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SUMMARY
Thalamocortical loops have a central role in cognition andmotor control, but precisely how they contribute to
these processes is unclear. Recent studies showing evidence of plasticity in thalamocortical synapses indi-
cate a role for the thalamus in shaping cortical dynamics through learning. Since signals undergo a compres-
sion from the cortex to the thalamus, we hypothesized that the computational role of the thalamus depends
critically on the structure of corticothalamic connectivity. To test this, we identified the optimal corticothala-
mic structure that promotes biologically plausible learning in thalamocortical synapses. We found that cor-
ticothalamic projections specialized to communicate an efference copy of the cortical output benefit motor
control, while communicating the modes of highest variance is optimal for working memory tasks. We
analyzed neural recordings from mice performing grasping and delayed discrimination tasks and found cor-
ticothalamic communication consistent with these predictions. These results suggest that the thalamus or-
chestrates cortical dynamics in a functionally precise manner through structured connectivity.
INTRODUCTION

Recent years have seen a renewal of interest in understanding the

role of the higher-order thalamus in mammalian behavior. Unlike

primary thalamic nuclei, such as the lateral geniculate nucleus,

which relays information from the sensory periphery to the cortex,

higher-order nuclei do not receive direct inputs from the sensory

periphery but rather primarily from layer V neurons in the cortex.

Consequently, the conventional view of the thalamus as a relay

has been revised to accommodate a role for the higher-order thal-

amus as a ‘‘higher-order relay’’ that transmits information from

one cortical area to another.1,2 Meanwhile, anatomical tracing

studies have revealed a frequent motif of reciprocal interactions

inwhich cortical projections to the thalamus target nuclei that proj-

ect back to the same cortical area. Such reciprocal cortico-tha-

lamo-cortical (CTC) loops have been observed in rodent sensory,3

motor,4–7 and prefrontal8 cortices and stand in contrast to a view

of such nuclei as higher-order relays across cortical areas. Recent

physiological studies have demonstrated that these loops are

required for many cognitive functions.9–13 Furthermore, the evolu-

tion of cortical activity depends on the thalamus14 and inhibiting

the higher-order thalamus suppresses cortical activity.10,11 How-

ever, the specific computational role of CTC loops is not fully

understood.

Reciprocal CTC loops represent a departure from the

labeled line view of the thalamus as they feature signal
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compression (from the cortex to the thalamus) and expansion

(from the thalamus to the cortex). Normative models devel-

oped to clarify the role of compression and expansion in

feedforward neural networks have improved our understand-

ing of the computations in many brain areas including

the retina,15,16 primary visual cortex,17,18 olfactory bulb,19,20

and cerebellum.21–24 For instance, theories of compressed

sensing and efficient coding have shown that, whereas

random compression can preserve the similarity structure of

sparse representations, the optimal compression strategy is

to extract the principal components (PCs) when inputs are

strongly correlated.25 Unfortunately, insights gained from

analyzing feedforward networks cannot be directly applied

to understand signal transformation in CTC loops due to their

recurrent processing.

We and others have shown in prior theoretical studies that it

is possible to perform computations by tuning synaptic weights

in the CTC loop appropriately,26–28 consistent with experi-

mental studies showing that thalamocortical synapses exhibit

plasticity in many areas of the adult brain.29–35 Such plasticity

can be viewed as low-rank modifications to the connectivity

of cortical recurrent neural networks.36–38 However, these

models have not addressed how these synapses may be up-

dated with biologically plausible learning rules that operate us-

ing locally available signals. In particular, we show that stan-

dard approaches for local, biologically plausible learning in
pril 23, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:a.litwin-kumar@columbia.edu
mailto:sean@neurotheory.columbia.edu
https://doi.org/10.1016/j.celrep.2024.114059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2024.114059&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Combined model of cortex and

thalamus

(A) Schematic illustration of a thalamocortical

network model.

(B) Synaptic weights of the model. Corticocortical

weights (WCC) are fixed. Local learning rules can

be used to update thalamocortical weights (WCT),

but it is not known whether such rules are effective

for corticothalamic weights (WTCÞ.
(C) Learning performance (quantified as 1 � R2, so

lower is better) as a function of thalamic population

size when learning is mediated by a local plasticity

rule (RFLO) in thalamocortical weights (green), or

both thalamocortical and corticothalamic weights

(gray).

