect
to nominal loads at servers. Applying this generic framework, we obtain stability results for
our policy in many important examples of stochastic processing networks: open multiclass
queueing networks, parallel server networks, networks of input-queued switches, and a variety
of wireless network models with interference constraints. Our main novelty is the construction
of an appropriate ‘global’ Lyapunov function from quadratic ‘local’ Lyapunov functions,
which we believe to be of broader interest.

1 Introduction

The past few decades have witnessed a surge in interest on the design and analysis of scheduling
policies for stochastic networks, e.g., [13, 24, 18, 19, 12, 5]. One of the key insights from this
body of work is that natural scheduling policies can lead to instability even when each server
is nominally underloaded [15, 17, 20]. (There are several notions of stability for stochastic
networks, but they intuitively entail that, in some sense, the number of customers in the system
does not grow without bounds.) This insight stimulated a search for tools that can characterize
the stability regions of scheduling policies, i.e., the exact conditions on the arrival and service
rates under which a network is stabilized by a policy.

It is the objective of this paper to study a question of a different kind: is it possible to
construct a generic, simple, and efficient scheduling policy for stochastic processing networks,
which leads to a (globally) stable network if all servers are (locally) nominally underloaded in
some sense? To our knowledge, we are the first to answer this question within the setting of
stochastic processing networks, which constitute a large class of stochastic networks capable of
modeling a variety of networked systems for communication, manufacturing, and service systems
(e.g., [12]). To investigate this question, the key is to determine if and how jobs from different
parts of the network should be treated differently when they share the same buffer.
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Various existing scheduling policies are ‘throughput optimal’ in the sense that they achieve
the largest possible stability region, but these policies suffer from significant drawbacks. They
typically obtain the desired stability by framing the contention resolution between buffers as an
appropriate global optimization problem. This optimization problem requires central coordina-
tion between network entities, and it is computationally hard to solve if the network is large.
The resulting policies, such as the max-weight policy [18, 23] and the back-pressure policy [24, 5],
are not scalable and cannot cope efficiently with large networks. As a result, these throughput
optimal policies do not provide a satisfactory answer to the aforementioned question.

The computational challenges surrounding existing throughput optimal policies motivate the
search for easily implementable scheduling policies with provable performance guarantees but
not necessarily with the throughput optimality property. This has led to the analysis of simple
greedy scheduling policies for a variety of special classes of stochastic processing networks: open
multiclass queueing networks [3], input-queued switches [6], and wireless network models [16].
These policies play an important role in this paper, since our most critical assumption roughly
requires any local network component to be nominally underloaded under any ‘maximal’ greedy
scheduling policy.

Our main contribution is a randomized scheduling policy for stochastic processing networks
which only requires coordination within local components (e.g., service stations), and which is
computationally attractive since it is a kind of priority policy. With high probability, our policy
prioritizes jobs which have been least routed, and we therefore call our policy the ε-Least Routed
First Served (ε-LRFS) policy. Here ε ≥ 0 is a small number which helps to make the meaning
of “high probability” precise.

Our main technical tool is a novel framework to construct a ‘global’ Lyapunov function for
a stochastic processing network through appropriate ‘local’ Lyapunov functions. If the local
Lyapunov functions yield stability of the corresponding ‘local’ network components, then the
global Lyapunov function allows us to conclude that the whole network is stable. A critical
feature of our framework is that the Lyapunov functions we work with are quadratic. Through
examples, we show that quadratic local Lyapunov functions can readily be found for wide classes
of networks. We refer to [8, 14] for other uses of quadratic Lyapunov functions.

Our approach to construct an appropriate ‘global’ Lyapunov function using ‘local’ quadratic
Lyapunov functions contrasts with the popular fluid model methodology for establishing stability
of stochastic networks [3, 9, 20]. The fluid model framework essentially reduces the question
of stochastic stability to a question of a related deterministic (fluid) system. In the case of
reentrant lines, our policy reduces to the First Buffer First Served (FBFS) policy, which has
been proven to be stable via ‘inductive’ fluid arguments [7]. A similar fluid induction argument
can be expected to work for general multiclass networks (modulo some technical arguments), but
a fluid induction argument cannot be expected to work in general. A disadvantage compared to
fluid models is that we have to keep track of detailed system behavior such as remaining service
times, but therein also lies the power of our approach. The generality of our framework presents
challenges to the use of fluid methods, and instead we work directly with a global Lyapunov
function. The connection with fluid techniques is discussed in more detail in Section 4.3.

Although we believe that our methodology could be of much wider use, we have chosen to work
out two special classes of stochastic processing networks in order to describe the implications
of our techniques in relatively simple yet powerful settings: parallel server networks (including
multiclass queueing networks) and communication network models (including networks of input-
queued switches and wireless networks).
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Our work is related to a paper by Bramson [2], who shows that open multiclass queueing
networks can be stabilized by the Earliest Due Date First Served (EDDFS) policy under the
‘local’ condition that every processing unit is nominally underloaded. However, it is not known
whether the EDDFS policy achieves similar results beyond the open multiclass queueing network.
In fact, it is a priori unclear how to formulate a ‘local’ condition for general stochastic processing
networks; our notion of ‘local’ Lyapunov function plays this role in the present paper.

This paper is organized as follows. Section 2 introduces the class of stochastic processing
networks we study in this paper. Section 3 formally introduces the ε-LRFS policy and presents
our main results. Section 4 describes our main idea using a simple network, the Rybko-Stolyar
network [20]. We specialize our result to parallel server and communication network models in
Section 5. All proofs are given in Section 6.

2 A Class of Stochastic Processing Networks

A stochastic processing network (SPN) consists of a set I = {1, . . . , I} of buffers, a set J =
{1, . . . , J} of activities and a set K = {1, . . . ,K} of processors. Each buffer has infinite capacity
and holds jobs that await service. The SPNs we study in this paper have the feature that
activity j ∈ J can only process jobs from a single buffer ij ∈ I, and that j requires simultaneous
possession of a set Kj ⊆ K of processors. Let Ji be the set of activities capable of processing
buffer i, i.e.,

Ji = {j ∈ J : ij = i}.

We say that two buffers i and ℓ are activity-interchangeable if {Kj : j ∈ Ji} = {Kj : j ∈ Jℓ}. We
also say that buffers i and ℓ are processor-independent if

⋃
j∈Ji

Kj and
⋃

j∈Jℓ
Kj are disjoint.

Network state. We let Qi(t) ∈ Z+ be the queue length of buffer i at time t, i.e., the number
of jobs waiting in buffer i excluding those being processed. We write Vi(t) ∈ R+ for the sum of
the remaining service requirements over all jobs in buffer i which are currently being processed
at time t. We use σj(t) to denote the activity level of activity j at time t, where we assume that
σ(t) = [σj(t)] ∈ {0, 1}J , meaning that each activity is either fully employed or not employed at
all. Thus, we say that the network is non-processor-splitting.

Routing. After departing from a buffer i, a job joins buffer ℓ ∈ I with probability Piℓ and
departs from the network with probability 1 −

∑
ℓ Piℓ (independently of everything else). We

write P for the I × I matrix of routing probabilities.

Resource allocation. Each activity j decreases the remaining service requirement of the job
it is processing at rate βj > 0 if σj(t) = 1. It is not allowed for an activity to be interrupted
before it finishes the service requirement of the job it is working on, i.e., the network is non-
preemptive. We do not allow for multiple activities to work on the same job simultaneously.
Furthermore, we assume that each processor k has unit capacity, i.e.,

∑

j∈J:k∈Kj

σj(t) ≤ 1.

We note that this unit capacity assumption is not restrictive since in our non-processor-splitting
network of σ(t) ∈ {0, 1}I , a single processor k with capacity ck ∈ N can be replaced by ck copies
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with unit capacity, and identical activity structure inherited from the original processor. We
further define the service rate vector s(u) = [si(u)] ∈ R

I
+ for a (scheduling) vector u = [uj ] ∈

{0, 1}J through

si(u) :=
∑

j∈Ji

ujβj .

External arrivals. There are external arrivals to at least one buffer. For 0 ≤ s ≤ t, let Ai(s, t)
be the number of external jobs arriving at buffer i during the time interval [s, t). We assume
that E

[
Ai(0, t)

2
]
< ∞ for all t < ∞ (i.e., bounded second moment) and

lim sup
t→∞

E
[
Ai(t, t+ 1)

∣∣∣
{
A1(0, s), . . . , AI(0, s) : 0 ≤ s ≤ t

}]
< αi,

for constant αi ∈ (0,∞). We note that we allow for dependencies in the random processes Ai(·)
and Aℓ(·) for two buffers i and ℓ. Even though it is possible for the αi to exceed the external
arrival rates, it is convenient to interpret αi as the external arrival rate at buffer i. Similarly
abusing terminology, we let λ = [λi] be the effective arrival rate vector, i.e.,

λ :=
(
I + P + P 2 + · · ·

)
α,

where α = [αi]. We also say that all routes are bounded (in length) if inf
{
d ∈ N : P d = 0

}
< ∞.

Service requirements. Once a job in buffer i is selected for processing by activity j ∈ Ji, it
requires service for a random amount of time. We assume that all service times are independent,
and that they are independent of the routing and external arrival processes. We also suppose
that the service time distribution only depends on the buffer from which the job is processed.
Writing Γi for a generic processing time at buffer i, we assume that

E[Γi] = mi and E
[
Γ2
i

]
< ∞,

for constants mi ∈ (0,∞). Let ρ = [ρi] denote the nominal load, i.e., ρi = λimi. We write Wi(t)
for the (expected) immediate workload in buffer i, which we define to be

Wi(t) = miQi(t) + Vi(t). (1)

This is the expected amount of work in the i-th buffer given Qi(t) and Vi(t). We note that our
notion of immediate workload is the conditional expectation of a more common definition, and
that immediate workload is defined for each buffer (as opposed to resource). We say that the
network is synchronized if for all s, t ≥ 0, i ∈ I and j ∈ J,

Ai(s, t) = Ai(s, ⌊t⌋), and Γi = mi = βj = 1 with probability 1.

That is, in a synchronized network, arrivals and service completions only occur at integer time
epochs.

Maximal scheduling policies. We say that activity j is maximal in a (scheduling) vector
u = [uj ] ∈ {0, 1}J if there exists a processor k ∈ Kj such that

∑

ℓ∈J: k∈Kℓ

uℓ = 1,
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i.e., either activity j uses each of the processors in Kj under schedule u or it cannot be employed
without violating the unit capacity constraint for some processor in Kj . Given a non-negative
vector w = [wi] ∈ R

I
+, activity j is called maximal in u with respect to w if wij = 0 or j is

maximal in u. An activity is non-maximal if it is not maximal. If all activities are maximal in
u with respect to w, we simply say that u is maximal with respect to w. We write M(w) for
the set of maximal scheduling vectors with respect to w, i.e.,

M(w) :=
{
u ∈ {0, 1}J : u is maximal with respect to w

}
.

Finally, we say that a scheduling policy is maximal if, under the policy, σ(t) ∈ M(Q(t)) for all
t ≥ 0.

3 Main Result

This section describes the scheduling policies which play a central role in this paper, and presents
our main stability result.

Scheduling policies. Our policies require that each job maintains a ‘counter’ for the number
of times it has been routed so far, where we follow the convention that counters start from 1.
The counter of a job is increased even when a job is routed to a buffer it has previously visited,
so the counter of a job could differ from the number of different stations it has visited. We also
consider a partition {I(h) : h ∈ H = {1, . . . , H}} of buffers into components, such that

I =
⋃

h∈H

I(h),

where any two buffers from different components are processor-independent. One possible choice
for the partition is I = I(1), but, as becomes apparent from the description of our policies below,
a finer partition makes our policies more ‘distributed’. It is important to note that we allow
for routing between components. We assume that each component I(h) for h ∈ H maintains a
‘timer’ T(h)(t) ∈ [0, 1] at time t which decreases at unit rate if T(h)(t) > 0.

To describe our maximal scheduling policies, we need the following notation. We write
Q(h)(t) = [Qi(t)II(h)(i)] for the queue length information in component I(h), where IS ∈ {0, 1}
is the indicator function of the set S, i.e.,

IS(i) =

{
1 if i ∈ S

0 otherwise
.

