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Abstract

Many studies use population analysis approaches, such as dimensionality reduction, to

characterize the activity of large groups of neurons. To date, these methods have treated

each neuron equally, without taking into account whether neurons are excitatory or inhibi-

tory. We studied population activity structure as a function of neuron type by applying factor

analysis to spontaneous activity from spiking networks with balanced excitation and inhibi-

tion. Throughout the study, we characterized population activity structure by measuring its

dimensionality and the percentage of overall activity variance that is shared among neurons.

First, by sampling only excitatory or only inhibitory neurons, we found that the activity struc-

tures of these two populations in balanced networks are measurably different. We also

found that the population activity structure is dependent on the ratio of excitatory to inhibitory

neurons sampled. Finally we classified neurons from extracellular recordings in the primary

visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform

classification, and found similarities with the neuron type-specific population activity struc-

ture of a balanced network with excitatory clustering. These results imply that knowledge of

neuron type is important, and allows for stronger statistical tests, when interpreting popula-

tion activity structure.

Introduction

Excitatory and inhibitory neurons appear to perform distinct roles in cortical networks. Excit-

atory neurons form long range synaptic projections and have clustered connectivity with other

excitatory neurons [1–4]; inhibitory neurons form local, dense, and non-specific connections

[5–7]. Excitatory neurons are almost exclusively pyramidal cells, while inhibitory neurons
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form a diverse class with multiple subtypes [8–10]. In many cases, inhibitory neurons exhibit

greater firing rates than excitatory neurons [11, 12], more attentional modulation [13, 14], and

a lesser degree of burstiness [15, 16]. Excitatory neurons are thought to be critical for long-

term synaptic potentiation [17], whereas inhibitory neurons are instead postulated to modu-

late stimulus response gain, sharpen tuning to stimuli, and pace cortical oscillations [18].

Despite these anatomical, statistical, and functional differences, the network-level roles of exci-

tation and inhibition and their interaction are incompletely understood.

In this study, we sought to understand how the patterns of activity produced by a popula-

tion of neurons (referred to as population activity structure) depend on neuron type. Such

insights would help to bridge the gap between single-neuron (and pairwise) response proper-

ties of different neuron types and their network-level interactions. We leveraged spiking

network models, where the type of each neuron and the network connectivity is known, to

address this question. We considered two types of balanced networks: one with uniform con-

nectivity (“non-clustered network”) and one with clustered connectivity among excitatory

neurons (“clustered network”). This allows us to assess how our results depend on the underly-

ing architecture. Classic non-clustered networks balance excitatory and inhibitory input

currents and have been widely studied. The model neurons exhibit Poisson-like spiking vari-

ability and zero-mean spike count correlations [19–21]. Clustered balanced networks repro-

duce additional properties of the spiking variability of biological neurons and have more

realistic anatomical structure [22–24]. In this study, we analyzed one representative network

of each type, and refer to them as the clustered network and the non-clustered network.

One way to characterize population activity structure is through the use of dimensionality

reduction [25]. Dimensionality reduction methods have been utilized to examine neural popu-

lation activity during motor control [26, 27], decision-making [28, 29], visual attention [30],

and other behavioral tasks [31–35]. These methods characterize the multi-dimensional pat-

terns of activity produced by a population of neurons, which can then be related to stimulus or

behavior. For this study, we used factor analysis (FA), which is well-suited for analyzing spik-

ing variability because it separates spiking variability into a component that is shared among

neurons and one that is independent across neurons [36, 37]. Shared variability is of particular

importance because it is the most likely to be transmitted to downstream neurons and affect

neuronal coding [38]. We used FA to measure two characteristics of population activity: shared
dimensionality and percent shared variance. Shared dimensionality measures the number of

dimensions in which the shared activity resides. Large values of shared dimensionality indicate

a richness to the interactions among neurons, while values of zero indicate approximate inde-

pendence. Percent shared variance assesses the degree to which the shared activity explains the

total variability in the population.

We started by characterizing the activity structure of excitatory and inhibitory populations

in the balanced networks by applying FA to samplings of only-excitatory and only-inhibitory

neurons while varying the number of neurons and trials sampled. This extends our recent

study of only excitatory neurons in model networks [39], and allowed us to compare the

multi-dimensional activity structure of the two neuron types in both networks. Then, using

the same two networks, we considered samplings of mixed neuron type by varying the ratio

of excitatory to inhibitory neurons sampled from each network. By applying factor analysis to

the population activity, we observed measurably different population activity structure for var-

ious neuron type samplings. In order to ground these model network results with real data, we

applied the same analysis to the activity of a population of neurons recorded from the primary

visual cortex. By classifying neurons based on waveform shape [14], we found that the broad-

spiking and narrow-spiking neurons have similar activity structure as the excitatory and

inhibitory populations, respectively, in the clustered network. These results suggest that the
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identification of neuron types in experimental data can provide a more nuanced understand-

ing of population activity structure.

Results

To study the organization of neural responses in populations of excitatory and inhibitory neu-

rons, we examined the properties of the spontaneous activity of model excitatory and inhibi-

tory neurons in balanced networks. Two types of balanced networks were analyzed in this

study: one with clustering among excitatory neurons (Fig 1A, “clustered” network) and one

with uniform connectivity (Fig 1B, “non-clustered” network). Each balanced network con-

tained 4,000 excitatory and 1,000 inhibitory neurons. In the clustered network, the excitatory

neurons were partitioned into 50 non-overlapping clusters of 80 neurons, where same-cluster

neurons had a higher probability of connection than out-of-cluster excitatory neurons. In the

non-clustered network, excitatory neurons connected with uniform probability to other excit-

atory neurons. Connectivity within the inhibitory population, as well as connectivity between

the excitatory and inhibitory populations was uniform in each network.

Both networks exhibit features similar to physiological recordings. The average firing rate

of inhibitory neurons was greater than that of excitatory neurons in both model networks (Fig

1A and 1B, right) [11, 12]. Same-cluster excitatory neurons in the clustered network recur-

rently excite each other, acting similarly to a bistable unit with high and low activity states (Fig

1E) resulting in positive noise correlations which have been observed among nearby neurons

[40]. The non-clustered network does not have this property (Fig 1F).

Excitatory and inhibitory populations of balanced networks have different

activity structure

To understand how neuron type impacts population-level metrics of shared variability, we

applied FA to spike counts taken in a one second window of spontaneous activity (referred to

as a “trial”) from each network. FA decomposes the spike count covariance of neurons into

a shared and independent component (Fig 2A), which enables the computation of shared

dimensionality (dshared) and percent shared variance (see Methods). Shared dimensionality is

the number of modes of shared co-fluctuations of the population activity (Fig 2B). It is a mea-

sure of the complexity of these shared co-fluctuations. Percent shared variance measures how

much of each neuron’s spike count variability is shared with at least one other sampled neuron

(Fig 2C). By investigating how these metrics depend on the number of neurons and trials sam-

pled, we characterized the scaling properties of the excitatory and inhibitory population activ-

ity structure. Note that shared dimensionality and percent shared variance need not go up and

down together [39].

We focused here on a spike count window of one second, consistent with many previous

studies of spike count correlation [13, 40–43]. To further justify this choice, we found that neu-

rons in both model networks and the in vivo recordings exhibited non-zero autocorrelation at

lags throughout the range of zero to one second (S1 Fig). In addition, we replicated our analy-

ses with a 100 ms window and found the same trends as with a one second window (see details

below).