(D) The alignment between feedback weights (B)

and readout weights (WO) in cortical neurons in-

creases as learning performance improves, indi-

cating successful credit assignment in thalamo-

cortical synapses (green). In contrast, there is no

alignment between feedback weights (B0, see

Figure S1A) and effective readout weights

(WCT40ðutÞWO, where ut denotes the membrane

potential of cortical neurons, see STAR Methods)

in thalamic neurons indicating the failure of credit

assignment in corticothalamic synapses (black).

Numerical estimates of alignment (b) are normal-

ized to correct for the chance level alignment (b0)

before plotting ðb � b0Þ=ð1 � b0Þ. Models have

N = 256 cortical neurons. The number of thalamic

neurons (M) is varied from 1 to 128. Error bars

denote standard errors estimated by boot-

strapping. See also Figure S1.
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recurrent neural networks fail to optimize corticothalamic con-

nectivity, because accurate credit assignment at these synap-

ses requires knowledge of the global structure of network

activity.

In this study, we hypothesize that the ability of the thalamus

to contribute to learning depends critically on the structure of

corticothalamic synaptic connectivity and ask what forms of

corticothalamic connectivity structure optimize learning. We

use a recently proposed biologically plausible, three-factor

supervised learning rule39 to update thalamocortical synap-

ses, while assuming that corticothalamic synapses have

been optimized on a slower evolutionary or developmental

timescale.40,41 We separately train models to perform two

different tasks—autonomous motor control and working

memory—and determine the optimal corticothalamic structure

in each case. We find that the optimal corticothalamic con-

nectivity is structured and task dependent. Specifically,

learning motor control is optimized by corticothalamic con-

nections specialized to carry an efferent copy of the muscle

command, while learning to perform working memory is opti-

mized by corticothalamic connections that convey modes of

cortical activity with the highest variance. We analyzed neural

recordings from mice performing grasping and delayed

discrimination tasks10,14 and found that the influence of

cortical activity on the thalamus is consistent with this model.

These results suggest a precise link between corticothalamic

connectivity structure and the function of CTC loops.
2 Cell Reports 43, 114059, April 23, 2024
RESULTS

We begin by constructing a model combining cortex and thal-

amus based on two fundamental properties of thalamic nuclei

that distinguish them from the cortex. First, there are far fewer

neurons in the thalamus,42 which acts as a structural bottleneck

in this loop. Second, local recurrent excitation is a defining

feature of the cortex but absent within the thalamus.43,44 There-

fore, we consider a model in which a network of N intercon-

nected cortical neurons is reciprocally connected with M

uncoupled thalamic neurons, with M � N (Figure 1A). The

cortical population activity is denoted by ht ˛RN, thalamic pop-

ulation activity by rt ˛RM, and S external inputs (if any) by

xt ˛RS. The cortical activity evolves according to:

t _ht = � ht +4
�
WCCht + WCTrt + W Ixt

�
; (Equation 1)

where subscripts denote time, t is the neuronal time constant,

and the nonlinearity 4ð $Þ is the tanh function. WCC ˛RN3N,

WCT ˛RN3M, and W I ˛RN3S denote corticocortical, thalamo-

cortical and input weight matrices, respectively. Thalamic activ-

ity, on the other hand, is assumed to depend only on cortical ac-

tivity as rt = 4ðWTChtÞ, where WTC ˛RM3N denotes the matrix

of corticothalamic weights. Therefore, the thalamic activity is a

nonlinear M-dimensional projection of the cortical activity.

Network output yt ˛RR, which we optimize to perform
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behavioral tasks, is modeled as a linear readout of the cortical

activity, yt = WOht with readout weights WO ˛RR3N.

In this model, cortical neurons interact directly via corticocort-

ical connections and indirectly via the thalamic bottleneck, which

compresses the cortical signal into an M-dimensional space

(through WTC) before expanding it back into an N-dimensional

space (throughWCT). The effective interaction weights (obtained

using Euler’s method) can be expressed as a sum of recurrent

connectivity within the cortex and weights in the CTC loop,

Weff = WCC +WCTVWTC, where V = diagð40ðvtÞÞ is anM3M di-

agonal matrix composed of the derivative of the activity of

thalamic neurons. This effective interactionmatrix can be viewed

as a low-rank (rank-M) perturbation of the N3N cortical connec-

tivity matrix WCC. Such models are interesting from a computa-

tional perspective because recent theoretical work has shown

that many tasks can be solved by combining a full-rank random

component with appropriate low-rank connectivity structures36

and that gradient-based learning typically induces low-rank

changes in recurrent weights.37 We ask whether low-rank CTC

connectivity can be learned to support behavioral tasks in a bio-

logically plausible manner within our model. Throughout the pa-

per, we describe the key details needed to understand the re-

sults of each simulation. Further details can be found in Table S1.