The following policy plays a key role throughout this paper.

Definition 3.1 (Least Routed First Served (LRFS) policy). For each h ∈ H, whenever a
new arrival and/or service completion occurs at time t in component I(h), execute the following
algorithm immediately after all arrivals and service completions have occurred:

1. Find the set Σ of non-maximal activities in σ(t) with respect to Q(h)(t).

2. Find a job with the smallest counter among those in buffers {ij : j ∈ Σ}, where ties are
broken arbitrarily.
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3. Choose an arbitrary activity j ∈ Σ to process the job identified in step 2, i.e., set σj(t) = 1.

4. Repeat steps 1–3 until σ(t) is maximal with respect to Q(h)(t).

We next introduce the maximal scheduling policy which is of primary interest in this paper. It
uses a small parameter ǫ > 0 in order to deal with unbounded route lengths.

Definition 3.2 (ε-Least Routed First Served (ε-LRFS) policy). For each h ∈ H, when-
ever a new arrival and/or service completion occurs at time t in component I(h), execute the
following algorithm immediately after all arrivals and service completions have occurred:

1. Find a buffer i ∈ I(h) containing a job with the largest counter among those in buffers I(h).

2. Find the set of non-maximal activities Σ ⊂ Ji in σ(t).

3. If Σ 6= ∅ and T(h)(t) = 0,

3-1. With probability ε, choose an arbitrary activity j ∈ Σ to process the job identified in
step 1, i.e., set σj(t) = 1. With probability 1− ε, do nothing.

3-2. Set T(h)(t) = 1.

4. Execute the LRFS policy for component I(h).

We remark that the ε-LRFS policy is identical to the LRFS policy when either ε = 0 or T(h)(t) >
0, i.e., execution of the first three steps is not necessary in these cases. Since we assume that
each timer decreases at unit rate, step 3-1 can be executed at most once per component in any
time interval of unit length.

The network process. Write Qi,c(t) for the queue length of jobs with counter c in buffer i

at time t. Let V j
i,c(t) be the remaining service requirement of the job with counter c in buffer

i at time t if it is processed by activity j, and set V j
i,c(t) = 0 if j is not processing a job with

counter c. The network state is described by

X(t) =
[
Qi,c(t), V

j
i,c(t),T

(h)(t) : i ∈ I, j ∈ J, c ∈ N, h ∈ H

]
∈ ΩX :=

(
Z
I
+ × R

I×J
+

)∞
×[0, 1]H .

Note that X(t) does not encode information on the external arrival processes. In particular,
{X(t)} is non-Markovian in general. We impose the convention that {X(t)} has right-continuous
sample paths. We define a norm on ΩX through

|X(t)| =
∑

i∈I,c∈N

Qi,c(t) +
∑

i∈I,c∈N,j∈J

V j
i,c(t).

We assume that X(0) ∈ Ω∗
X where Ω∗

X = {X ∈ ΩX : |X| < ∞}. In synchronized networks,

one has V j
i,c(t) ∈ {0, 1} for all t ∈ Z+ under the ε-LRFS policy. We refer to the process

{X(t) : t ∈ R+} operating under the ε-LRFS policy as the ε-LRFS process. If ε = 0, then we
simply refer to this process as the LRFS process.
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Network stability. This paper uses the following notion of stability.

Definition 3.3. The ε-LRFS process {X(t)} is called queue-length-stable if

lim sup
t→∞

1

t

∫ t

0
E [|X(s)|] ds < ∞, (2)

for any given initial state X(0) ∈ Ω∗
X .

We establish the queue-length-stability by constructing appropriate Lyapunov functions. Un-
der some additional assumptions on the arrival processes and service time distributions, these
Lyapunov functions can also be used to establish positive recurrence of the ε-LRFS process,
cf. Condition (A3) in [4]. It is outside of the main scope of the current paper to work out the
details. We also remark that our proof can find an explicit finite constant for the right-hand side
of (2), but this requires tedious bookkeeping and we therefore do not carry out this analysis.

To show the desired stability, we need the following notion of a ‘local’ Lyapunov function.

Definition 3.4. We say that Llocal : R
I
+ → R+ is a local Lyapunov function with slack parameter

ε ≥ 0 if there exist constants C ≥ 0, η > 0 such that for every pair (w,u) ∈ R
I
+×{0, 1}J satisfying

u ∈ M(w),

Llocal

(
w + ρ+ εm− s(u)

)
≤ Llocal(w)− η‖w‖1 + C, (3)

where m = [mi] ∈ R
I .

The reason for this nomenclature is that in a ‘local’ network, i.e., a network without routing
(P = 0), the above inequality for Llocal provides the desired negative drift condition in the
Foster-Lyapunov criteria [10], which implies network stability. Here wi, ρi, and si(u) can be
interpreted as the immediate workload, the external workload arrival rate and the workload
processing rate at buffer i, respectively. We refer to Sections 4 and 5 for examples of local
Lyapunov functions.

Now we are ready to state the main theorem of this paper, which establishes ‘global’ stability
using a ‘local’ quadratic Lyapunov function.

Theorem 3.5. Suppose that there exists a symmetric matrix Z ∈ R
I×I
+ such that Llocal(x) =

xTZx is a local Lyapunov function with slack ε > 0. Then the ε-LRFS process is queue-length-
stable if one of the following conditions C1 and C2 is satisfied:

C1. The network is synchronized and Ziℓ 6= 0 only if buffers i and ℓ are in the same component.

C2. Ziℓ 6= 0 only if buffers i and ℓ are activity-interchangeable and every buffer i has an
associated activity j ∈ Ji with |Kj | = 1.

Furthermore, if all routes are bounded, then the LRFS process is queue-length-stable if one of
the conditions C1 or C2 ′ is satisfied, where

C2 ′. Ziℓ 6= 0 only if buffers i and ℓ are activity-interchangeable.

Theorem 3.5 implies that if any maximal policy is ‘quadratic’ stable in a stochastic processing
network without routing under the external load ρ, then ε-LRFS is stable in a stochastic pro-
cessing network with routing under nominal load < ρ for some small ε > 0. Section 4 describes
the main idea of the proof, and a full proof is presented in Section 6.

We remark that the requirement of activity-interchangeable buffers in Condition C2 can be
relaxed slightly. Our proof of Theorem 3.5 also works when the following relaxed condition C3
replaces C2.
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C3. Ziℓ 6= 0 only if for every j ∈ Ji, there exists j′ ∈ Jℓ such that Kj′ ⊆ Kj , and vice versa
(i.e., for every j ∈ Jℓ, there exists j′ ∈ Ji such that Kj′ ⊆ Kj). Also, every buffer i has an
associated activity j ∈ Ji with |Kj | = 1.

A corresponding condition C3 ′ can also replace C2 ′, where C3 ′ does not require the second part
of C3.

4 Proof Ideas for Theorem 3.5

In this section, we describe the main idea in the proof of Theorem 3.5. We first present it
in a very special network, the Rybko-Stolyar network [20], which allows us to summarize the
main idea of the proof at a high level. We subsequently describe the challenges that have to be
overcome to establish our result in the general case, and discuss the feasibility of an approach
based on fluid models.

4.1 Rybko-Stolyar Network

This network consists of four activities associated to four different buffers and two processors.
The first processor is required for activities 1 and 4, and the second for activities 2 and 3. Each
activity decreases the remaining service requirement of the job it is currently processing at unit
rate (i.e., βj = 1). Customers (or jobs) arrive at the first and third buffers, and traverse the
buffers deterministically in the order 1 → 2 or 3 → 4. The service time is deterministic and
equal to mi for buffer i, and the external arrival processes (at the first and third buffers) are
independent Poisson processes with rate 1. The network is given in Figure 1, and a necessary
condition for stability is

ρ1 = m1 +m4 < 1 and ρ2 = m2 +m3 < 1. (4)

rate 1

rate 1

1 2

4 3

Figure 1: Illustration of the Rybko-Stolyar Network. In this diagram, there are four jobs in the
system. Jobs are currently being processed and waiting for service are colored black and white,
respectively.

The network state can be described by X(t) = {Qi(t), Vi(t) : i = 1, 2, 3, 4} ∈ ΩX := Z
4
+×R

4
+,

where Qi(t) is the queue length (i.e., the number of jobs waiting) of buffer i at time t and
Vi(t) is the remaining service time of the job currently being processed in buffer i at time t.
Hence Vi(t) = 0 if no job is being processed in buffer i. We define a norm through |X(t)| =∑

i(Vi(t) + Qi(t)). In this network, it is known [20] that if processor 1 prioritizes buffer 4 and
processor 2 prioritizes buffer 2, the network can be unstable even when the necessary condition
(4) holds. On the other hand, LRFS prioritizes buffer 1 and 3, so it reduces to the First Buffer
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First Served policy. This is known to be stable under the necessary stability condition (4). We
next derive this stability result using our main idea.

Assuming LRFS and (4), we construct an appropriate Lyapunov function Lglobal : ΩX → R+

satisfying

E

[
Lglobal(X(t+ 1))− Lglobal(X(t))

∣∣∣∣∣ X(t)

]
≤ −γ|X(t)|+ C, almost surely, (5)

where γ,C > 0 are some constants. By first taking expectations with respect to the distribution
of X(t) and then integrating over t on both sides of the above inequality, we conclude that

lim sup
t→∞

1

t

∫ t

0
E [|X(s)|] ds ≤ lim sup

t→∞

1

γ

(
C−

∫ t+1
t

E[Lglobal(X(s))]ds−
∫ 1
0 E[Lglobal(X(s))]ds

t

)

≤ lim sup
t→∞

1

γ

(
C+

∫ 1
0 E [Lglobal(X(s))] ds

t

)

=
C

γ
< ∞. (6)

We now proceed toward constructing the ‘global’ Lyapunov function Lglobal satisfying (5)
based on a ‘local’ quadratic Lyapunov function Llocal. To this end, we first discuss how to
construct the ‘local’ quadratic Lyapunov function. Consider a single-processor system with two
buffers a and b, deterministic service times given by ma and mb, and independent Poisson arrival
processes with rate 1 at each buffer (i.e., the total rate is 2). Hence, a necessary condition for
stability is

ma +mb < 1.

Under a maximal (i.e., work-conserving) scheduling policy, the workload W (t) =
∑

iWi(t) at
time t satisfies

W (t+ 1) = W (t) +
∑

i=a,b

miAi(t, t+ 1)−

∫ t+1

t

1+
W (u)du,

where Wi(t) is defined as the immediate workload at buffer i as in (1), Ai(s, t) is the number of
jobs arriving at buffer i during the time interval [s, t) so that E[Ai(s, t)] = t− s and we define

1+x =

{
1 if x > 0

0 otherwise
.

Hence, we have

E
[
W (t+ 1)−W (t)

∣∣∣ W (t)
]

≤ ma +mb − 1+
W (t)−1, (7)

where we use that 1+
W (u) ≥ 1+

W (t)−1 for u ∈ [t, t+1] since we assume deterministic service times.
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Using this, it follows that for some finite constant C,

E

[
W (t+ 1)2 −W (t)2

∣∣∣∣∣ W (t)

]
= E

[
2W (t)(W (t+ 1)−W (t))

∣∣∣∣∣ W (t)

]

+E

[
(W (t+ 1)−W (t))2

∣∣∣∣∣ W (t)

]

≤ 2W (t)E

[
W (t+ 1)−W (t)

∣∣∣∣∣ W (t)

]
+ C

≤ 2W (t)
(
ma +mb − 1+

W (t)−1

)
+ C

< −2(1−ma −mb)W (t) + C+ 2, (8)

where we use E
[
Ai(t, t+ 1)2

]
< ∞ for the first inequality. This shows that W (t)2 = (W1(t) +

W2(t))
2 is a suitable Lyapunov function for our ‘local’ single-processor system under the neces-

sary stability condition ma +mb < 1.
This observation on the single-processor system motivates the following quadratic local Lya-

punov function Llocal : R
I
+ → R+ for the Rybko-Stolyar network:

Llocal(x) = xTZx = xT




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


x = (x1+x4)

2+(x2+x3)
2, for x = (x1, x2, x3, x4).