The excitatory and inhibitory populations had notable differences in how shared

dimensionality scaled with increasing neuron count in both networks. We began by applying

FA to only-excitatory (red) and only-inhibitory (blue) neuron samplings of the clustered (Fig

3A) and non-clustered (Fig 3B) networks. The shared dimensionality of the excitatory popula-

tion saturated with increasing neuron count in the clustered network (Fig 3A, top, red), but

not in the non-clustered network (Fig 3B, top, red) [39]. In contrast, the shared dimensionality
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Fig 1. Basic properties of excitatory and inhibitory neurons in balanced networks. (A) Clustered network connectivity (left) of inhibitory-inhibitory

(pII), excitatory-to-inhibitory (pIE), inhibitory-to-excitatory (pEI), same-cluster excitatory-excitatory (pEEIN ), and out-of-cluster excitatory-excitatory (pEEOUT )
neuron pairs. Average firing rates (right) of excitatory (red, 3.2 ± 2.9 Hz, mean ± standard deviation) and inhibitory (blue, 4.1 ± 2.7 Hz) neurons. (B) Non-

clustered network connectivity (left) and average firing rates (right) of excitatory (red, 2.0 ± 1.7 Hz) and inhibitory (blue, 2.9 ± 1.9 Hz) neurons. (C)

Clustered network spike count correlations (one second time bins) between same-cluster excitatory-excitatory pairs (EEin, red, r = 0.72 ± 0.27,

mean ± standard deviation), out-of-cluster excitatory-excitatory pairs (EEout, green, r = -0.0085 ± 0.11), excitatory-inhibitory pairs (EI, purple, r = 9.0−4 ±
0.14), and inhibitory-inhibitory pairs (II, blue, r = 4.5−4 ± 0.15). (D) Non-clustered network spike count correlations (one second spike bins) between

excitatory-excitatory pairs (EE, red, r = 1.9−5 ± 0.11), excitatory-inhibitory pairs (EI, purple, r = 2.1−4 ± 0.018), and inhibitory-inhibitory pairs (II, blue, r =

-7.3−4 ± 0.025). Note that the horizontal axis differs between panels C and D. (E) Clustered network spiking activity. A representative sample of 500

neurons (100 inhibitory neurons and 400 excitatory neurons ordered by cluster membership. (F) Non-clustered network spiking activity. A representative

sample of 500 neurons (100 inhibitory and 400 excitatory).

https://doi.org/10.1371/journal.pone.0181773.g001
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of the inhibitory population continued to increase with neuron count regardless of whether

the excitatory population was clustered or not (Fig 3A and 3B, top, blue). These scaling proper-

ties are related to the connectivity of the neurons. For those populations with uniform connec-

tivity (inhibitory in both networks and excitatory in the non-clustered network), more

dimensions are revealed as more neurons are sampled. In contrast, the shared activity among

the excitatory neurons in the clustered network is dominated by the between-cluster interac-

tion. We previously showed that, although there are 50 modes describing the interaction

among the 50 clusters, the top 20 modes explain 95% of the shared variance [39]. Thus, the

asymptotic number of shared dimensions (20) is smaller than the number of clusters (50).

To further characterize the excitatory and inhibitory population activity structure, we sought

to measure the prominence of the shared co-fluctuations described by the identified dimen-

sions. We measured the percentage of each neuron’s spike count variance that was explained by

Fig 2. Calculation of dimensionality and percent shared variance. (A) Factor analysis partitions the spike count covariance of sampled

excitatory and inhibitory neurons together into shared and independent components. (B) Shared dimensionality (dshared) is the minimum

number of eigenvectors of the shared variance matrix necessary to explain 95% of shared variance. Modes are sorted by shared variance

explained along the x-axis. (C) Percent shared variance is the ratio of shared to total variance (i.e., shared / (shared + independent)). The

percent shared variance is first computed for each neuron, then averaged across all neurons of the same type.

https://doi.org/10.1371/journal.pone.0181773.g002
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Fig 3. Excitatory and inhibitory population activity structure. (A) Clustered and (B) non-clustered

network shared dimensionality (top panels) and percent shared variance (bottom panels) with increasing

neuron count with 10,000 trials. Dots (red: excitatory neurons, blue: inhibitory neurons) indicate the mean

across five non-overlapping sets of sampled neurons and five non-overlapping sets of trials (25 sets total),

and standard error bars are smaller than the dot size in all cases. To assess shared dimensionality and

percent shared variance for a larger number of neurons, we grouped the five non-overlapping sets of 150

neurons from each neuron type population of each network into 750-neuron samplings. For 750-neuron
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the shared dimensions. Note that, for a given shared dimensionality, the percent shared variance

can be large or small depending on how strongly those dimensions modulate each neuron’s

activity. We found that the excitatory population had greater percent shared variance than the

inhibitory population in the clustered network (Fig 3A, bottom). This is reasonable because the

clustering of the excitatory population leads to same-cluster neurons increasing and decreasing

their activity together (cf. Fig 1C), which would tend to increase the amount of one neuron’s

variability that can be explained by other neurons in the same cluster. Conversely, in the non-

clustered network, the inhibitory population had greater percent shared variance than the excit-

atory population (Fig 3B, bottom). This observation is related to the greater variance of the

spike count correlation distribution for inhibitory-inhibitory than excitatory-excitatory neuron

pairs (cf. Fig 1D). We suspected that these observations were connected, since increasing the

variance of a zero-mean spike count correlation distribution implies an increase in the number

of neuron pairs with non-zero spike count correlation, which consequently increases percent

shared variance. To demonstrate this, we generated population spike counts corresponding to

spike count correlation distributions of different variances using the method described in [44].

We found that percent shared variance indeed increases with the variance of the spike count

correlation distribution (S2 Fig). Furthermore, we observed that the percent shared variance of

the inhibitory neurons increased with neuron count for both networks (Fig 3A and 3B, bottom,

blue), in contrast to that of excitatory neurons which saturated with increasing neuron count

(Fig 3A and 3B, bottom, red) [39]. In other words, more of the spike count variability among

inhibitory neurons was explained as more inhibitory neurons were sampled.

Having examined how shared dimensionality and percent shared variance changed with

neuron count for excitatory versus inhibitory population samplings, we next examined how

these two quantities changed with trial count, while keeping the number of neurons fixed. This

can help us understand how much data is required to fully identify the shared activity of the

sampled neurons. For both neuron types in both networks, the shared dimensionality and per-

cent shared variance saturated with increasing trials sampled. The number of trials at which

shared dimensionality or percent shared variance saturated was related to how “salient” the

shared population activity structure was in the raw spike counts. When the shared population

activity structure was more salient, fewer trials were needed to identify the shared structure. In

the clustered network, the shared dimensionality and percent shared variance of the excitatory

population (Fig 3C, red) saturated at fewer trials than the inhibitory population (Fig 3C, blue).

This is related to the fact that the excitatory population had greater percent shared variance,

and therefore more salient shared activity structure, than the inhibitory population. In the

non-clustered network, we saw the opposite trend: inhibitory population samplings (Fig 3D,

blue) saturated in dimensionality and percent shared variance with fewer trials than the excit-

atory population samplings (Fig 3D, red). In the non-clustered network, the inhibitory popula-

tion had more salient shared activity structure than the excitatory population, as indicated by

the higher percent shared variance of the inhibitory population. The asymptotic dimensionali-

ties in Fig 3C and 3D depend on the number of neurons analyzed (in this case, 100 neurons).

If more neurons are included, the asymptotic dimensionality would be higher for inhibitory

samplings of the clustered network (10,000 trials), the excitatory population had a shared dimensionality of

23.95 ± 0.05 and percent shared variance of 91.43% ± 0.06%, while the inhibitory population had a shared

dimensionality of 246.7 ± 2.5 and a percent shared variance of 79.56% ± 0.22%. For 750-neuron samplings of

the non-clustered network (10,000 trials), the excitatory population had a shared dimensionality of 139.4 ± 3.8

and percent shared variance of 20.70% ± 0.43%, while the inhibitory population had a shared dimensionality

of 347.2 ± 4.2 and a percent shared variance of 59.74% ± 0.47%. (C-D) same conventions as A and B, but for

increasing trial count with 100 neurons.

https://doi.org/10.1371/journal.pone.0181773.g003
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neurons in the clustered network and both types of neurons in the non-clustered network, as

indicated by Fig 3A and 3B.