Thalamocortical learning rule
Recent experimental evidence suggests that thalamocortical

plasticity continues into adulthood and is a major substrate for

learning,30–35 and inhibiting the thalamus impairs learning.45

Accordingly, we assume that thalamocortical synapses (WCT,

Figure 1B, green) are adjusted such that the overall model mini-

mizes
P

t k εtk2, where εt = y�t � yt denotes the mismatch be-

tween the network output yt and some desired target output

function y�t . Specifically, we train thalamocortical synapses in

themodel using a local, biologically plausible learning rule based

on a recently proposed algorithm (Random-Feedback-Local-

Online, or RFLO, learning; see STAR Methods).39 The resulting

update rule is given by:

dWCT
ij f½Bεt�i pij; (Equation 2)

whereWCT
ij denotes the synaptic weight from thalamic unit j onto

cortical unit i, and B˛RN3R denotes random feedback pathway

weights that project the error εt back into the cortical network for

learning. The eligibility trace pij reflects the correlation between

recent activity of the thalamic unit j and the cortical unit

i: t _pij = � pijðtÞ+40ðuiðtÞÞrjðtÞ, where ui denotes the membrane

potential of the ith cortical neuron. Readout weight updates

follow a standard delta-rule, dWO
ij fεiðtÞhjðtÞ, where εiðtÞ denotes

the error in the ith output dimension. Like other three-factor

rules,46 the update rule for thalamocortical synapses depends

only on the presynaptic activity (thalamic neuron), the postsyn-

aptic activity (cortical neuron), and the error signal at each

moment (STARMethods). Evidence for error signals in the super-

ficial layers of the cortex47,48 suggests that thalamocortical syn-

apses located on apical dendrites (e.g., Guo et al.5) are particu-

larly good candidates for this learning rule. Alternatively, error

signals conveyed to apical dendrites could also drive plasticity
in basal thalamocortical synapses via dendritic plateau poten-

tials.49,50 While recent computational models propose to take

advantage of error signals in apical dendrites to approximate

backpropagation,51–53 here we restrict our focus to the three-

factor learning rule described above.

We quantified the performance of models trained by applying

the above learning rule as 1� R2, where R2 denotes the fraction

of variance in the target function (a complex temporal waveform)

that is predicted by the readout at the end of thalamocortical

learning. We found that the performance improves with the num-

ber of thalamic neurons, suggesting that local plasticity at thala-

mocortical synapses (WCT) facilitates learning (Figure 1C, green).

This improvement in learning performance is accompanied by an

increase in the alignment between weights in the feedback

pathway B (which communicate error signals to post-synaptic

neurons) and readout weights WO (Figure 1D, green), indicating

that the learning rule performs credit assignment—conveying

appropriate learning signals to neurons upstream of behavioral

output—in thalamocortical synapses. Nonetheless, the perfor-

mance of this learning strategy may depend critically on the

signal received by thalamic neurons via corticothalamic projec-

tions (WTC, Figure 1B, black).

Studies of biologically plausible algorithms in recurrent neural

networks have typically dealt only with the learning of synapses

onto neurons that are directly connected to the readout.39,54–56

Since corticothalamic synapses are further upstream than thala-

mocortical synapses, it is not known whether biologically plau-

sible plasticity rules can perform credit assignment in these syn-

apses. Lack of empirical support for plasticity in corticothalamic

synapses notwithstanding, we wanted to know whether this is

possible in principle. To test this, we assume that the error sig-

nals are also communicated to the thalamus through a different

set of feedback pathway weights, B0. We trained our model by

applying a local plasticity rule analogous to Equation 2 to update

corticothalamic synapses (STAR Methods, Equation 6; Fig-

ure S1A). Successful learning in these synapses is a more chal-

lenging proposition as it requires good alignment between feed-

back weights B0 and the effective readout weights of thalamic

neurons (given byWOWCT in a linear approximation) to be estab-

lished through learning. In contrast to models that learn by up-

dating only thalamocortical synapses, local plasticity operating

simultaneously at thalamocortical and corticothalamic synapses

does not yield any improvement in learning performance over

what is obtained from learning only thalamocortical synapses

with fixed random corticothalamic connections (Figure 1C,

gray vs. green).