(9)
One can easily check that it satisfies (3) with (small) slack ε > 0 under the necessary stability
requirements m1+m4 < 1 and m2+m3 < 1. We propose the following global Lyapunov function
Lglobal:

Lglobal(X(t)) = Llocal

(
W1(t), V2(t),W3(t), V4(t)

)
+ ξLlocal

(
W1(t), Ŵ2(t),W3(t), Ŵ4(t)

)
,

where the new parameters ξ and Ŵi(t) shall be defined explicitly. We remind the reader that
our goal is to prove (5).

First, a similar calculation as for the single-processor case in (7) yields that under the LRFS
policy,

E
[
W1(t+ 1) + V4(t+ 1)−W1(t)− V4(t)

∣∣∣ X(t)
]

≤ −1+
W1(t)+V4(t)−1 +m1,

E
[
W3(t+ 1) + V2(t+ 1)−W3(t)− V2(t)

∣∣∣ X(t)
]

≤ −1+
W3(t)+V2(t)−1 +m3.

Hence, as for (8), one can conclude that for some constant C,

E
[
(W1(t+ 1) + V4(t+ 1))2 − (W1(t) + V4(t))

2
∣∣∣ X(t)

]
≤ −2(1−m1)(W1(t) + V4(t)) + C,

(10)

E
[
(W3(t+ 1) + V2(t+ 1))2 − (W3(t) + V2(t))

2
∣∣∣ X(t)

]
≤ −2(1−m3)(W3(t) + V2(t)) + C,

(11)
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where the precise value of C can be different from line to line.
We note that the sum (W1(t) + V4(t))

2 + (W3(t) + V2(t))
2 is not a suitable choice for Lglobal

since it does not include Q2(t) and Q4(t) (or W2(t) and W4(t)). To address this issue, we further
use

Ŵ2(t) := W2(t) +m2Q1(t) and Ŵ4(t) := W4(t) +m4Q3(t).

We refer to Ŵ2 and Ŵ4 as the total workload in buffer 2 and 4, respectively. Using this notation,
one finds that under the LRFS policy,

E
[
W1(t+ 1) + Ŵ4(t+ 1)−W1(t)− Ŵ4(t)

∣∣∣ X(t)
]

≤ −1+
W1(t)+W4(t)−1 +m1 +m4,

E
[
W3(t+ 1) + Ŵ2(t+ 1)−W3(t)− Ŵ2(t)

∣∣∣ X(t)
]

≤ −1+
W2(t)+W3(t)−1 +m2 +m3.

The above equalities can be used to obtain ‘negative drift terms’ for W2(t) and W4(t), which
are missing in (10) and (11). Namely, for some constant C, we obtain

E

[(
W1(t+ 1) + Ŵ4(t+ 1)

)2
−
(
W1(t) + Ŵ4(t)

)2 ∣∣∣ X(t)

]

≤ 2
(
W1(t) + Ŵ4(t)

)
E
[
W1(t+ 1) + Ŵ4(t+ 1)−W1(t)− Ŵ4(t)

∣∣∣ X(t)
]
+ C

≤ 2
(
W1(t) + Ŵ4(t)

)(
−1+

W1(t)+W4(t)−1 +m1 +m4

)
+ C

≤ −2(1−m1 −m4) (W1(t) +W4(t)) + 2(m1 +m4)m4Q3(t) + C+ 2

≤ −2(1− ρmax) (W1(t) +W4(t)) + 2m∗ρmaxW3(t) + C+ 2, (12)

where ρmax = max{ρ1, ρ2} and m∗ = maxi,j

{
mi

mj

}
. Similarly,

E

[(
W3(t+ 1) + Ŵ2(t+ 1)

)2
−
(
W3(t) + Ŵ2(t)

)2 ∣∣∣ X(t)

]

≤ −2(1− ρmax) (W3(t) +W2(t)) + 2m∗ρmaxW1(t) + C+ 2. (13)

Observe that there are positive terms W3(t) and W1(t) in (12) and (13), respectively. The key
idea behind our proof is that the positive terms can be canceled out by appropriately summing
(10), (11), (12) and (13). Indeed, we define the desired Lyapunov function Lglobal as

Lglobal(X) = (W1 + V4)
2 + (W3 + V2)

2 + ξ
(
W1 + Ŵ4

)2
+ ξ

(
W3 + Ŵ2

)2
,

where we choose ξ = 1−ρmax

2m∗ρmax
. Combining (10), (11), (12) and (13), we conclude that

E

[
Lglobal(X(t+ 1))− Lglobal(X(t))

∣∣∣∣∣ X(t)

]
≤ −2ξ(1− ρmax)|X(t)|+ C.

This completes the proof of (5), and hence the desired stability (6).

4.2 Beyond the Rybko-Stolyar Network

The preceding subsection presents the main idea behind our construction of a ‘global’ Lyapunov
function Lglobal using a ‘local’ Lyapunov function Llocal (i.e., from the single-processor system) in
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the specific example of the Rybko-Stolyar network. The construction of Lglobal relies on summing
Llocal terms inductively by exploring certain maximality properties of the LRFS policy at each
iteration. In general networks there are several difficulties which do not arise in the Rybko-
Stolyar network, and this section discusses the ideas and arguments needed to overcome them.

A first challenge we have overcome arises in networks with unbounded route lengths (i.e.,
inf{d ∈ N : P d = 0} = ∞). In that case, the above inductive procedure does not terminate.
For this reason, we propose a variant of the LRFS policy, the ε-LRFS policy, which occasionally
processes a job with the largest counter. Intuitively speaking, this additional mechanism in
ε-LRFS can control the jobs with large counters, whereas LRFS cannot.

A second challenge we have surmounted is that the construction of Lglobal in the Rybko-
Stolyar network starts from a simple local Lyapunov function in a single-server system, but it
is not clear whether similar arguments go through for general local Lyapunov functions and
stochastic processing networks. We require Condition C2 to resolve this issue. It is readily seen
that the local Lyapunov function (9) used in the Rybko-Stolyar network satisfies this condition.
The condition can be relaxed under some additional conditions on the arrival processes and
service time distributions. For example, in synchronized networks, Condition C1 can be used
instead of C2.

A further challenge in the general case relates to the definition of Ŵi(t). In the Rybko-
Stolyar network, it is the sum of workloads along a path of buffers, with i as the last buffer.
This definition only applies to networks with deterministic routing. In the general case we use
several notions of total workload. To allow for stochastic routing, we construct a new process
{Y (t)} from {X(t)} with deterministic routing. This process is essentially identical to {X(t)},
but we enlarge the state space to incorporate routing information. We construct a Lyapunov
function Lglobal for {Y (t)}, which we use to establish the stability of {Y (t)} and hence the
stability of {X(t)}.

In summary, we construct the Lyapunov function Lglobal for general networks as the sum of
three parts:

Lglobal(Y (t)) =
D∑

c=1

( υ

2C

)c
Llocal

(
Ŵ≤c(t)

)
+

2C

βmin
‖V (t)‖22 +

ξ

2C
G(Y (t))2.

The specific notation used here is not important; we refer readers to Section 6 for the definitions
used. To prove stability, we need to argue that this function satisfies a so-called negative-drift
condition. The first term, i.e., the finite sum, comes from the inductive construction under
LRFS, appropriately truncated. For the Rybko-Stolyar network, this is the only part we need.
The first part produces the desired negative drift for jobs with low counters, but it gives a
positive drift in terms of remaining service requirements V (t) as a by-product (albeit not in
the Rybko-Stolyar network under the assumptions of the preceding subsection). The second
term in our Lyapunov function (‖V (t)‖22) has a negative drift and compensates the positive
drift incurred by the first term. The third term in our Lyapunov function (G(Y (t))2) controls
the high-counter jobs under the mechnism which is present in the ε-LRFS policy but not in
the LRFS policy (step 3 in Definition 3.2). This additional mechanism allows us to establish a
negative drift for the last term. By appropriately weighing each of the three terms, we derive
the desired negative drift condition for the Lyapunov function Lglobal.
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4.3 Connection with Fluid Models

As mentioned in the previous subsection, our approach relies on an inductive argument based
on job counters. For the Rybko-Stolyar network and more generally for multiclass networks,
fluid models can be used to give relatively simple proofs of our results. Thus, a more detailed
discussion on the connection with fluid models together with its pros and cons is warranted.

The fluid approach consists of two main steps. In the first step, by scaling time and space, one
proves convergence of the queueing process to the solution of a system of deterministic equations
known as the fluid model. In the second step, one proves that this fluid model is stable, i.e.,
that it eventually reaches the origin. Stability of the fluid model can be established through the
construction of a Lyapunov function for the fluid model, or in some cases one can obtain fluid
stability through direct methods such as induction. Once fluid stability has been established,
one can apply general theorems to deduce that the stochastic model is also stable (in a certain
sense), see for instance [3].

It might be possible to establish existence of a fluid model and to prove that the stochastic
model converges to the fluid model in the setting of the present paper, and that our ‘global’
Lyapunov function might work to prove fluid stability. Comparing our approach with this proof
strategy, a disadvantage of the fluid model is that one needs to establish convergence to the
fluid model, while a disadvantage of our approach is that we have to keep track of detailed state
information such as residual service times.

Another possible approach to establish fluid stability is to use an inductive argument, which
may seem particularly attractive given our construction of job counters and the suitability of a
induction argument in existing work on fluid models [7]. However, this approach has inherent
challenges. The base step in an inductive approach could use the ‘local’ Lyapunov function Llocal

to argue that the fluid level of jobs with counter 1 vanishes after some finite time T1. It would
then use Llocal to argue that the fluid level of jobs with counter 2 vanishes after some finite
time T2 > T1, and so forth. To carry out this argument, one has to show that Llocal satisfies a
certain negative-drift condition under the assumption that high-priority counter 1 jobs vanish
on a fluid scale. The latter only yields a guarantee on the ‘average’ or ‘long-run’ behavior of
the jobs with counter 1, whereas one needs ‘short-term’ network state information to establish
the negative-drift condition for jobs with counter 2. Indeed, under our scheduling policy, jobs
with counter 1 (even when vanishing on a fluid scale) can significantly influence the dynamics
of jobs with counter 2 depending on the complexity of the network. Therefore, the base of the
induction approach is too weak to be used in the induction step for general networks since one
needs more detailed information than the time-average given by the fluid approach.

In special cases such as multiclass networks, one may not need quadratic Lyapunov functions
and it may be possible to establish the stability of our counter-based policy using fluid induction
without quadratic Lyapunov functions. However, in general (e.g., for networks of switches), we
need quadratic Lyapunov functions since they are the only available tool to establish stability
for single-hop networks.

5 Examples

In this section, we provide applications of Theorem 3.5 to various special stochastic processing
networks. We consider parallel server networks (including multiclass queueing networks) in
Section 5.1 and communication networks (including wireless networks and networks of input-
queued switches) in Section 5.2. They are examples of non-synchronized and synchronized
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networks, respectively. In all of these important examples, suitable local Lyapunov functions
are easy to find.

5.1 Open Multiclass Queueing Networks and Parallel Server Networks

In this section, we consider special stochastic processing networks known as parallel server
networks. These networks are characterized by the following assumption.

A1. Each activity is processed by exactly one processor and processes exactly one buffer, i.e.,

|Kj | = 1, for all j ∈ J.

Figure 2 illustrates the relations between buffers, activities and processors in parallel server
networks. Our notion of ‘parallel server network’ generalizes the well-studied parallel server
systems [11] by adding stochastic routing dynamics between buffers. It also includes open
multiclass queueing networks [3] as a special case, which additionally require

|Ji| = 1, for all i ∈ I. (14)

In open multiclass queueing networks, buffers and activities are in one-to-one correspondence
and they are referred to as classes. The Rybko-Stolyar in Section 4 is an instance of open
multiclass queueing networks.