Because the activity of same-cluster excitatory neurons tends to increase and decrease

together, we expected excitatory neurons to have greater percent shared variance in the clus-

tered than in the non-clustered network (compare red curves in Fig 3C and 3D, bottom).

Interestingly, we found that this was also true for the inhibitory neurons (compare blue curves

in Fig 3C and 3D, bottom), even though the probability of connections involving inhibitory

neurons was the same in the two networks. Thus clustering structure among excitatory neu-

rons resulted in shared variability that propagated to the inhibitory population, resulting in

increased shared variability in the inhibitory population. This is consistent with the greater

variance of the distribution of spike count correlations between inhibitory-inhibitory neuron

pairs in the clustered network (cf. Fig 1C, blue) than those in the non-clustered network (cf.

Fig 1D, blue). All the trends observed in Fig 3 with one second spike count windows remained

true with 100 ms spike count windows (S3 Fig).

Excitatory clustering affects modes of shared activity in both the

excitatory and inhibitory populations

To further characterize the excitatory and inhibitory population activity structure, we studied

the modes (or dimensions) of shared activity of each population in the two networks. For pop-

ulations of each neuron type from each network architecture, the ten most dominant modes

of shared activity (eigenvectors of the shared covariance matrix) are displayed in order of the

amount of shared variance explained by each mode. (Fig 4A). The excitatory neurons are

ordered by cluster membership (Fig 4A, top-left). Same-cluster neurons had similar values

within each mode for the excitatory population of the clustered network, indicating that the

dominant modes describe co-varying activity between clusters. In contrast, the excitatory pop-

ulation of the non-clustered network (Fig 4A, top-right) and both inhibitory populations (Fig

4A, bottom) did not exhibit any obvious structure in the modes of shared activity.

Although there were no differences in mean inhibitory connection properties between the

clustered and non-clustered networks, we found that excitatory clustering changes the promi-

nence of the dominant modes of shared activity in the inhibitory population. In previous

work, we found that dominant modes of shared activity in the excitatory population of the

clustered network explained large proportions of shared variance (Fig 4B, left, red), in contrast

to those in the excitatory population in the non-clustered network where shared variance

was distributed more equally across modes (Fig 4B, right, red) [39]. The five most dominant

modes of shared activity explained 64.5% ± 1.5% of shared variance in the clustered network

and 31.2% ± 0.8% of shared variance in the non-clustered network. Interestingly, we found

that the dominant modes of the inhibitory population in the clustered network also explained

a greater percentage of shared variance (Fig 4B, left, blue) than in the non-clustered network

(Fig 4B, right, blue). For inhibitory populations, the five most dominant modes of shared activ-

ity explained 54.3% ± 0.4% of shared variance in the clustered network and only 20.1% ± 0.2%

of shared variance in the non-clustered network. Using FA, we were able to observe that

shared activity structure induced by clustering in the excitatory population also propagated to

the inhibitory population, which had the same connectivity structure in the two models.

Ratio of excitatory to inhibitory neurons affects population activity

structure of mixed-type samplings

While sampling strictly from populations of a single neuron type is useful for characterizing

the role of neuron type in balanced network activity, realistic population samplings likely

Population activity structure of excitatory and inhibitory neurons
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Fig 4. Modes of shared activity. (A) Modes of only-excitatory (top) and only-inhibitory (bottom) 100-neuron

samplings from the clustered (left) and non-clustered (right) networks. Columns of each heatmap represent

the eigenvectors of the shared covariance matrix, ordered by the amount of shared variance explained. Each

eigenvector is a unit vector, and so its entries have arbitrary units. Each row corresponds to a neuron, and

neurons are ordered from highest to lowest mean firing rate. For excitatory neurons from the clustered

network (top left), neurons were additionally grouped by cluster. Some clusters were represented by more

Population activity structure of excitatory and inhibitory neurons
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contain a mixture of both excitatory and inhibitory neurons. In this section, we explore how

the population activity structure depends on the ratio of excitatory to inhibitory neurons sam-

pled from the clustered and non-clustered networks. The same networks with 4,000 excitatory

and 1,000 inhibitory neurons were used, but we analyzed 100-neuron samplings with different

ratios of excitatory to inhibitory neurons.

The ratio of excitatory to inhibitory neurons affected the shared dimensionality of popula-

tion samplings. As we replaced excitatory neurons with inhibitory neurons (Fig 5, moving left

to right along the horizontal axis), shared dimensionality increased from the only-excitatory

neuron sampling to the only-inhibitory neuron sampling for the clustered and non-clustered

networks with 10,000 trials (Fig 5B, top). The endpoints of these curves are the shared dimen-

sionalities of the purely excitatory (cf. Fig 3A and 3B, 100 neurons, top, red) and purely inhibi-

tory (cf. Fig 3A and 3B, 100 neurons, top, blue) populations considered before.

The ratio of excitatory to inhibitory neurons sampled affected the percent shared variance

of excitatory (red) and inhibitory (blue) neurons in the clustered (dashed) and non-clustered

(solid) networks with 10,000 trials (Fig 5B, bottom). Since percent shared variance measures

how much of a neuron’s activity covaries with at least one other sampled neuron, it is possible

for the percent shared variance of excitatory and inhibitory neurons to change based on how

many of each type of neuron is also sampled. Consider the percent shared variance of excit-

atory neurons when going from only-excitatory samplings to only-inhibitory samplings (left

to right along the horizontal axis). As excitatory neurons are replaced by inhibitory neurons,

the percent shared variance of the remaining excitatory neurons would decrease if they are

more highly correlated with excitatory neurons being replaced in the sampling than the newly

sampled inhibitory neurons. Conversely, the percent shared variance of the remaining excit-

atory neurons would increase if they are more highly correlated with the newly sampled inhib-

itory neurons than the replaced excitatory neurons. In the clustered network, we found that as

we replaced excitatory neurons with inhibitory neurons, the percent shared variance for excit-

atory neurons decreased (Fig 5B, bottom, dashed red). This indicated that excitatory neurons

in the clustered network shared more of their activity with other excitatory neurons. In con-

trast, the percent shared variance of excitatory neurons in the non-clustered network (Fig 5B,

bottom, solid red) increased as more inhibitory neurons were sampled. This showed that in

the non-clustered network, excitatory neurons shared more of their activity with inhibitory

neurons than other excitatory neurons. The percent shared variance of inhibitory neurons in

both networks was mostly independent of neuron type sampling ratio (Fig 5B, bottom, blue),

showing that inhibitory neurons shared their spike count variance equally with excitatory

and inhibitory neurons. One might have expected the percent shared variance of inhibitory

neurons in the non-clustered network to have greater percent shared variance with other

inhibitory neurons than with excitatory neurons, because the distribution of spike count corre-

lations had greater variance for inhibitory-inhibitory pairs (cf. Fig 1D, blue) than for excit-

atory-inhibitory pairs (cf. Fig 1D, purple). However, the excitatory and inhibitory populations

had different distributions of spike count variance, so the relationship between the variance of

the spike count correlation distribution and the percent shared variance was more complicated

when sampling from both populations instead of one.

neurons than other clusters due to random sampling. (B) Percent of shared variance explained by each mode

for 100-neuron analyses of the excitatory (red) and inhibitory (blue) populations in the clustered (left) and non-

clustered (right) networks with 10,000 trials. Dots indicate the mean across five non-overlapping sets of

neurons and five non-overlapping sets of trials (25 sets total) and error bars indicate standard error (not visible

for most data points).

https://doi.org/10.1371/journal.pone.0181773.g004
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We then investigated how the results in (Fig 5B) depend on the number of trials sampled by

performing the same analysis with 1,200 (Fig 5A) and 20,000 (Fig 5C) trials. In the non-clus-

tered network, since shared dimensionality and percent shared variance of the excitatory pop-

ulation did not saturate by 10,000 trials (cf. Fig 3D, red), we expected higher and lower trial

counts to exhibit different trends of shared dimensionality and percent shared variance with

neuron type sampling ratio. With 1,200 trials, the non-clustered network shared dimensional-

ity (Fig 5A, top, solid), as well as the percent shared variance of excitatory (Fig 5A, bottom,

solid red) and inhibitory (Fig 5A, bottom, solid blue) neurons, were small for all ratios. With

20,000 trials, the non-clustered dimensionality was flatter than with 10,000 trials, since the

shared dimensionality of excitatory neuron dominated ratios had increased nearly to the same

level as the inhibitory dominated ratios (Fig 5C, solid). This is consistent with Fig 3D (top),

where the excitatory and inhibitory shared dimensionalities were similar for high trial counts.