1 2 3

a b c d e

AA

B

Figure 2: Two examples of parallel server networks. They do not satisfy Assumption A2.
The leftmost diagram illustrates a parallel server network with five buffers {a, b, c, d, e}, three
processors {1, 2, 3} and eight activities {(a, 1), (b, 1), (b, 2), (b, 3), (c, 2), (d, 3), (e, 2), (e, 3)}. Once
a job in buffer a, b, c, d completes its service requirement, it joins buffer b, c, d, e (i.e., Pab =
Pbc = Pcd = Pde = 1), respectively. Once a job in buffer e completes its service requirement,
it leaves the network. The rightmost diagram illustrates a parallel server network consisting of
three ‘local’ parallel server systems where jobs are routed between local systems.

A parallel server network naturally defines a bipartite graph (I,K, J) such that each activity
in J defines an edge between buffers I and processors K. Requirement (14) of open multiclass
queueing networks imposes the additional restriction that each vertex in I has degree one. We
further consider the following strengthening of Assumption A1.
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A2. (I,K, J) is a union of disjoint complete bipartite graphs {(I(h),K(h), J(h)) : h ∈ H}, i.e.,

∪h∈HI
(h) = I, ∪h∈HK

(h) = K, and ∪h∈H J(h) = J.

This assumption implies that two buffers in the same component are activity-interchangeable,
even though they may differ with respect to routing, external arrivals or service requirements.
One can easily check that open multiclass queueing networks always satisfy this assumption,
while the parallel server networks in Figure 2 do not. Assumption A2 is useful because it
enables us to establish a necessary condition for stability and it allows us to find a suitable local
Lyapunov function satisfying Condition C2 of Theorem 3.5. However, Theorem 3.5 is applicable
to general networks as long as one can find a ‘good’ local Lyapunov function satisfying Condition
C2. Figure 3 gives examples of parallel server networks satisfying Assumption A2.

A B

Figure 3: Two examples of parallel server networks satisfying Assumption A2. The rightmost
diagram illustrates the Rybko-Stolyar network described in Section 4.

Necessary condition for stability. We now aim to obtain a necessary condition for stability
of a parallel server network. Under Assumption A2, a necessary condition to stabilize the network
is that for every n,

ρ(h) :=
∑

i∈I(h)

ρi < β(h) :=
∑

j∈J(h)

βj . (15)

It is clear that the above condition is required for stability since ρ(h) and β(h) describe the
total nominal load and the maximum processing rate, respectively, at the local component
(I(h),K(h), J(h)).

Local Lyapunov function. As in Section 4, the single-processor example is the main building
block. We define the local Lyapunov function as

Llocal(x) =
∑

h∈H


∑

i∈I(h)

xi




2

for x = (x1, . . . , xI). (16)

We now show that this function satisfies (3) with some slack ε ≥ 0 as long as the necessary
condition (15) for stability is satisfied. For given vectors w = [wi] ∈ R

I
+ and u = [uj ] ∈ M(w),
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maximality implies that, on writing w(h) =
∑

i∈I(h) wi,

s(h) = s(h)(u) :=
∑

j∈J(h)

ujβj ≥
∑

j∈J(h)

1+
w(h)βj = 1+

w(h)β
(h),

where we use Assumption A2 and we recall that 1+x = 1 if x > 0, and 1+x = 0 otherwise. Thus,
we have

Llocal(w + ρ+ εm− s(u))− Llocal(w) =
∑

h∈H

[(
w(h) + ρ(h) + εm(h) − s(h)

)2
−
(
w(h)

)2]

≤ C+ 2
∑

h∈H

w(h)
(
ρ(h) + εm(h) − s(h)

)

≤ C+ 2
∑

h∈H

w(h)
(
ρ(h) + εm(h) − 1+

w(h)β
(h)
)

= C+ 2
∑

h∈H

w(h)
(
ρ(h) + εm(h) − β(h)

)
,

where C is some constant and we define m(h) :=
∑

i∈I(h) mi. Therefore, Llocal is a local Lyapunov
function with slack ε for

0 ≤ ε < min
h∈H

β(h) − ρ(h)

m(h)
,

where the right-hand side is positive if (15) holds.

Stability of LRFS policies. We now formulate the main results of this paper for open multi-
class networks and parallel server networks. Under Assumption A2, the local Lyapunov function
(16) satisfies Condition C2 of Theorem 3.5. Therefore, we obtain the following proposition as
a corollary. We remind the reader that open multiclass queueing networks are special instances
of parallel server networks, and that Assumption A2 automatically holds for these networks.

Proposition 5.1. If a stochastic processing network satisfies Assumption A2 with ρ(h) < β(h)

for all n, then

• The ε-LRFS process is queue-length-stable for any ε ∈

(
0,min

h∈H

β(h)−ρ(h)

m(h)

)
.

• The LRFS process is queue-length-stable if all routes are bounded in length.

We note that the ε-LRFS policy admits a simpler description in a stochastic processing
network satisfying Assumption A2, since a job can be processed by any processor in the partition,
i.e., Σ in Definition 3.2 is non-empty whenever a processor is idle and capable of processing a
job. Indeed, the ε-LRFS policy reduces to the following work-conserving randomized priority
policy: whenever a processor k is idle at time t and there are jobs capable of being processed
by k,

• Process a job with the smallest counter with probability 1 − ε
(
1− 1+

T(h)(t)

)
, otherwise

process a job with the largest counter.

• Set T(h)(t) = 1 if T(h)(t) = 0,
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where I(h) is the (local) component of buffers associated with processor k. Proposition 5.1
implies that the ε-LRFS policy can achieve ‘almost’ the full capacity region (15) by choosing a
small ε > 0.

Our proof of Proposition 5.1 provides a different proof for some results that have been es-
tablished using fluid model techniques. For example, in reentrant lines, the ε-LRFS policy for
ε = 0 is identical to the well-known First Buffer First Served (FBFS) policy. Our proposition
implies that the FBFS policy is throughput optimal in all reentrant lines, which has been proved
originally in [7].

5.2 Communication Networks

We now consider examples of synchronized stochastic processing networks described in Section
2, i.e., mi = βj = 1, for all i ∈ I, j ∈ J. In particular, we consider the following additional
assumption on synchronized stochastic processing networks.

B1. Each buffer has exactly one associated activity, i.e.,

Ji = {ji} for all i ∈ I.

Hence, we write Ki := Kji .

We again remark that Assumption B1 facilitates a suitable local Lyapunov function for Theorem
3.5. However, even if Assumption B1 does not hold, Theorem 3.5 is applicable to synchronized
stochastic processing networks as long as one can find a ‘good’ local Lyapunov function. Synchro-
nized stochastic processing networks satisfying Assumption B1 include various communication
network models of unit-sized packets: networks of input-queued switches [18, 6], wireless network
models with primary interference constraints [21] and independent-set interference constraints
[22]. We refer the corresponding references for detailed descriptions of the network models.
As a concrete example, we write out the details of the wireless network model with primary
interference constraints.

Wireless networks with primary interference constraints. Consider a network of n
nodes represented by V = {1, . . . , n} and a set of directed paths {P1, P2, . . . }. Unit-size packets
arrive at the ingress node of each path as per an exogenous arrival process. Assume that the
network is synchronized, i.e., each packet departs from a node at time t ∈ Z+ and arrives at the
next node on its route at time t+1. The primary interference constraint means that each node
can either send or receive (it cannot do both) one packet at the time. A scheduling policy (or
algorithm) decides which packets transmit at each (discrete) time instance. Figure 4 illustrates
a wireless network of four nodes with primary interference constraints.

Necessary condition for stability. As in the parallel server networks, one can obtain the
following necessary condition to stabilize a stochastic processing network satisfying Assumption
B1: for all k ∈ K,

ρ(k) :=
∑

i∈I:k∈Ki

ρi < 1. (17)

This is because Assumption B1 implies that each buffer has at most one associated activity, and
the processing rate is 1.
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1

3

2

4

1 -> 2  1 -> 3

1 2 3 4

2 -> 1 3 -> 1 4 -> 32 -> 4

Figure 4: Example of a wireless network with primary interference constraints with four nodes
{1, 2, 3, 4} and five paths {1 → 2, 2 → 1, 1 → 3, 3 → 1, 2 → 4 → 3}. There is a buffer on each
(directed) edge on each path, i.e., six buffers in total. Unit-size packets arrive at the ingress
buffer (i.e., the first node) of each path. In the leftmost diagram, two links 2 → 4 and 3 → 1 are
transmitting (unit-sized) packets. Once a packet is transmitted, it leaves the network if it arrives
at the destination node (i.e., the last node on its path). The rightmost diagram illustrates the
corresponding stochastic processing network, where the relation between buffers, activities and
processors induces a hypergraph (each buffer requires two processors)

.

Local Lyapunov function. We consider the following local Lyapunov function:

Llocal(x) =
∑

i∈I

∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

xixℓ, for x = (x1, . . . , xI).

We now proceed toward proving that condition (3) holds. For given vectors w = [wi] ∈ R
I
+ and

u = [uj ] ∈ M(w), maximality implies that

∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

uℓ ≥ 1+wi
.

Thus, we have that, on writing νi = ρi + εmi,

Llocal(w + ρ+ εm− s(u))− Llocal(w) ≤ C+ 2
∑

i∈I

wi


∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

νℓ −
∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

uℓ




≤ C+ 2
∑

i∈I

wi


∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

νℓ − 1+wi




= C+ 2
∑

i∈I

wi


∑

k∈Ki

∑

ℓ∈I:k∈Kℓ

νℓ − 1


 ,
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where C is some constant. Therefore, (3) holds if ν(k) :=
∑

i∈I:k∈Ki
νi <

1
maxi∈I |Ki|

for all k ∈ K.
This is equivalent to

0 ≤ ε < min
k∈K

1
maxi∈I |Ki|

− ρ(k)

m(k)
,

where we define m(k) :=
∑

i∈I:k∈Ki
mi. The above interval is non-empty as long as ρ(k) <

1
maxi∈I |Ki|

for all k ∈ K.

Stability of LRFS policies. We now state the main result for synchronized stochastic net-
works satisfying Assumption B1. Since the network is synchronized, we obtain the following
proposition as a corollary of Theorem 3.5.

Proposition 5.2. If a stochastic processing network is synchronized and satisfies Assumption
B1 with ρ(k) < 1

maxi∈I |Ki|
for all k ∈ K, then

• The ε-LRFS process is queue-length-stable for any ε ∈

(
0,mink∈K

1
maxi∈I

|Ki|
−ρ(k)

m(k)

)
.

• The LRFS process is queue-length-stable if all routes are bounded in length.

Proposition 5.2 implies that the ε-LRFS policy can achieve a 1
maxi∈I |Ki|

fraction of the capacity

region (17). For networks of input-queued switches [18, 6] and wireless networks with primary
interference constraints [21], it is easy to see that maxi∈I |Ki| = 2, and hence the ε-LRFS
policy achieves 50% of the capacity region. For wireless networks with general independent set
constraints [22], maxi∈I |Ki| is the maximum number of interfering neighbors, i.e., the maximum
degree of the underlying interference graph.

In large-scale networks, distributed scheduling schemes with low complexity have gained
much attention recently, even though they usually perform worse than centralized ones with
high complexity. We remark that the 50% throughput result of a greedy scheduling algorithm
has previously been established for input-queued switches (i.e., no routing between buffers) by
Dai et al. [6]. Proposition 5.2 generalizes this to ‘networks’ of input-queued switches operated
under stochastic routing between buffers (or local switches). In wireless networks with primary
interference constraints, Wu et al. [25] establish the 50% throughput result of the LRFS policy
assuming deterministic routing (i.e., fixed routes between nodes), while Proposition 5.2 allows
stochastic routing.

6 Proof of Theorem 3.5

To prove the desired stability of the ε-LRFS process {X(t)}, we construct a new process {Y (t)},
which is almost identical to {X(t)}, but it has a larger state space. The main idea of the proof
is to construct a Lyapunov function for the ‘larger’ process {Y (t)}, which implies the stability
of {Y (t)} and therefore the stability of {X(t)}.

The description of {Y (t)} is as follows. Consider the stochastic processing network setup in
Section 2, and let P = {P1, P2, . . . } be the collection of all possible paths of buffers (allowing
repetitions) of length at most D (i.e., |P| ≤ (I + 1)D), where D ∈ N is some finite constant
to be determined later. We assume that when a job enters the network, it pre-determines the
first D buffers on its route. After being processed from these D buffers, jobs perform the usual
stochastic routing as described in Section 2. Let inm ∈ I, Qnm(t) ∈ Z+ and V j

nm(t) ∈ R+ denote
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the m-th buffer on path Pn, the number of jobs waiting in buffer inm and the remaining service
requirement of the job in buffer inm being processed by activity j at time t, respectively. If
activity j is not processing a job in buffer inm, then V j

nm(t) = 0. Furthermore, as before, let
Qi,c(t) be the queue length (i.e., the number of jobs waiting for service, excluding those being

processed) with counter c in buffer i at time t. V j
i,c(t) is defined to be the remaining service

requirement of the job with counter c in buffer i being processed by activity j at time t. We
then define

Y (t) =
[
Qnm(t), Qi,c(t), V

j
nm(t), V j

i,c(t),T
(h)(t)

]
∈ ΩY := Z

∞
+ × R

∞
+ × [0, 1]H ,

where n,m, c, h are positive integers such that n ≤ (I + 1)D, m ≤ D, c > D and h ≤ H.
As for {X(t)}, we impose the convention that {Y (t)} has right-continuous sample paths. We

define the norm |Y (t)| through

|Y (t)| =
∑

n≤(I+1)D,m≤D

Qnm(t) +
∑

i∈I,c>D

Qi,c(t) +
∑

n≤(I+1)D,m≤D,j∈J

V j
nm(t) +

∑

i∈I,c>D,j∈J

V j
i,c(t).

One can define a natural projection P such that the distribution of P (Y (t)) is identical to
that of X(t) and |P (Y (t))| = |X(t)| given that Y (0) is drawn appropriately from the preimage
P−1(X(0)) of X(0). Intuitively speaking, {Y (t)} tosses random coins to determine routes in
advance, and since the scheduling decisions of ε-LRFS are independent of these coins, the natural
projection of {Y (t)} ignoring these pre-determined coin flips provides exactly the dynamics of
{X(t)}. Hence, it suffices to prove that the (bigger) process {Y (t) : t ∈ R+} is queue-length-
stable, i.e.,

lim sup
t→∞

1

t

∫ t

0
E [|Y (s)|] ds < ∞, (18)

for any given initial state Y (0) ∈ Ω∗
Y := {Y ∈ ΩY : |Y | < ∞}. In essence, this follows from the

following proposition, which is proved in Section 6.1.

Proposition 6.1. If the conditions of Theorem 3.5 hold, then there exist constants N,T,D, ζ,C ∈
(0,∞) and a Lyapunov function Lglobal : ΩY → R+ ∪ {∞} such that for all t ≥ N ,

E [Lglobal(Y (t+ T )) | F(t)] ≤ Lglobal(Y (t))− ζ|Y (t)|+ C, almost surely,

and supY ∈Ω∗
Y
Lglobal(Y )/|Y |2 < ∞, where we define the filtration {F(t) : t ≥ 0} by

F(t) := σ{Y (s) : 0 ≤ s ≤ t}.

Now we describe how Proposition 6.1 implies (18), and hence the conclusion of Theorem 3.5.
First one can observe that E

[
|Y (t)|2

]
< ∞ since Y (0) ∈ Ω∗

Y and we assume bounded second
moments on arrivals and service times. Since supY ∈Ω∗

Y
Lglobal(Y )/|Y |2 < ∞ from Proposition

6.1, it follows that

E [Lglobal(Y (t+ T ))] , E [Lglobal(Y (t))] , E [|Y (t)|] < ∞. (19)

Combining Proposition 6.1 and (19) yields that for all t ≥ N ,

E [Lglobal(Y (t+ T ))] ≤ E [Lglobal(Y (t))]− ζE [|Y (t)|] + C.
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Therefore, we have that for t ≥ N ,
∫ T+t

T+N

E [Lglobal(Y (s))] ds =

∫ t

N

E [Lglobal(Y (s+ T ))] ds

≤

∫ t

N

E [Lglobal(Y (s))] ds− ζ

∫ t

N

E [|Y (s)|] ds+ C(t−N),

which implies that for t ≥ T +N ,

ζ

t−N

∫ t

N

E [|Y (s)|] ds ≤ C+
1

t−N

∫ T+N

N

E [Lglobal(Y (s))] ds.

The right-hand side of the above inequality converges to C as t → ∞. This leads to the desired
conclusion (18).

6.1 Proof of Proposition 6.1

The choice of N in Proposition 6.1 comes from our assumption on the external arrival processes
in Section 2, namely, that there exists some N < ∞ such that for all i ∈ I and t ≥ N ,

E
[
Ai(t, t+ 1)

∣∣ {A1(0, s), . . . , AI(0, s) : 0 ≤ s ≤ t}
]

≤ αi.

For notational convenience, we assume N = 0 in the proof of Proposition 6.1. Namely, we
assume that for all t ≥ 0,

E
[
Ai(t, t+ 1)

∣∣ F(t)
]

≤ αi < ∞. (20)

All the proof arguments are applicable to the general case N > 0.
We first define some further notation in Section 6.1.1. The skeleton of the proof of Proposition

6.1 is described in Section 6.1.2, and it uses three key lemmas. The proofs of these lemmas follow.

6.1.1 Notation

The quantities defined below are simple functions of the network state Y (t). We use bold
symbols to denote vectors of quantities, e.g., Qc(t) = [Qi,c(t)] and W≤c(t) = [Wi,≤c(t)].

Queues. For c ∈ N, let Qi,c(t), Qi,<c(t) and Qi,≤c(t) be the number of waiting jobs with
counter c, < c and ≤ c in buffer i at time t, respectively. That is, we set

Qi,c(t) =

(I+1)D∑

n=1

Qnc(t) I{i}(inc) for c ≤ D,

Qi,<c(t) =
c−1∑

c′=1

Qi,c′(t) Qi,≤c(t) =
c∑

c′=1

Qi,c′(t),

where we recall that I{i}(inc) = 1 if inc = i and I{i}(inc) = 0 otherwise. Furthermore, for c ≤ D,

we let Q̂i,≤c(t) be the number of waiting jobs with counter ≤ c ‘in or destined for’ buffer i at
time t. Namely,

Q̂i,≤c(t) = Qi,≤c(t) +

(I+1)D∑

n=1

c∑

m=1

c∑

r=m+1

Qnm(t) I{i}(inr),
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where the first term ‘Qi,≤c(t)’ and the second term ‘
∑(I+1)D

n=1 · · · ’ on the right-hand side count
the numbers of waiting jobs currently in buffer i and destined for buffer i, respectively.

Workloads. Let V j(t) denote the remaining service requirement of the job being processed by
activity j at time t, and Vi(t) the total remaining service requirement of the jobs being processed
in buffer i at time t (multiple jobs can be processed from the same buffer by different processors).
Similarly, Vi,c(t), Vi,<c(t), Vi,≤c(t) stands for the total remaining service requirement of jobs with
counter c, < c, ≤ c being processed in buffer i at time t, respectively. We furthermore define
the following quantities:

if the network is not synchronized,

Wi,<c(t) = miQi,<c(t) + Vi(t)

Wi,≤c(t) = miQi,≤c(t) + Vi(t)

Ŵi,≤c(t) = miQ̂i,≤c(t) + Vi(t).

if the network is synchronized,

Wi,<c(t) = miQi,<c(t) + Vi,<c(t)

Wi,≤c(t) = miQi,≤c(t) + Vi,≤c(t)

Ŵi,≤c(t) = miQ̂i,≤c(t) + Vi,≤c(t).

We use different definitions for these variables depending on whether the network is synchronized
or not, since the strategy of the proof differs in each case, e.g., see Section 6.1.4. We also note
that in a synchronized network, Vi,c(t), Vi,<c(t), Vi,≤c(t) ∈ {0, 1} for t ∈ Z+. The quantities
Wi,<c(t) and Wi,≤c(t) are (expected) immediate workloads, since they only involve work that

is in buffer i at time t. The quantities Ŵi,≤c(t) are (expected) total workloads, since they
incorporate work currently in the system which will be routed to buffer i, regardless where the
work resides in the network at time t.

Three types of jobs & weights. We distinguish three types of jobs:

Type 1. Jobs with counter > D

Type 2. Jobs on a path of length = D in P.

Type 3. Jobs on a path of length < D in P.

Hence, the counters of jobs of Type 2 and 3 cannot exceed D. We further note that each
job (regardless whether it is currently being processed or not) can compute its expected total
remaining service requirement in the future (under the network process {Y (t)}), and we call this
quantity the weight of the job. Namely, if a job is not currently being processed, its weight is

∑

i∈I

miE
[
the number of times it visits buffer i before it leaves the network

]
,

which includes the current buffer of the job. Thus, the weight of a waiting job, not currently
being processed, can be calculated as follows.
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Type 1. The weight of a waiting job of Type 1 in buffer i ∈ I is

eTi (I + P + P 2 + · · · )m = eTi (I − P )−1m,

where m = [mi] ∈ R
I
+ and ei ∈ {0, 1}I is the unit vector with zeros except for its

i-th coordinate which equals to one (both are column vectors).

Type 2. The weight of a waiting job of Type 2 in buffer inm on a path Pn of length D (i.e.,
|Pn| = D) is

eTinD
(P + P 2 + P 3 + · · · )m+

D∑

k=m

mink
= eTinD

P (I − P )−1m+
D∑

k=m

mink
,

where we note that inD is the last buffer on Pn.

Type 3. The weight of a waiting job of Type 3 in buffer inm on a path Pn of length < D is

|Pn|∑

k=m

mink
.

On the other hand, for jobs currently being processed, each weight is calculated as

the current remaining service requirement

+
∑

i∈I

miE
[
the number of times it visits buffer i before it leaves the network

]
,

where the latter number does not include the current buffer of the job. Now let M1(t), M2(t)
and M3(t) be the total weights of jobs of Type 1, 2 and 3 at time t, respectively. These total
weights are fully determined by the network state information Y (t):

M1(t) =
∑

i∈I,c>D

Qi,c(t) e
T
i (I − P )−1m+

∑

i∈I,c>D,j∈J

1+
V

j
i,c(t)

[
V j
i,c(t) + eTi P (I − P )−1m

]
,

M2(t) =
∑

n≤(I+1)D,m≤D:|Pn|=D

Qnm(t)

[
eTinD

P (I − P )−1m+

D∑

k=m

mink

]

+
∑

n≤(I+1)D,m≤D,j∈J :|Pn|=D

1+
V

j
nm(t)

[
V j
nm(t) + eTinD

P (I − P )−1m+
D∑

k=m+1

mink

]
,

M3(t) =
∑

n≤(I+1)D,m≤D:|Pn|<D


Qnm(t)

|Pn|∑

k=m

mink




+
∑

n≤(I+1)D,m≤D,j∈J:|Pn|<D

1+
V

j
nm(t)


V j

nm(t) +

|Pn|∑

k=m+1

mink


 ,

where we recall that 1+x = 1 if x > 0, and 1+x = 0 otherwise.
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6.1.2 Three Auxiliary Lemmas and Proof of Proposition 6.1

We state and prove the following three key lemmas, which we prove in Section 6.1.3, 6.1.4 and
6.1.5, respectively. To simplify notation, we will use C to denote a finite constant which only
depends on the matrix Z given in Theorem 3.5 or on the predefined network parameters from
Section 2. Its precise value can be different from line to line.

Lemma 6.2. There exists a constant C < ∞ such that for all t ≥ 0,

E
[
‖V (t+ 1)‖22 | F(t)

]
≤ ‖V (t)‖22 − βmin‖V (t)‖1 + C,

where βmin = minj∈J βj.

Lemma 6.3. Suppose that there exists a symmetric matrix Z ∈ R
I×I
+ such that Llocal(x) = xTZx

is a local Lyapunov function with slack ε ≥ 0, and that either Condition C1 or C2 ′ from Theorem
3.5 holds. Then given D ∈ N, there exist constants υ,C = C(D) ∈ (0,∞) such that for all c ≤ D,
t ≥ 0,

E
[
Llocal

(
Ŵ≤c(t+ 1)

) ∣∣∣ F(t)
]

≤ Llocal

(
Ŵ≤c(t)

)
− υ‖Q≤c(t)‖1 + C (‖V (t)‖1 + ‖Q<c(t)‖1 + 1) .