As with 10,000 trials, with 20,000 trials, excitatory neurons shared more of their spike count

variance with inhibitory neurons than other excitatory neurons (Fig 5C, bottom, solid red),

and inhibitory neurons shared their spike count variance equally with each neuron type (Fig

5C, bottom, solid blue).

In the clustered network, the trends of shared dimensionality and percent shared variance

with neuron type sampling ratio did not change from 10,000 to 20,000 trials (compare Fig 5B,

dashed with Fig 5C, dashed), since shared dimensionality and percent shared variance satu-

rated by 10,000 trials for the excitatory and inhibitory populations (cf. Fig 3C). However,

with only 1,200 trials instead of 10,000 trials, the shared dimensionality for inhibitory neuron

Fig 5. Mixed neuron type samplings. Population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. dshared (top

panels) and percent shared variance (bottom panels) averaged across excitatory neurons (red) and inhibitory neurons (blue) for different ratios of

excitatory to inhibitory neurons sampled from the clustered (dashed) and non-clustered (solid) networks for 100 neurons and (A) 1,200, (B) 10,000, and

(C) 20,000 trials sampled. The left and right ends of the horizontal axes indicate only-excitatory and only-inhibitory samplings, respectively. Panel B is

boxed because shared dimensionality and percent shared variance for the 100:0 and 0:100 ratios correspond to values shown in Fig 3 (100 neurons,

10,000 trials).

https://doi.org/10.1371/journal.pone.0181773.g005
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dominated ratios dropped (Fig 5A, top, dashed), and percent shared variance of excitatory and

inhibitory neurons slightly decreased (Fig 5A, bottom, dashed), consistent with Fig 3C. With

20,000 trials, as with 10,000 trials, excitatory neurons shared more of their spike count variance

with other excitatory neurons than inhibitory neurons (Fig 5C, bottom, dashed red), and

inhibitory neurons shared their spike count variance equally between both neuron types (Fig

5C, bottom, dashed blue). Using a spike count window size of 100 ms (S4 Fig), we observed

the same trends as in Fig 5.

Neuron-type information reduces uncertainty of population activity

metrics

In practice, we are often blind to the types of the neurons we sample, so we can expect variabil-

ity in population activity metrics to arise from the variability in the sampled ratio of neuron

type. Unknown sampling ratios of neuron type can confound comparisons of population

activity structure between two datasets. Consider the conclusion from Fig 5B (top) that the

shared dimensionality of the non-clustered network is greater than that of the clustered net-

work. As an extreme example to illustrate the concept, let’s say that only excitatory neurons

are sampled from the non-clustered network and only inhibitory neurons are sampled from

the clustered network. We would conclude that the clustered network has higher dimensional-

ity than the non-clustered network. Therefore, it is important to know the excitatory versus

inhibitory composition of the sampled population to appropriately interpret the measured

shared dimensionality.

In less extreme cases, the comparison of shared dimensionality (or percent shared variance)

can involve multiple sets of recordings, each of which has a different composition of excitatory

and inhibitory neurons. Statistical tests will depend on the variance of the measured shared

dimensionality (or percent shared variance) across recordings. If the neuron type composition

is unknown, the measurement of shared dimensionality (or percent shared variance) can have

high variance, thereby leading to a weak statistical test. However, if the neuron type composi-

tion is known, then this can be controlled for in the comparison, leading to a stronger statisti-

cal test. To make this concrete, consider randomly sampling 100 neurons from a network with

4,000 excitatory neurons and 1,000 inhibitory neurons, as in the two balanced networks we are

working with. The probability of sampling k excitatory neurons in an n-neuron sample is

Prðk j NE;NI ; nÞ ¼

NE

k

 ! NI

n � k

 !

NE þ NI

n

 ! ð1Þ

for a network with NE excitatory neurons and NI inhibitory neurons. This distribution is

depicted in Fig 6A for NE = 4,000, NI = 1,000, and n = 100. We computed shared dimensional-

ity (Fig 6B) and percent shared variance (Fig 6C) for 100 neuron, 10,000 trial samplings of the

clustered and non-clustered networks which were blind to neuron type. The clustered network

exhibited shared dimensionality of 20.3 ± 1.8 (Fig 6B, dashed, black, mean ± standard devia-

tion) and percent shared variance of 85.8% ± 1.4% (Fig 6C, dashed, black). The non-clustered

network exhibited shared dimensionality of 43.1 ± 8.2 (Fig 6B, solid, black) and percent shared

variance of 23.7% ± 5.3% (Fig 6C, solid, black).

Now, suppose that we seek to perform a statistical test involving shared dimensionality for

the non-clustered network. If neurons are randomly sampled from the network, the standard

deviation is 8.2 (Fig 6B, solid, black). However, if the neuron type composition is known and
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controlled for (in this case, 80 E and 20 I), the standard deviation decreases to 6.8 (Fig 6B,

solid, green). Similarly, the percent shared variance of the clustered and non-clustered net-

works decreases when neuron type composition is controlled from 2.3 to 1.0 (Fig 6C, dashed)

and from 5.2 to 4.5 (Fig 6C, solid), respectively. When sampling neurons randomly from the

clustered network, the standard deviation of shared dimensionality is 2.0 (Fig 6B, dashed,

black), which is the same as when neuron type ratio is controlled (Fig 6B, dashed, green). This

is consistent with the fact that the shared dimensionality of the clustered network is nearly

Fig 6. Population activity metrics for samplings that are blind to neuron type. (A) Probability density of neuron type sampling ratio for 100 neuron

samplings. (B) Distribution of shared dimensionality of the clustered (dashed black) and non-clustered (solid black) networks for neuron type blind

samplings of 100 neurons and 10,000 trials. Distribution of shared dimensionality for 80 excitatory, 20 inhibitory neuron samplings from the non-clustered

network (green). (C) Distribution of percent shared variance of the clustered (dashed black) and non-clustered (solid black) networks for neuron type blind

samplings of 100 neurons and 10,000 trials.

https://doi.org/10.1371/journal.pone.0181773.g006
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constant (cf. Fig 5B, top, dashed) in the regime of neuron types ratios that are likely to arise

from random sampling (Fig 6A). In practice, we cannot usually specify how many excitatory

and inhibitory neurons are recorded in an experiment, but we can subsample the neurons

after the experiment to obtain the desired neuron type ratio.