Lemma 6.4. Consider ε > 0. If the network is synchronized or if Condition C2 from Theorem
3.5 holds, then there exist constants D,T ∈ N and C, γ1, γ2 ∈ (0,∞) such that for all t ≥ 0,

E
[
G(Y (t+ T ))2 | F(t)

]
≤ G(Y (t))2 − γ2‖Q>D(t)‖1 + C

(
‖Q≤D(t)‖1 + ‖V (t)‖1 + 1

)
,

where G(Y (t)) := M1(t) +M2(t) + γ1‖V (t)‖1.

Lemma 6.4 is not needed for the proof of Proposition 6.1 if all routes are bounded. Hence, for
networks with bounded routes, ε = 0 is allowed and only Condition C2 ′ is needed for the desired
stability. The right-hand sides of the inequalities in Lemmas 6.2 – 6.4 provide ‘negative drifts’
on ‖V (t)‖1, ‖Q≤D(t)‖1 and ‖Q>D(t)‖1, respectively. By appropriately weighing the functions
in these three lemmas, we shall construct an appropriate (global) Lyapunov function Lglobal. To
this end, from Lemma 6.2, we obtain

E
[
‖V (t+ T )‖22 | F(t)

]
≤ E

[
‖V (t+ T − 1)‖22 | F(t)

]
− βminE [‖V (t+ T − 1)‖1 | F(t)] + C,

≤ E
[
‖V (t+ T − 1)‖22 | F(t)

]
+ C

≤ E
[
‖V (t+ T − 2)‖22 | F(t)

]
+ 2C

. . .

≤ E
[
‖V (t+ 1)‖22 | F(t)

]
+ (T − 1)C

≤ ‖V (t)‖22 − βmin‖V (t)‖1 + TC, (21)

where T is the constant from Lemma 6.4. We write this inequality as

E

[
1

βmin
‖V (t+ T )‖22

∣∣∣F(t)
]

≤
1

βmin
‖V (t)‖22 − ‖V (t)‖1 + C, (22)
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where the constant C is redefined appropriately. We now argue that, similarly, Lemma 6.3
implies that

E
[
Llocal

(
Ŵ≤c(t+ T )

) ∣∣∣F(t)
]

≤ Llocal

(
Ŵ≤c(t)

)
− υ‖Q≤c(t)‖1 + C (‖V (t)‖1 + ‖Q<c(t)‖1 + 1) , (23)

where C is some (large) constant which may different from the one in Lemma 6.3. To see why
this holds, we use the same argument that led to (21) with the additional observation that, for
some constant C′,

sup
s∈{0,1,...,T}

(E [‖V (t+ s)‖1 | F(t)]− ‖V (t)‖1) ≤ C′, (24)

sup
s∈{0,1,...,T}

(E [‖Q(t+ s)‖1 | F(t)]− ‖Q(t)‖1) ≤ C′. (25)

Here (24) can be derived along the lines of (21), and (25) follows from (20) and the observation
that the change in queue length is majorized by the number of external job arrivals.

We now show that Proposition 6.1 follows from these three lemmas, where the last lemma is
not needed if all routes are bounded. We consider the following Lyapunov function Lglobal:

• If all routes are bounded,

Lglobal(Y (t)) :=

D∑

c=1

( υ

2C

)c
Llocal

(
Ŵ≤c(t)

)
+

2C

βmin
‖V (t)‖22,

where we choose D < ∞ such that PD = 0, and υ comes from Lemma 6.3.

• Otherwise,

Lglobal(Y (t)) :=
D∑

c=1

( υ

2C

)c
Llocal

(
Ŵ≤c(t)

)
+

2C

βmin
‖V (t)‖22 +

ξ

2C
G(Y (t))2,

where υ and D is from Lemma 6.3 and 6.4, respectively, ξ := ξ(υ,C, D) = υ
(

υ
2C

)D
and C

is a large enough constant chosen so that it can be used for Lemma 6.4 as well as for (22)
and (23).

We focus on proving Proposition 6.1 for the case of unbounded routes, but all arguments go
through for the other case. Without loss of generality, we assume that

ξ, υ, γ2 < 1 < C.

The property supY ∈Ω∗
Y
Lglobal(Y )/|Y |2 < ∞ in Proposition 6.1 is readily seen to hold. To derive

the negative drift property, we observe that Lemma 6.4 in conjunction with (22) and (23) imply
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that

E
[
Lglobal(Y (t+ T ))− Lglobal(Y (t))

∣∣F(t)
]

≤ C∗ − 2C‖V (t)‖1 +
D∑

c=1

( υ

2C

)c [
− υ‖Q≤c(t)‖1 + C‖Q<c(t)‖1 + C‖V (t)‖1

]

−
γ2ξ

2C
‖Q>D(t)‖1 +

ξ

2

(
‖Q≤D(t)‖1 + ‖V (t)‖1 + 1

)

≤ C∗ − C‖V (t)‖1 +
D∑

c=1

( υ

2C

)c [
− υ‖Q≤c(t)‖1 + C‖Q<c(t)‖1

]

−
γ2ξ

2C
‖Q>D(t)‖1 +

ξ

2

(
‖Q≤D(t)‖1 + ‖V (t)‖1 + 1

)
,

where C∗ is some (large enough) constant and we use υ ≤ C for the last inequality. The sum in
this expression can be bounded as follows:

D∑

c=1

( υ

2C

)c [
− υ‖Q≤c(t)‖1 + C‖Q<c(t)‖1

]

= −υ
D∑

c=1

( υ

2C

)c
‖Q≤c(t)‖1 +

υ

2

D∑

c=1

( υ

2C

)c−1
‖Q<c(t)‖1

= −υ
( υ

2C

)D
‖Q≤D(t)‖1 −

(
υ −

υ

2

)D−1∑

c=1

( υ

2C

)c
‖Q≤c(t)‖1

≤ −υ
( υ

2C

)D
‖Q≤D(t)‖1 = −ξ‖Q≤D(t)‖1.

After combining the preceding two displays, we obtain the desired negative drift property:

E
[
Lglobal(Y (t+ T ))− Lglobal(Y (t))

∣∣F(t)
]

≤ C∗ − C‖V (t)‖1 − ξ‖Q≤D(t)‖1 −
γ2ξ

2C
‖Q>D(t)‖1 +

ξ

2

(
‖Q≤D(t)‖1 + ‖V (t)‖1 + 1

)

≤ C∗ +
ξ

2
−

γ2ξ

2C

(
‖V (t)‖1 + ‖Q≤D(t)‖1 + ‖Q>D(t)‖1

)

= C∗ +
ξ

2
−

γ2ξ

2C
(‖V (t)‖1 + ‖Q(t)‖1) ,

where we use ξ, υ, γ2 < 1 and C > 1. This completes the proof of Proposition 6.1.

6.1.3 Proof of Lemma 6.2

Recall that ‖V (t)‖22 is the sum of squares of the remaining service requirements of jobs being
processed by some activity at time t, i.e.,

‖V (t)‖22 =
∑

j∈J

V j(t)2 and ‖V (t)‖1 =
∑

j∈J

V j(t).
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On the event {V j(t) ≤ βj}, activity j has to restart before time t+ 1 and hence,

E
[
V j(t+ 1)2 | F(t)

]

≤ E
[
V j(t+ 1)2 | V j(t+ 1) > 0,F(t)

]

≤ E
[
Γ2
ij ,t+1

∣∣ V j(t+ 1) > 0,F(t)
]

= E
[
E
[
Γ2
ij ,t+1

∣∣ V j(t+ 1) > 0,F(t), J (t+1)
] ∣∣ V j(t+ 1) > 0,F(t)

]
,

where we let Γij ,t+1 denote the service time generated by the job being processed by activity j
at time t+ 1 and we write

J (t+1) := t+ 1−
Γij ,t+1 − V j(t+ 1)

βj
∈ [t, t+ 1]

for the time when this job starts its service. Note that, again on the event {V j(t) ≤ βj},

E
[
Γ2
ij ,t+1

∣∣ V j(t+ 1) > 0,F(t), J (t+1)
]

=

∫ ∞

0
Pr
[
Γ2
ij ,t+1 > x

∣∣ V j(t+ 1) > 0,F(t), J (t+1)
]
dx

=

∫ ∞

0
Pr
[
Γ2
ij
> x

∣∣Γij > βj

(
t+ 1− J (t+1)

)]
dx

=

∫ ∞

0

Pr
[
Γ2
ij
> x,Γij > βj

(
t+ 1− J (t+1)

)]

Pr
[
Γij > βj

(
t+ 1− J (t+1)

)] dx

≤

∫ ∞

0

Pr
[
Γ2
ij
> x

]

Pr[Γij > βj ]
dx

=
E[Γ2

ij
]

Pr[Γij > βj ]
,

where we recall that Γij stands for a generic service time for buffer ij . We have thus established
that on {V j(t) ≤ βj},

E
[
V j(t+ 1)2 | F(t)

]
≤





E[Γ2
ij
]

Pr[Γij
>βj ]

if Pr[Γij > βj ] > 0

(βj)
2 otherwise

. (26)

On the other hand, on the event {V j(t) > βj},

V j(t+ 1)2 = (V j(t)− βj)
2 ≤ V j(t)2 − βjV

j(t) + β2
j . (27)

Hence, combining (26) and (27), we find that for some constant C < ∞,

E[V j(t+ 1)2 | F(t)] ≤ V j(t)2 − βjV
j(t) + C,

which leads to the desired conclusion of Lemma 6.2.
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6.1.4 Proof of Lemma 6.3

For notational convenience, we stick to the case t = 0 in the conclusion of Lemma 6.3. Namely,
we show that

E
[
Llocal

(
Ŵ≤c(1)

) ∣∣ F(0)
]

≤ Llocal

(
Ŵ≤c(0)

)
− υ‖Q≤c(0)‖1 + C (‖V (0)‖1 + ‖Q<c(0)‖1 + 1) .

However, all arguments go through for general t > 0.

Non-synchronized network. We first consider the case when the network may not be syn-
chronized. The first step in the proof is the observation that the schedule σ(t) under the ε-LRFS
policy is always maximal with respect to the vector w = [wi] = [miQi,≤c(t)] for any c ≥ 1. Con-
sequently, since the local quadratic Lyapunov function Llocal(x) = xTZx satisfies (3), we obtain
that for t ∈ [0, 1],

2
∑

(i,ℓ)∈I×I

Ziℓwℓ


ρi + εmi −

∑

j∈Ji

βjσj(t)


 ≤ −η‖w‖1 + C,

where we further use the observation that

wi + ρi + εmi −

∑

j∈Ji

βjσj(t)




wℓ + ρℓ + εmℓ −

∑

j∈Jℓ

βjσj(t)


− wiwℓ

≤ wℓ


ρi + εmi −

∑

j∈Ji

βjσj(t)


+ wi


ρℓ + εmℓ −

∑

j∈Jℓ

βjσj(t)


+ C. (28)

We remind the reader that we write C for a finite constant which may differ from line to line.
Since we set wi = miQi,≤c(t), it follows that

2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(t)


ρi + εmi −

∑

j∈Ji

βjσj(t)


 ≤ −η

∑

i∈I

miQi,≤c(t) + C.

After taking conditional expectations given F(0) on both sides in the above inequality, we obtain

2
∑

(i,ℓ)∈I×I

Ziℓmℓ · E


Qℓ,≤c(t)


ρi + εmi −

∑

j∈Ji

βjσj(t)



∣∣∣∣∣ F(0)


 ≤ −η

∑

i∈I

miQi,≤c(0) + C,

where we use that E[Qℓ,≤c(t) | F(0)] ≥ Qℓ,≤c(0) − C′ for t ∈ [0, 1] for some constant C′. This
can be verified by suppressing any arrivals and letting all activities work, and then using the
standard fact from renewal theory that any renewal function is finite. Similarly, we obtain from

E
[
Qℓ,≤c(t)

∣∣ ∑
j∈Ji

βjσj(t),F(0)
]
≥ Qℓ,≤c(0)− C′ for t ∈ [0, 1] that

2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(0) · E


ρi + εmi −

∑

j∈Ji

βjσj(t)

∣∣∣∣∣ F(0)


 ≤ −η

∑

i∈I

miQi,≤c(0) + C, (29)
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where the constant C again has to be redefined appropriately. We leave this inequality for later
use.