V1 recordings show similar population activity structure as the clustered

network

We sought to determine whether the differences we observed in model networks were present

in the measured activity of excitatory and inhibitory populations in vivo. To investigate this,

we analyzed spontaneous activity recorded from the primary visual cortex (V1) of anesthetized

macaque monkeys [40]. Although the neuron type (excitatory vs. inhibitory) was not known

with certainty in these extracellular recordings, previous studies have demonstrated a link

between excitatory and inhibitory neuron classes and their extracellular waveform shape [45–

47]. This classification approach has revealed a number of functional differences between puta-

tive excitatory and inhibitory neurons [13–16, 48]. We therefore adopted this approach (see

Methods) to classify broad-spiking neurons (also known as regular-spiking, or putative excit-

atory) and narrow-spiking neurons (also known as fast-spiking, or putative inhibitory) using a

recently published methodology [14]. We analyzed data from arrays implanted in four hemi-

spheres of three animals. Each neuron from these recordings was assigned a probability of

being in the broad-spiking or narrow-spiking class based on its average spike waveform (S5

Fig). We identified sets of putative excitatory and inhibitory neurons in these recordings (23 to

47 broad-spiking, 25 to 72 narrow-spiking) by selecting neurons with probability greater than

85% of being in the broad-spiking or narrow-spiking class. In each of the four datasets, there

were at least 23 neurons of each type and 1,200 “trials” (i.e., one second windows of spontane-

ous activity). We fit FA to samplings of only broad-spiking (red) and only narrow-spiking

(blue) neurons, which had different average waveforms, for various numbers of neurons and

trials sampled (in the same manner as in Fig 3) (Fig 7A and 7D). For comparison, we per-

formed the same analysis on the clustered (Fig 7B and 7E) and non-clustered (Fig 7C and 7F)

networks using the same numbers of neurons and trials as in the real data.

The V1 recordings had similar population activity structure to the corresponding popula-

tions in the clustered network when compared with 23 neurons of each type and 1,200 trials

sampled. The shared dimensionality of the broad-spiking population (red) and narrow-spiking

population (blue) increased with increasing neuron count (Fig 7A, top), as did the excitatory

(red) and inhibitory (blue) populations of the clustered network (Fig 7B, top). In the non-clus-

tered network, the excitatory and inhibitory populations show no trends in shared dimension-

ality (Fig 7C, top). The percent shared variance of the broad-spiking and narrow-spiking

populations initially increased with neuron count, then plateaued (Fig 7A, bottom). The per-

cent shared variance of both neurons types in the clustered network also increased, and con-

tinued to increase in the experimental regime of neuron counts (Fig 7B, bottom). In contrast,

the non-clustered network was different from both the V1 recordings and clustered network

in that it showed nearly zero shared dimensionality and percent shared variance for both neu-

ron types (Fig 7C).

We also investigated how the activity structure of the narrow-spiking and broad-spiking

populations of the V1 recordings varied with trial count. The shared dimensionality of both

neuron types in the V1 recordings (Fig 7D, top), as well as the clustered network (Fig 7E, top),

increased and eventually plateaued with increasing trial count. Similarly the percent shared

variance of both populations plateaued with increasing trial count in both the V1 recordings

(Fig 7D, bottom) and the clustered network (Fig 7E, bottom). As in Fig 7C, the non-clustered
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Fig 7. Comparing V1 recordings with network models. (A) V1 recordings. Shared dimensionality (upper panel) and percent shared variance (lower

panel) for broad-spiking (red) and narrow-spiking (blue) neurons. Recorded neurons were separated designated as broad-spiking or narrow-spiking using a

mixture of Gaussians classifier on average waveform parameters. (B) Same conventions as in (A), but for the clustered network (left panels) and non-

clustered network (right panels) based on 1,200 trials for various neuron counts. Red indicates excitatory neurons and blue indicates inhibitory neurons.

(C-D) Same conventions as in A-B, but based on 23 neurons and various trial counts. Error bars indicate standard error taken over four arrays for V1

recordings and four sets of non-overlapping samplings for model networks.

https://doi.org/10.1371/journal.pone.0181773.g007
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network showed no trends in shared dimensionality or percent shared variance due to the

small number of trials (Fig 7F).

Overall, the trends of the V1 recordings were similar to those of the clustered network.

However, there were two notable discrepancies between the V1 recordings and clustered net-

work. First, whereas the excitatory neurons showed higher percent shared variance than inhib-

itory neurons in the clustered network (Fig 7B and 7E, bottom), this was not seen in the V1

recordings (Fig 7A and 7D, bottom). We speculate that this difference could be due to the con-

nectivity structure of the clustered network, or our ability to classify neurons accurately based

on waveform shape (see Discussion). Second, the mode that explained the largest amount of

shared variance (referred to as the “dominant mode”) in the V1 recordings described the pop-

ulation increasing and decreasing its activity together (S6 Fig, left column of heatmaps have

nearly all elements of the same sign). Previous studies have demonstrated this by analyzing all

recorded neurons together [39, 49]; here, we showed that this is also true when analyzing

broad-spiking and narrow-spiking populations separately. However, the dominant modes for

the excitatory and inhibitory populations in the clustered network (Fig 4A, left) did not exhibit

this property.

Discussion

In this work, we used spiking network models to examine how the patterns of activity pro-

duced by a population of neurons depend on neuron type (excitatory and inhibitory). We

found that excitatory and inhibitory neurons showed different population activity structure.

Notably, the inhibitory population expressed more modes of shared activity than the excitatory

population in both networks that we implemented. Furthermore, the population activity struc-

ture depended on the ratio of excitatory to inhibitory neurons sampled. To ground the net-

work results with real data, we classified V1 neurons based on waveform and found that the

population activity structure of each neuron type in the in vivo recordings better resembled

that of the clustered network. Overall, these results demonstrate that knowledge of neuron

type is important, and allows for stronger statistical tests, when interpreting population activity

structure.

Although many spiking network models have been proposed, we considered models where

strong excitation is balanced by an equally strong and opposing inhibition. Previous work on

balanced networks has focused on the response properties of the excitatory population [20, 21,

39, 50, 51] because, in balanced networks, the inhibitory population simply tracks the excit-

atory population. The tracking property of the inhibitory population is essential for network

stability and yields network activity that is asynchronous [21]. Thus, analyzing inhibition

should not, in principle, provide any further insight about network dynamics than the excit-

atory population. This intuition is developed from the theory of balanced networks with

homogeneous connectivity (i.e., non-clustered) where typically spike train statistics are only

studied in the limits of large network size and large trial counts [20, 21, 24]. In our study, we

compared and contrasted the network spiking statistics of a non-clustered balanced network

to one with clustered excitatory connectivity [22]. Counter to classical intuition, analysis of

both networks shows significant differences in the activity structure of the excitatory and

inhibitory populations.

We focused on the trends in shared dimensionality and percent shared variance to com-

pare the population activity structures of different neuron types. Absolute levels of shared

dimensionality and percent shared variance obtained for the model networks are likely to

depend on model parameters, such as the number of clusters, the synaptic weights, and the

probability of synaptic connection. We used the parameters described in [22], and we did
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not try to fit these parameters so that the results would match those found from experimental

data. Understanding the trade-offs among the different model parameters necessary to

reproduce the values of shared dimensionality and percent shared variance measured for the

in vivo recordings would be an interesting avenue of future research.

In our previous work, we attempted to group the neurons from the V1 recordings into clus-

ters based on the modes of shared activity [39]. However, we did not find clear groups of neu-

rons. In a separate analysis, using the clustered network, we asked how the number of clusters

represented in the neuron sample affects the population activity structure [39]. We found that

the shared dimensionality increases with the number of clusters represented, but the percent

shared variance does not depend on the number of clusters represented.

Recently, several studies have found that networks with heterogenerous connectivity can

better reproduce the variability and dynamics of cortical activity [22–24, 52]. The clustered

network that we studied here is an example of such a heterogeneous network. While inhibitory

projections do not appear to be structured [7], there may be structured projections from excit-

atory clusters to an inhibitory target [53]. How structured projections from excitatory to inhib-

itory neurons shape the structure of population activity would be an interesting line of further

research. In a similar vein, balanced network models with connectivity that depends upon the

spatial distance between neurons have been developed [54] and can serve as an interesting

platform for future studies of neural population activity structure. A complete understanding

of these differences between balanced networks with homogeneous and heterogeneous wiring

will require a full theory of heterogeneous balanced networks [24].

A central goal of network modeling is to construct models which produce activity that

resemble in vivo recordings. To date, most studies have compared network models with real

data at the level of individual neurons (e.g., averaged firing rate across neurons or Fano factor)

and pairs of neurons (e.g., pairwise correlation) [20–22, 55]. To move beyond single-neuron

and pairwise metrics, we compare here the joint activity patterns across a population of neu-

rons, as in recent studies [23, 39, 52, 56]. This comparison is facilitated by dimensionality

reduction methods (in this case, factor analysis), which produce summary statistics (in this

case, shared dimensionality and percent shared variance) of the population activity structure.

This approach is likely to be beneficial for the design of future network models. In addition to

matching single-neuron and pairwise metrics, network models should reproduce the popula-

tion activity structure of in vivo recordings.

The balanced networks studied here are deterministic and chaotic. Although the model

neurons do not each have an independent noise source, FA identifies “independent variance”

for each neuron’s activity that cannot be predicted from the other sampled neurons using a lin-

ear predictor. The independent component of variability arises from the fact that i) only a sub-

set of the neurons in the network are sampled, and ii) the balanced networks have non-linear

dynamics that are not captured by a linear and static FA model.

In our V1 recordings, the difference in population activity structure between broad-spiking

neurons and narrow-spiking neurons was small (cf. Fig 6). One possibility is that there is no

difference in the population activity structure between excitatory and inhibitory neurons in

cortical networks. Another possibility (which we think is more likely) is that there is a differ-

ence, but we were not able to see it in our data for two reasons. First, we were limited in sam-

pled neurons (23) and trials (1,200). In the clustered network, we observed that there was a

substantial difference in population activity structure between excitatory and inhibitory neu-

rons for large numbers of neurons (100) and trials (10,000) (cf. Fig 3). However, when the

number of neurons and trials was reduced to that available in V1 recordings (23 neurons and

1,200 trials), the difference between excitatory and inhibitory neurons was much smaller (cf.

Fig 6). This is consistent with the trends observed in the V1 recordings. Another possible
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reason is that neurons might be misclassified based on waveform shape. New technologies are

being developed that can identify neuron type more definitively in vivo using optogenetics

(e.g., [57, 58]) or selectively expressing fluorescent indicators in certain neuron types for opti-

cal imaging (e.g., [59, 60]). Given the rapid development and adoption of these technologies,

there is an ever-growing need for methods and analyses like those presented here to under-

stand how excitatory and inhibitory populations interact [61].

The properties of excitatory versus inhibitory neurons have largely been studied at the cel-

lular or sub-cellular levels. Applying dimensionality reduction methods to samplings of the

same neuron type allows us to link differences at the sub-cellular and cellular levels to popula-

tion-level effects at the network level. Differences in connectivity patterns, projection lengths,

and firing variability may all contribute to differences in population activity structure. Our

study connects two disparate, yet related, fields of neuroscience by studying population activity

as a function of neuron type sampling.

Classifying neurons as excitatory or inhibitory is only a first-level characterization of neu-

ron type. There exist multiple types of inhibitory neurons which vary in terms of morphologi-

cal, physiological, and neurochemical characteristics [62]. These different subtypes have been

implicated in different roles at the network level [63, 64], and are being incorporated in net-

work models [65]. The current study can be extended to assess whether there are signatures of

the different inhibitory neuron types in the population activity structure, and whether it is nec-

essary to sample all types of inhibitory neurons to understand network function. Furthermore,

we focused on spontaneous activity for the models networks (i.e., zero inputs) and in vivo

recordings (i.e., no visual stimulus). The approach presented here can be used to compare the

population activity structure of excitatory and inhibitory neurons for evoked activity, i.e.,

model networks with non-zero inputs and neural responses to visual stimuli.

Materials and methods

Balanced spiking networks

We considered two spiking networks: a classic balanced network (“non-clustered network”)

and a network in which the excitatory neurons exhibited clustered structure (“clustered net-

work”). Spiking network activity was generated using the same parameters as in [22]. Both net-

works contained 4,000 excitatory and 1,000 inhibitory leaky integrate-and-fire neurons. In the

clustered network, there were 50 clusters, each with 80 excitatory neurons. The same-cluster

excitatory neurons had higher probability of connection (pEE
IN ¼ 0:485) than out-of-cluster

excitatory neurons (pEE
OUT ¼ 0:194). In the non-clustered network, all excitatory neurons had a

uniform probability of connection (pEE = 0.2). All other neuron type connection probabilities

were uniform for both networks (pEI = pIE = pII = 0.5). The membrane potential V of each neu-

ron was modeled by the following differential equation

_V ¼
1

t
ðm � VÞ þ Isyn ð2Þ

where μ is the voltage bias, Isyn is the synaptic input current, and τ is a time constant that is

dependent on neural type (15 ms for excitatory neurons, 10 ms for inhibitory neurons). When

V = Vth = 1, the neuron fires, and is set to Vre = 0 for a refractory period of 5 ms. The synaptic

input current to a particular neuron i from population x was modeled via

Ix
i;synðtÞ ¼

X

jy

Jxy
ij Fy � sy

j ðtÞ ð3Þ

where Jxy
ij is the synaptic weight to neuron i in population x from neuron j in population y, Fy is
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the synaptic filter of neurons from population y, and sy
j ðtÞ is an impulse train representing the

spikes of neuron j from population y. The synaptic filter of excitatory and inhibitory neurons

was modeled by a difference of exponentials via

FyðtÞ ¼
1

t2 � t1

ðe� t=t2 � e� t=t1Þ ð4Þ

where τ2 is 3 ms and 2 ms for excitatory and inhibitory neurons, respectively, τ1 is 1 ms for

both neuron types, and t only takes positive values.

In the clustered network, same-cluster excitatory synaptic weights were set to JEE
IN ¼ 0:0456,

out-of-cluster weights were set to JEE
OUT ¼ 0:024, and the rest of the weights were set to JEI =

−0.045, JIE = 0.014, and JII = −0.057. In the non-clustered network JEE ¼ JEE
OUT ¼ 0:024, and the

remaining synaptic weights were the same as in the clustered network.

Factor analysis

In this study, population activity structure was characterized using factor analysis (FA) [27, 28,

36, 66, 67]. Unlike principal component analysis (PCA), FA partitions the spike count variance

of each neuron into shared and independent components. This makes it possible for us to

assess the shared population activity structure (i.e., the shared component), which can be

obscured by Poisson-like spiking variability (i.e., the independent component). For this rea-

son, FA is more appropriate than PCA for analyzing single-trial spike counts [37]. FA is

defined as:

x � N ðm; LLT þCÞ ð5Þ

where x 2 Rn�1 is a vector of spike counts across the n simultaneously-recorded neurons,

μ 2 Rn�1 is a vector of mean spike counts, L 2 Rn�m is the loading matrix relating m latent var-

iables to the neural activity, and C 2 Rn�n is a diagonal matrix of independent variances for

each neuron. The model parameters μ, L, and C were estimated using the expectation maximi-

zation (EM) algorithm [68].

As shown in Fig 2A, FA separates spike count variance into a shared component LLT and

an independent component C. The rank of LLT is m, the number of latent dimensions needed

to explain the shared population activity structure. To determine m, FA is applied to spike

counts for various candidate values of m, and then we select the m that maximizes the cross-

validated data likelihood using four folds.

In this study, we used two key metrics to summarize population activity structure: shared

dimensionality (dshared) and percent shared variance. First, we measured the number of dimen-

sions in the shared covariance as a metric for the complexity of the population activity. We fol-

lowed a two step procedure to obtain this metric. We first found the m that maximized the

cross-validated data likelihood, as is standard practice. We then defined dshared as the number

of dimensions that were needed to explain 95% of the shared variance based on the eigenvalues

of LLT (Fig 2B). We did this for the following reason. In simulations, we found that, when

training data were abundant, there was not a strong effect of overfitting and the cross-validated

data likelihood curve saturated at large dimensionalities. As a result, the peak data-likelihood

appeared at widely varying dimensionalities along the flat portion of the curve, leading to vari-

ability in the value of m from one run to the next. In contrast, we found that defining dshared as

described above provided a more reliable estimate of dimensionality across analyses, even if it

underestimates the true dimensionality.