The second step in the proof is to bound E
[
Ŵi,≤c(1)− Ŵi,≤c(0)

∣∣∣ F(0)
]
for fixed i. Let Âi,≤c

be the number of job arrivals contributing to an increase in Q̂i,≤c(·) during the time interval

[0, 1). Then, one can check that for Â≤c =
[
Âi,≤c

]
,

E
[
Â≤c

∣∣ F(0)
]

≤ (I + P + · · ·+ P c)α ≤ λ,

since we assume (20). Define the following quantities.

• Di,≤c and Di,>c are the numbers of jobs in buffer i which start their service during the
time interval [0, 1) and with counter ≤ c and > c, respectively.

• Ri,≤c and Ri,>c are the total amounts of service times generated by jobs contributing to
Di,≤c and Di,>c, respectively, again during the time interval [0, 1). We stress that the
contribution of each job to these quantities may exceed the service time it receives during
the interval [0, 1).

• R
(L)
i,>c are the total amounts of service times generated by jobs contributing to Di,>c due to

the LRFS policy (i.e., step 4 in Definition 3.2). In addition, we set R
(M)
i,>c = Ri,>c −R

(L)
i,>c.

Then, we have that

∆i,≤c := Ŵi,≤c(1)− Ŵi,≤c(0) = mi

(
Âi,≤c −Di,≤c

)
+Ri,≤c +Ri,>c −

∑

j∈Ji

∫ 1

0
βjσj(t) dt. (30)

Taking conditional expectations given F(0) on both sides, we obtain

E [∆i,≤c | F(0)]

≤ miλi + E [−miDi,≤c +Ri,≤c | F(0)] + E [Ri,>c | F(0)]− E


∑

j∈Ji

∫ 1

0
βjσj(t) dt

∣∣∣∣∣ F(0)




= ρi + E [Ri,>c | F(0)]− E


∑

j∈Ji

∫ 1

0
βjσj(t) dt

∣∣∣∣∣ F(0)


 . (31)

Now we bound E [Ri,>c | F(0)] in the above inequality, or equivalently E
[
R

(L)
i,>c

∣∣∣ F(0)
]
+

E
[
R

(M)
i,>c

∣∣∣ F(0)
]
since Ri,>c = R

(M)
i,>c +R

(L)
i,>c. First, one can check that

E
[
R

(M)
i,>c

∣∣∣ F(0)
]

≤ εmi.

This is because the expected number of jobs in buffer i which start their service during the
time interval [0, 1) due to step 3-1 of the ε-LRFS policy in Definition 3.2 is at most ε since
each timer T(h)(t) is zero at most once during this time interval. On the other hand, to bound

E
[
R

(L)
i,>c

∣∣∣ F(0)
]
, consider activity-interchangeable buffers ℓ and i (which includes ℓ = i). Let Eℓ

be the event that every job in the queue Qℓ,≤c(0) (i.e., jobs with counter ≤ c waiting in buffer
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ℓ at time 0) starts service during the time interval [0, 1]. One can observe that R
(L)
i,>c = 0 on the

complementary event Eℓ. We let

N : =

Qℓ,≤c(0)−|Jℓ|∑

w=1

Γℓ,w,

where {Γℓ,w} are identical random variables with mean mℓ and variance ς2ℓ < ∞. We first
consider the case when

E[N | Qℓ,≤c(0)] = mℓ(Qℓ,≤c(0)− |Jℓ|) > βmax|Jℓ|. (32)

Since Eℓ occurs only if at least Qℓ,≤c(0)−|Jℓ| jobs complete their service requirements, we obtain
the following on the event that (32) holds:

Pr[Eℓ | F(0)] ≤ Pr [N ≤ βmax|Jℓ| | F(0)]

= Pr [N − E[N | Qℓ,≤c(0)] ≤ βmax|Jℓ| − E[N | Qℓ,≤c(0)] | F(0)]

≤ Pr
[(
N − E[N | Qℓ,≤c(0)]

)2
≥
(
E[N | Qℓ,≤c(0)]− βmax|Jℓ|

)2
| F(0)

]

≤
ς2ℓ (Qℓ,≤c(0)− |Jℓ|)(

E[N | Qℓ,≤c(0)]− βmax|Jℓ|
)2

=
ς2ℓ (Qℓ,≤c(0)− |Jℓ|)(

mℓ(Qℓ,≤c(0)− |Jℓ|)− βmax|Jℓ|
)2

≤
C

Qℓ,≤c(0) + 1
, (33)

where βmax = maxj∈J βj , C is some (finite) constant depending on ςℓ,mℓ, |Jℓ| and we use Markov’s
inequality in conjunction with (32). On the event that (32) does not hold, i.e., when Qℓ,≤c(0) is

bounded above by |Jℓ|
(
βmax +

1
mℓ

)
, one can redefine the constant C so that (33) holds. Hence,

(33) always holds.
Using (33), it follows that

E[Ri,>c | F(0)] = E
[
R

(M)
i,>c

∣∣∣ F(0)
]
+ E

[
R

(L)
i,>c

∣∣∣ F(0)
]

≤ εmi + Pr[Eℓ | F(0)] · E
[
R

(L)
i,>c

∣∣ Eℓ,F(0)
]

≤ εmi +
C

Qℓ,≤c(0) + 1
· E
[
R

(L)
i,>c

∣∣ Eℓ,F(0)
]

≤ εmi +
C

Qℓ,≤c(0) + 1
,

where the last inequality requires that the constant C has to be redefined appropriately, since

E
[
R

(L)
i,>c

∣∣ Eℓ,F(0)
]
≤ C′ as can be seen using arguments similar to those leading up to (26).

Together with (31), this leads to

E [∆i,≤c | F(0)] ≤ ρi + εmi +
C

Qℓ,≤c(0) + 1
− E


∑

j∈Ji

∫ 1

0
βjσj(t) dt

∣∣∣∣∣ F(0)


 , (34)
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for any activity-interchangeable buffers ℓ and i.
The third step in the proof for the non-synchronized case is to prove the conclusion of Lemma

6.3. By a similar argument as in (28), the claim follows with υ = ηmini∈Imi after we show that

2
∑

(i,ℓ)∈I×I

Ziℓ Ŵℓ,≤c(0)E[∆i,≤c | F(0)] ≤ −η
∑

i∈I

miQi,≤c(0)+C
∑

i∈I

[
Vi(0)+Qi,<c(0)+ 1

]
, (35)

where we use that
E [∆i,≤c∆ℓ,≤c | F(0)] ≤ C (36)

for all i, ℓ and some constant C. To see that (36) holds, it suffices to show that E
[
∆2

i,≤c | F(0)
]
≤

C by the Cauchy-Schwarz inequality. This can be shown using (30) and

E
[
Â2

i,≤c

∣∣ F(0)
]
, E
[
D2

i,≤c | F(0)
]
, E
[
R2

i | F(0)
]

≤ C

where these bounds can be derived using arguments similar to those leading up to (26). Since
Ziℓ, E[∆i,≤c | F(0)] ≤ C and

Ŵℓ,≤c(0) ≤ Wℓ,≤c(0) +
∑

i∈I

miQi,<c(0) = mℓQℓ,≤c(0) + Vℓ(0) +
∑

i∈I

miQi,<c(0),

the inequality in (35) reduces to

2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(0)E[∆i,≤c | F(0)] ≤ −η
∑

i∈I

miQi,≤c(0) + C. (37)

We prove this using (29) and (34) in conjuction with Condition C2 ′ as follows:

2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(0)E[∆i,≤c | F(0)]

≤ 2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(0)


ρi + εmi +

C

Qℓ,≤c(0) + 1
− E


∑

j∈Ji

∫ 1

0
βjσj(t) dt

∣∣∣∣∣ F(0)






≤ 2
∑

(i,ℓ)∈I×I

ZiℓmℓQℓ,≤c(0)


ρi + εmi − E


∑

j∈Ji

∫ 1

0
βjσj(t) dt

∣∣∣∣∣ F(0)




+ C

≤ −η
∑

i∈I

miQi,≤c(0) + C,

where we again remind the reader that the constant Cmay differ from line to line. This completes
the proof of Lemma 6.3 for non-synchronized networks.

Synchronized network. Now we consider the case when the network is synchronized, i.e.,
Condition C1. We establish the same three steps as in the non-synchronized case. In the non-
synchronized case, we used the fact that the schedule σ(t) under the ε-LRFS policy is maximal
with respect to [miQi,≤c(t)], for which we required Condition C2 ′. In synchronized networks, as
a first step in the proof, we use a different (stronger) maximality property, which allows us to
relax Condition C2 ′ to Condition C1. To this end, we introduce some necessary notation. We let
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σj,≤c(t) = 1 if activity j processes a job with counter ≤ c at time t (and σj,≤c(t) = 0 otherwise).
Since σj,≤c(t) = σj,≤c(⌊t⌋) in synchronized networks, we write σj,≤c = σj,≤c(0) = σj,≤c(t) for
t ∈ [0, 1). The main maximality property we use in synchronized networks is that, under the
LRFS policy, the schedule [σj,≤cII(h)(ij)] is maximal with respect to [Qi,≤c(0)II(h)(i)] for each
component I(h). Together with (3), this implies that for every partition I(h),

2
∑

(i,ℓ)∈I(h)×I(h)

ZiℓQℓ,≤c(0)


ρi + εmi −

∑

j∈Ji

E
[
σj,≤c | F(0),E

(h)
LRFS

]

 ≤ −η

∑

i∈I

Qi,≤c(0) + C,

(38)

where we let E
(h)
LRFS denote the event that at time 0 the ε-LRFS policy for component I(h) does

not select a job for processing through step 3-1 (see its description in Definition 3.2) and all
selected jobs are due the LRFS policy in step 4. We stress that in synchronized networks, every
processor completes the service requirement of the job it processes at every integer time t ∈ Z+

and hence Pr
[
E
(hj)
LRFS

]
= 1 − ε. Inequality (38) is analogous to (29), which concludes the first

step in the non-synchronized case.
We proceed with the analog of the second step from the non-synchronized case, i.e., bounding

E
[
Ŵi,≤c(1)− Ŵi,≤c(0) | F(0)

]
. We stress that the definition of Ŵi,≤c(t) differs from the one

used in non-synchronized networks, see Section 6.1.1. Scheduling decisions are only made at
integer time epochs (i.e., σ(t) = σ(⌈t⌉)) in synchronized networks, so that

E
[
Ŵi,≤c(1)− Ŵi,≤c(0) | F(0)

]
= E

[
Âi,≤c | F(0)

]
−
∑

j∈Ji

E [σj,≤c | F(0)]

≤ ρi −
∑

j∈Ji

E [σj,≤c | F(0)] ,

where we again let Âi,≤c be the number of job arrivals contributing to an increase in Q̂i,≤c(·)

during the time interval [0, 1). On writing ∆i,≤c := Ŵi,≤c(1)− Ŵi,≤c(0), we have

E [∆i,≤c | F(0)] ≤ ρi −
∑

j∈Ji

E [σj,≤c | F(0)] . (39)

The third step in the proof for the synchronized case is to prove the conclusion of Lemma
6.3. As in (37), it suffices to prove that

2
∑

(i,ℓ)∈I×I

mℓZiℓQℓ,≤c(0)E[∆i,≤c | F(0)] ≤ −η
∑

i∈I

miQi,≤c(0) + C.

Since mi = 1 and Vi(0) ≤ 1 in synchronized networks, this reduces to

2
∑

(i,ℓ)∈I×I

ZiℓQℓ,≤c(0)E[∆i,≤c | F(0)] ≤ −η
∑

i∈I

Qi,≤c(0) + C. (40)

Combining (39) and (40), it suffices to show that

2
∑

(i,ℓ)∈I×I

ZiℓQℓ,≤c(0)


ρi −

∑

j∈Ji

E [σj,≤c | F(0)]


 ≤ −η

∑

i∈I

Qi,≤c(0) + C. (41)
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For activity j ∈ J, writing I(hj) for the component of buffer ij (i.e., ij ∈ I(hj)), we have

E [σj,≤c | F(0)] ≥ Pr
[
E
(hj)
LRFS

]
E
[
σj,≤c | F(0),E

(hj)
LRFS

]

= (1− ε)E
[
σj,≤c | F(0),E

(hj)
LRFS

]

≥ E
[
σj,≤c | F(0),E

(hj)
LRFS

]
− ε.