Second, we measured the amount of each neuron’s variance that was shared with at least

one other neuron in the sampled population (Fig 2C). Mathematically, percent shared variance

Population activity structure of excitatory and inhibitory neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0181773 August 17, 2017 19 / 27

https://doi.org/10.1371/journal.pone.0181773


for the kth neuron was computed as:

Percent shared variance for neuron k ¼
LkLT

k

LkLT
k þCk

ð6Þ

where Lk is the kth row of L and Ck is the independent variance for the kth neuron. In Figs 3, 5

and 6, we report averages over all neurons of the same type in a given analysis. For Figs 2B and

4B, we computed a separate metric, the percent of overall shared variance explained by each

mode. This was used to quantify the relative dominance of each mode for explaining shared

variability. The percent of shared variance explained by the ith mode was computed as:

Percent of shared variance explained by mode i ¼
liPm
j¼1

lj
ð7Þ

where λi is the eigenvalue of LLT corresponding to the ith mode and m is the rank of L. Note

that this metric does not take into account the independent variances. For Fig 4, FA was

applied with the cross-validated shared dimensionality to all 10,000 trials. Throughout this

work, we refer to a particular mode as “dominant” to another mode if it explains a larger per-

cent of shared variance.

Varying neuron and trial count

We investigated how dshared and percent shared variance vary with neuron and trial counts for

excitatory and inhibitory populations in spiking network models and V1 recordings. To do so,

we sampled increasing numbers of neurons or trials from either the network simulations or

V1 recordings. FA was then applied to the selected neurons and trials to obtain dshared and per-

cent shared variance.

In the analysis of model networks in Fig 3, to increase neuron count, we augmented the

next smaller sample of neurons with additional randomly selected neurons. For example, we

first randomly selected 10 neurons, computed dshared and percent shared variance for this set,

and then added 10 additional randomly-selected neurons to obtain the next sample of neu-

rons. We repeated this procedure 25 times at each neuron count using 5 non-overlapping sets

of neurons and 5 non-overlapping sets of trials, using 10,000 trials for each neuron count. We

studied how dshared and percent shared variance change with trial count by performing the

same procedure as described above, except that trials were increased rather than neurons.

For the V1 recording analysis in Fig 6A, we limited our analysis to 23 neurons of each type,

since this was the minimum number of neurons of a particular type across the four arrays. For

each neuron count, we took as many non-overlapping samples of neurons for that neuron

count as possible, and applied FA to compute dshared and percent shared variance. We applied

the same sampling procedure to analyze how dshared and percent shared variance change with

increasing trial count, while limited to 1,200 trials. We repeated this procedure for each of the

four arrays.

Mixed neuron type sampling

Since realistic population samplings include a mixture of both excitatory and inhibitory neu-

rons, we analyzed how the ratio of excitatory to inhibitory neurons sampled affects population

activity structure. To do assess this, we fit FA to spiking network activity samplings of 100 neu-

rons to compute dshared and percent shared variance for ratios of 0:100, 10:90, 20:80, and so on

until 100:0 excitatory to inhibitory neurons were sampled. Starting with the ratio of 0:100

excitatory to inhibitory neurons, we replaced 10 of the 100 inhibitory neurons with 10 excit-

atory neurons for a ratio of 10:90 excitatory to inhibitory neurons. Then, we replaced another
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10 inhibitory neurons with 10 excitatory neurons (while keeping the 10 excitatory neurons just

added to the sampling) for a ratio of 20:80 excitatory to inhibitory neurons sampled. Excitatory

neurons replaced inhibitory neurons in increments of 10, until the entire sampling comprised

zero inhibitory neurons and 100 excitatory neurons. We repeated this analysis 25 times for five

non-overlapping sets of 100 excitatory and 100 inhibitory neurons and five non-overlapping

sets of trials.

Neural recordings

A detailed description of the recording methodology can be found in [40, 69]. Briefly, neurons

were recorded in the primary visual cortex of three anesthetized macaque monkeys. Anesthesia

was maintained for 5-7 days with sufentanil citrate (6-18 μg/kg/hr) through continuous intra-

venous infusion, and eye movements were reduced through continuous intravenous infusion

of vecuronium bromide (100-150 μg/kg/hr).

Multi-electrode arrays were implanted in four primary visual cortex hemispheres of three

anesthetized macaque monkeys, and neural activity was recorded for 20-30 minutes during

presentation of a gray computer screen. Spiking waveform snippets from the recordings were

sorted off-line using a mixture-decomposition method [70]. This automatic sorting was

refined manually, taking into account waveform shape and inter-spike interval distributions.

For our analysis, we only used neurons which had average firing rate greater than one spike

per second, and signal-to-noise ratio (SNR), computed as the average waveform amplitude

divided by the standard deviation across waveforms, greater than 1.33. Median SNR values

were 2.96, 2.75, 2.50, and 2.31 for each of the four arrays. Spiking activity was divided into one

second epochs, which we refer to as “trials” throughout this work. An analysis of a superset of

these data can be found in [40].

Animal protocols were approved by the institutional animal care and use committees of

New York University and Albert Einstein College of Medicine of Yeshiva University. Monkeys

were fed nutrient-rich biscuits and frequently (1-2 times per day) given supplemental treats

(e.g. fresh and dried fruit, nuts, etc). Enrichment activities included foraging for treats, music,

movies, human interaction, and standard toys including mirrors. Animals were typically pair

housed and, when this was not the case, animals were always housed in the same room as con-

specifics, allowing frequent visual and auditory interactions. Professional veterinary staff and

lab personnel monitored animal health and well-being on a daily basis.

Neuron type classification

We classified the recorded neurons as putative excitatory or putative inhibitory neurons based

on average waveform shape (S5 Fig). Compared to excitatory neurons, inhibitory neurons

tend to have shorter latencies to peak depolarization [45–47], brief hyperpolarization dura-

tions [45, 46], and rapid peak rates of repolarization [45]. Neurons with any of these three

properties are considered “narrow-spiking” (or fast-spiking), while neurons with slower action

potential dynamics are considered “broad-spiking” (or regular-spiking). To classify neurons

from our extracellular recordings as broad- or narrow-spiking (putative excitatory and puta-

tive inhibitory, respectively), we computed the time of peak depolarization, duration of

hyperpolarization, and rate of repolarization for the average waveform of each neuron. We

measured these three waveform statistics for the 75% of the neurons that across all recording

sessions with the greaf SNR, and fit a mixture of two Gaussians to the scatter of waveforms,

where each waveform was represented by its waveform statistics in the three-dimensional

space [14]. The average waveforms of four neurons exhibited large increases in normalized

amplitude before spike depolarization making them difficult to parameterize, so they were not
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used to train the mixture of Gaussians classifier or in the analyses. The class with the smaller

mean time of peak depolarization was designated as the narrow-spiking class, and the other as

the broad-spiking class. We used the fitted mixture of Gaussian parameters to compute the

likelihood of a neuron being a part of either class. To focus on neurons that had a high proba-

bility of belonging to either class, we analyzed only neurons with probability greater than 85%

of belonging to either class. This resulted in the following distributions of classified neuron

types for the four arrays: 24 broad-spiking and 39 narrow-spiking, 41 broad-spiking and 72

narrow-spiking, 23 broad-spiking and 60 narrow-spiking, and 47 broad-spiking and 25 nar-

row-spiking neurons. These samples contain a smaller proportion of putative excitatory neu-

rons than the 75-80% excitatory pyramidal cells found in histochemical analysis [71, 72].

Possible reasons for this include differences between the physiological and anatomical sam-

pling distributions of neurons, ambiguity in classification due to the presence of some broad-

spiking inhibitory neurons, differences in laminar distributions between cell types, and ran-

domness in neural sampling for each array implant. Previous studies have not explored the

large-scale distribution of cell types using this classification method, and this will be an impor-

tant area for future research. Using the classifications we determined for each array implant,

we restricted our analysis to a randomly-chosen set of 23 neurons for each neuron type for

each array.

Supporting information

S1 Fig. Timescale of neuronal correlations. Autocorrelation of excitatory and inhibitory

neurons using a 10 ms spike count window. Curves were averaged across neurons and have

a maximum of one at zero time lag. (A) Clustered network: autocorrelation of excitatory

neurons (red), inhibitory neurons (blue), and excitatory neurons broken down by cluster

(orange). (B) Non-clustered network: autocorrelation of excitatory (red) and inhibitory (blue)

neurons. (C) V1 recordings: autocorrelation of broad-spiking (red) and narrow-spiking (blue)

neurons.

(EPS)

S2 Fig. Relationship of percent shared variance to pairwise spike count correlation. To

study the relationship of the width of a zero-mean spike count correlation distribution to

shared variance, we generated simulated spike counts with near-zero mean spike count

correlation distributions of various widths using the method described in [44]. We began by

drawing spike count correlations from a normal distribution with mean zero and a selected

standard deviation. They were used to form a correlation matrix, where the correlation values

were placed randomly in the upper half of the matrix and were copied to the lower half of the

matrix to ensure symmetry. For the correlation distribution widths tested here, all of the gen-

erated correlation matrices were positive semi-definite. The spike count means and variances

of the model neurons were matched to randomly-sampled inhibitory neurons in the non-clus-

tered network. We then generated 100,000 spike counts for 100 model neurons. We computed

the percent shared variance for simulated spike counts for various correlation distribution

widths. The widths 0.011 and 0.025 correspond to the excitatory (red) and inhibitory (blue)

populations, respectively, in the non-clustered network (cf. Fig 1D, EE and II), and are thus

highlighted. Standard error bars are shown for five sets of 20,000 trials, where each set is an

independent draw from the distribution of spike count correlations.

(EPS)

S3 Fig. Excitatory and inhibitory population activity structure using 100 ms spike count

windows. Same analysis as shown in Fig 3 using a 100 ms spike count window. The same
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neurons and trials of the clustered and non-clustered networks were used. Spike counts were

taken in the first 100 ms of the original one second trial.

(EPS)

S4 Fig. Mixed neuron type samplings using 100 ms spike count windows. Same analysis as

shown in Fig 5 using a 100 ms spike count window. The same neurons and trials of the clus-

tered and non-clustered networks were used. Spike counts were taken in the first 100 ms of the

original one second trials.

(EPS)

S5 Fig. Neuron type classification. (A) Normalized average waveforms of neurons with aver-

age firing rates greater than one spike per second. Each waveform corresponds to one neuron

and is colored by the probability that it belongs to the broad-spiking class (toward red) or the

narrow-spiking class (toward blue). (B) Posterior probability of neurons belonging to either

class. Neurons are ordered along the horizontal axis based on their relative probability of

belonging to the broad-spiking class (red) and narrow-spiking class (blue). Dashed vertical

lines indicate 85% probability thresholds used for determining neurons that clearly belong to

each class. (C) Waveform shape averaged across all broad-spiking neurons (red) and all nar-

row-spiking neurons (blue) that passed the 85% probability threshold.

(EPS)

S6 Fig. Modes of shared activity for V1 recordings. (A) Modes for broad-spiking neurons.

The columns of the heatmap represent the eigenvectors of the shared covariance matrix,

ordered by the amount of shared variance explained. (B) Same conventions as A for narrow-

spiking neurons. (C) Percent of total shared variance of broad-spiking (red) and narrow-spik-

ing (blue) neurons explained by each mode.

(EPS)
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47. Barthó P, Hirase H, Monconduit L, Zugaro M, Harris KD, Buzsáki G. Characterization of neocortical
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64. Kim H, Ährlund-Richter S, Wang X, Deisseroth K, Carlén M. Prefrontal parvalbumin neurons in control

of attention. Cell. 2016; 164(1):208–218. https://doi.org/10.1016/j.cell.2015.11.038 PMID: 26771492

65. Litwin-Kumar A, Rosenbaum R, Doiron B. Inhibitory stabilization and visual coding in cortical circuits

with multiple interneuron subtypes. Journal of Neurophysiology. 2016; 115(3):1399–1409. https://doi.

org/10.1152/jn.00732.2015 PMID: 26740531

66. Everitt B. An Introduction to Latent Variable Models. London: Chapman and Hall; 1984.

67. Santhanam G, Yu BM, Gilja V, Ryu SI, Afshar A, Sahani M, et al. Factor-Analysis Methods for Higher-

Performance Neural Prosthesis. Journal of Neurophysiology. 2009; 102:1315–1330. https://doi.org/10.

1152/jn.00097.2009 PMID: 19297518

68. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, Series B. 1977; 39: 1–38.

69. Kelly RC, Smith MA, Kass RE, Lee TS. Local field potentials indicate network state and account for neu-

ronal response variability. Journal of Computational Neuroscience. 2010; 29:567–579. https://doi.org/

10.1007/s10827-009-0208-9 PMID: 20094906

70. Shoham S, Fellows MR, Normann RA. Robust automatic spike sorting using mixtures of multivariate t-

distributions. Journal of Neuroscience Methods. 2003; 127:111–122. https://doi.org/10.1016/S0165-

0270(03)00120-1 PMID: 12906941

71. Peters A, Jones EG. Cellular components of the cerebral cortex. Clinical Neurophysiology. 1984; 58(4):

385. https://doi.org/10.1016/0013-4694(84)90066-X

72. Peters A, Sethares C. Organization of pyramidal neurons in area 17 of monkey visual cortex. Journal of

Comparative Neurology. 1991; 306(1):1–23. https://doi.org/10.1002/cne.903060102 PMID: 1710236

Population activity structure of excitatory and inhibitory neurons

PLOS ONE | https://doi.org/10.1371/journal.pone.0181773 August 17, 2017 27 / 27

https://doi.org/10.1038/nn.4042
https://doi.org/10.1038/nn.4042
http://www.ncbi.nlm.nih.gov/pubmed/26075643
https://doi.org/10.1038/nature10754
https://doi.org/10.1038/nature10754
http://www.ncbi.nlm.nih.gov/pubmed/22258508
https://doi.org/10.1016/j.jphysparis.2011.09.005
https://doi.org/10.7554/eLife.14985
http://www.ncbi.nlm.nih.gov/pubmed/27552056
https://doi.org/10.1038/ncomms12270
https://doi.org/10.1038/ncomms12270
http://www.ncbi.nlm.nih.gov/pubmed/27481398
https://doi.org/10.1038/nn.3051
http://www.ncbi.nlm.nih.gov/pubmed/22366760
https://doi.org/10.1016/j.cell.2015.11.038
http://www.ncbi.nlm.nih.gov/pubmed/26771492
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1152/jn.00732.2015
http://www.ncbi.nlm.nih.gov/pubmed/26740531
https://doi.org/10.1152/jn.00097.2009
https://doi.org/10.1152/jn.00097.2009
http://www.ncbi.nlm.nih.gov/pubmed/19297518
https://doi.org/10.1007/s10827-009-0208-9
https://doi.org/10.1007/s10827-009-0208-9
http://www.ncbi.nlm.nih.gov/pubmed/20094906
https://doi.org/10.1016/S0165-0270(03)00120-1
https://doi.org/10.1016/S0165-0270(03)00120-1
http://www.ncbi.nlm.nih.gov/pubmed/12906941
https://doi.org/10.1016/0013-4694(84)90066-X
https://doi.org/10.1002/cne.903060102
http://www.ncbi.nlm.nih.gov/pubmed/1710236
https://doi.org/10.1371/journal.pone.0181773