Therefore, (41) follows after arguing that

2
∑

(i,ℓ)∈I×I

ZiℓQℓ,≤c(0)


ρi + εmi −

∑

j∈Ji

E
[
σj,≤c | F(0),E

(hj)
LRFS

]

 ≤ −η

∑

i∈I

Qi,≤c(0) + C.

The above inequality follows from (38) and Condition C1. This completes the proof of Lemma
6.3 for synchronized networks.

6.1.5 Proof of Lemma 6.4

For notational convenience, we again restrict attention to the case t = 0 in the conclusion of
Lemma 6.4, namely, we show that for some D,T,C, γ1, γ2 ∈ (0,∞),

E
[
G(Y (T ))2 | F(0)

]
≤ G(Y (0))2 − γ2‖Q>D(0)‖1 + C

(
‖Q≤D(0)‖1 + ‖V (0)‖1 + 1

)
,

where we recall that
G(Y (t)) = M1(t) +M2(t) + γ1‖V (t)‖1.

All arguments are applicable for general t ≥ 0 as well. First observe that M(t) := M1(t)+M2(t)
can only change through the following events for jobs of Type 1 and 2.

Arrivals. M(t) increases when new external arrivals of Type 2 occur. Note that there
are no such external arrivals for Type 1.

Routing. M(t) may increase or decrease when a job with counter ≥ D (i.e., Type 1 or
2) is routed since the weight (i.e., future workload) of a job conditioned on the buffer to
which it has been routed is different from the (unconditional) weight before it is routed.
However, M(t) does not change when a job with counter < D (i.e., Type 2) is routed since
it is routed deterministically.

Starting Service. M(t) may increase or decrease when a job of Type 1 or 2 begins
service, generating its service time at this point. Assuming the job is served from buffer i,
then M(t) increases if the random service time is larger than its mean mi, and decreases
otherwise.

Being in Service. M(t) decreases when a job of Type 1 or 2 is currently being processed.

Now we express M(t) as follows: for t ∈ N,

M(t) = M(0) +Marrival(t) +Mrouting(t) +Ms-service(t) +Mb-service(t),
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where Marrival(t), Mrouting(t), Ms-service(t) and Mb-service(t) describe the change in M(t) in the
time interval [0, t] due to events of new arrivals, routing, starting service and being in service,
respectively. Hence,

Marrival(t) ≥ 0 and Mb-service(t) ≤ 0.

From our definition of the weights, one can further observe that

E[Mrouting(t) | F(0)] = 0 E[Ms-service(t) | F(0)] = 0

E[Marrival(t) | F(0)] ≤ t
∞∑

d=D

dmmax ‖P
dα‖1, (42)

where we define mmax := maxi∈Imi.
By appropriately defining constants γ, T,D, γ1, γ2 ∈ (0,∞), we first prove the following.

E [G(Y (T ))− G(Y (0)) | F(0)] ≤

{
−γ if Q>D(0) 6= 0

C otherwise
, (43)

for some constant C < ∞. It is not hard to prove (43) forQ>D(0) = 0, and hence we only provide
the proof for Q>D(0) 6= 0. Consider the two complementary events: ‖V (0)‖1 ≥ 2JBrenewal and
‖V (0)‖1 < 2JBrenewal, where Brenewal is some constant which will be determined later.

First case. On the event {‖V (0)‖1 ≥ 2JBrenewal}, we observe that ‖V (t)‖1 =
∑

j∈J V
j(t)

and

E
[
V j(T ) | F(0)

]
≤

{
V j(0)− βjT if V j(0) > βjT

Brenewal otherwise
, (44)

where one can find an appropriate constant Brenewal < ∞ depending on the variances of the
generic service times {Γi} using the renewal theory (e.g., Brenewal = maxi∈IE[Γ2

i ]/E[Γi] from
the proof of Proposition 6.2 in [1]). Hence, in case there is no j ∈ J satisfying V j(0) > βjT ,

E [‖V (T )‖1 | F(0)] =
∑

j∈J

E
[
V j(T ) | F(0)

]

≤ JBrenewal

≤ ‖V (0)‖1 − JBrenewal, (45)

since ‖V (0)‖1 ≥ 2JBrenewal. On the other hand, if there exists a j0 ∈ J satisfying V j0(0) > βj0T ,
we have

E [‖V (T )‖1 | F(0)] =
∑

j∈J

E
[
V j(T ) | F(0)

]

= E
[
V j0(T ) | F(0)

]
+

∑

j∈J\{j0}

E
[
V j(T ) | F(0)

]

≤ V j0(0)− βj0T +
∑

j∈J\{j0}

max
{
V j(0)− βjT,Brenewal

}

≤ V j0(0)− βj0T +
∑

j∈J\{j0}

(
V j(0) +Brenewal

)

≤ ‖V (0)‖1 + JBrenewal − βminT

≤ ‖V (0)‖1 − JBrenewal, (46)
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where we use (44) and choose

T >

⌈
2JBrenewal

βmin
+ 1

⌉
. (47)

Therefore, in both (45) and (46), we have

E [‖V (T )‖1 | F(0)] ≤ ‖V (0)‖1 − JBrenewal.

Using this, it follows that

E[G(Y (T ))− G(Y (0)) | F(0)] ≤ E [M(T )−M(0) | F(0)] + γ1E [‖V (T )‖1 − ‖V (0)‖1 | F(0)]

≤ E [Marrival(T ) | F(0)]− γ1JBrenewal

≤ T
∞∑

d=D

dmmax ‖P
dα‖1 − γ1JBrenewal

≤ −γ,

where we use (42) and now define D, γ1 in terms of γ as follows:

D = D(γ) := min

{
x ∈ N : T

∞∑

d=x

dmmax ‖P
dα‖1 ≤ γ

}
γ1 = γ1(γ) :=

2γ

JBrenewal
.

We specify the value of γ at a later stage in the proof. This completes the proof of (43) on the
first event {‖V (0)‖1 ≥ 2JBrenewal}.

Second case. Now consider the second event {‖V (0)‖1 < 2JBrenewal}. From our choice of T
in (47), we have

max
j∈J

V j(0)

βj
≤

‖V (0)‖1
βmin

<
2JBrenewal

βmin
< T − 1,

which implies that before time T − 1, all activities have completed serving the jobs they were
serving at time 0 (and they could have worked on other jobs as well). Thus, it follows that

E [‖V (T )‖1 | F(0)] ≤ JBrenewal. (48)

Consider a job with the largest counter (and hence, contributing to Q>D(0)) at time 0 and
let I(h0) ⊂ I be the component the job belongs to. Define the event Estep 3-1 that the ε-LRFS
policy executes step 3-1 (see the description of ε-LRFS in Definition 3.2) for this component
at least once before time T − 1. Let E∗

step 3-1 be the subevent that the job identified in step 1
of the policy is selected for processing when step 3-1 is carried out for the first time, so that
Pr[E∗

step 3-1 | Estep 3-1] = ε. On the event E∗
step 3-1, let the random variable j∗ denote the activity

which is chosen to process this job, and let X∗ be the associated service time. We then have
that E[X∗|j∗] = mij∗ . Observe that

E[Ms-service(T ) +Mb-service(T ) | j
∗, X∗,E∗

step 3-1,F(0)]

≤

{
−mij∗ +X∗ − βj∗ on the event {X∗ ≥ βj∗}

−mij∗ otherwise
.
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It thus follows that

E[Ms-service(T ) +Mb-service(T )
∣∣ E∗

step 3-1,F(0)]

≤ E
[
−mij∗ + [X∗ − βj∗ ]+

∣∣ E∗
step 3-1,F(0)

]

≤ E
[
−mij∗ + [X∗ − βmin]+

∣∣ E∗
step 3-1,F(0)

]

= E
[
E
[
−mij∗ + [X∗ − βmin]+

∣∣ j∗, X∗,E∗
step 3-1,F(0)

] ∣∣∣ E∗
step 3-1,F(0)

]

≤ max
i∈I

E [−mi + [Γi − βmin]+] ,

where Γi is a generic service time for buffer i and [x]+ = x if x ≥ 0 and [x]+ = 0 otherwise. It is
easy to see that E [−mi + [Γi − βmin]+] < 0 for all i since E[Γi] = mi > 0 and βmin > 0. Hence,
the above inequality implies that

E[Ms-service(T ) +Mb-service(T )
∣∣ Estep 3-1,F(0)] ≤ −εν, (49)

with
ν := min

i∈I
E [mi − [Γi − βmin]+] > 0.

If the network is synchronized or if the second part of Condition C2 of Theorem 3.5 holds, the
only way for the event Estep 3-1 not to occur is that there exists a processor (for the component
I(h0)) processing a job constantly during the entire time interval [T(h0)(0), T − 1] (i.e., the job
starts service before time T(h0)(0) and is still in service at time T − 1). Recall that before time
T − 1, every processor completes the service requirement of the job it was processing at time 0.
Hence, in addition to (47), if we choose T to also satisfy

T > 2max
i∈I

mi + 2,

then it follows that

Pr[Estep 3-1 | F(0)] ≥

(
1

2

)K

, (50)

where we use the fact that if a processor starts to process a new job in the time interval
(0,T(h0)(0)] ⊂ (0, 1], its service requirement is at most 2maxi∈Imi with probability 1/2 by the
Markov inequality. From (49) and (50), we conclude that

E[Ms-service(T ) +Mb-service(T ) | F(0)] ≤ −
εν

2K
. (51)

From (42), (48) and (51), the desired inequality (43) follows as

E[G(Y (T ))− G(Y (0)) | F(0)]

≤ E [M(T )−M(0) | F(0)] + γ1E [‖V (T )‖1 − ‖V (0)‖1 | F(0)]

≤ E [Marrival(T ) | F(0)] + E[Ms-service(T ) +Mb-service(T ) | F(0)] + γ1JBrenewal

≤ T
∞∑

d=D

dmmax ‖P
dα‖1 −

εν

2K
+ γ1JBrenewal

≤ −γ,
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where for the last inequality we define

γ :=
ε ν

2K+2
.

Here we note that D = D(γ) < ∞ as long as γ > 0 (i.e., ε > 0). This completes the proof of
(43) on the second event {‖V (0)‖1 < 2JBrenewal}.

Completing the proof of Lemma 6.4. Now (43) implies that

E[G(Y (T ))2 − G(Y (0))2 | F(0)] ≤ 2G(Y (0))E[G(Y (T ))− G(Y (0)) | F(0)] + C

≤ 2
(
−γ1+‖Q>D(0)‖1

+ C

(
1− 1+‖Q>D(0)‖1

))
G(Y (0)) + C

= 2
(
−(γ + C)1+‖Q>D(0)‖1

+ C

)
G(Y (0)) + C

where one can check E
[
(G(Y (T ))− G(Y (0)))2

∣∣ F(0)
]
< ∞ for the first inequality and the

precise value of C can be different from line to line. Finally, we define

γ2 := mminγ

and the conclusion of Lemma 6.4 follows from

E[G(Y (T ))2 − G(Y (0))2 | F(0)] ≤ 2
(
−(γ + C)1+‖Q>D(0)‖1

+ C

)
G(Y (0)) + C

≤ −2γ mmin‖Q>D(0)‖1 + C
(
‖Q≤D(0)‖1 + ‖V (0)‖1 + 1

)

= −γ2‖Q>D(0)‖1 + C
(
‖Q≤D(0)‖1 + ‖V (0)‖1 + 1

)
,

where we use G(Y (0)) ≤ C
(
‖Q≤D(0)‖1 + ‖V (0)‖1 + 1

)
for the case Q>D(0) = 0 and G(Y (0)) ≥

mmin‖Q>D(0)‖1 for the other case Q>D(0) 6= 0 (i.e., ‖Q>D(0)‖1 > 0).
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