The failure of local plasticity in corticothalamic synapses to

improve performance can be understood by comparing the

feedback alignment of neurons in the cortex and thalamus.

Whereas local plasticity achieves a high level of feedback align-

ment in cortical neurons, the alignment is no greater than chance

in thalamic neurons (Figure 1D, black vs. green). Therefore, error

signals are unable to mediate learning via standard three-factor

plasticity rules in corticothalamic synapses (Figures S1B and

S1C). Oneway to overcome this challenge is to initialize thalamo-

cortical weights to have small (� Oð1 =NÞ) variance such that

thalamic influence on cortical activity is minimal prior to learning

(Figure S1D). However, this implies an experience-dependent
Cell Reports 43, 114059, April 23, 2024 3



Figure 2. Corticothalamic connectivity optimized by meta-learning

(A) Corticothalamic weights may prioritize communicating specific subspaces of cortical activity, such as the readout (cyan) or principal component directions

(purple), in contrast to a random subspace (orange).

(B) Schematic of the meta-learning procedure. Optimizing corticothalamic weights on a slow timescale (top, ‘‘outer loop’’) improves error-driven learning in

thalamocortical synapses (middle, ‘‘inner loop’’), improving performance (bottom).

(C) Left: median outputs (across simulations) of networks trained using meta-learned corticothalamic weights (gray) and random corticothalamic weights (or-

ange), on the autonomous control task. The black line denotes the target function. Right: inputs and outputs of networks trained using meta-learned cortico-

thalamic weights (gray) and random corticothalamic weights (orange) for the different conditions of the working memory task.

(D) Performance error (1 � R2) of the model (across simulations initialized with different thalamocortical weights) trained using the meta-learned corticothalamic

weights (gray), compared with the performance error of the model trained using random corticothalamic weights (orange).

(E) Alignment of meta-learned corticothalamic weights with the readout direction (cyan) and the direction of the leading principal component of cortical activity

(purple) in the two tasks. White dots denote the median, black boxes denote interquartile range and black lines denote adjacent values. All models have N = 256

cortical neurons and M = 32 thalamic neurons. See also Figure S2.

Article
ll

OPEN ACCESS
increase in thalamic control of cortical activity dynamics and bio-

logical mechanisms that restrict learning to synapses that are

initially weak, assumptions that await experimental validation.

Therefore, here we restrict our focus to models with strong initial

thalamocortical weights.

Optimal corticothalamic connectivity improves learning
performance
Since biologically plausible feedback-driven plasticity has

limited potential to optimize corticothalamic connectivity, we

asked whether other mechanisms could select patterns of syn-

aptic weights that improve performance. In particular, we sought

to identify subspaces of cortical activity that, when communi-

cated to the thalamus, improve learning supported by thalamo-

cortical plasticity (Figure 2A). Specific corticothalamic connec-

tivity that routes activity in such subspaces may be established

by evolutionary or developmental processes,57 or by plasticity

rules of a different form than Equation 2.

To begin, we took an approach known as meta-learning or

‘‘learning to learn.’’40,41 Corticothalamic weights were opti-
4 Cell Reports 43, 114059, April 23, 2024
mized at a longer timescale across thousands of epochs

(‘‘outer loop’’), each of which comprises a few hundred trials

of thalamocortical learning (‘‘inner loop’’; Figure 2B; STAR

Methods). The outer loop represents the evolutionary or devel-

opmental processes that optimize corticothalamic connectivity.

Optimization was performed via backpropagation through

time (BPTT). To ensure that corticothalamic weights discovered

by this technique did not depend on the precise state of thala-

mocortical weights at the beginning of learning, we reset the

thalamocortical weights at the beginning of each epoch. More-

over, to ensure that this technique promotes learning specif-

ically via thalamocortical synapses, we fixed all other weights,

and enforced feedback alignment (BT = WO) during the

meta-learning procedure. We later relax these constraints and

test our conclusions in a model with plasticity in corticocortical

and readout weights. To test the learning performance, we train

the thalamocortical weights in the model using the fixed, opti-

mized corticothalamic weights and compare the performance

against a model trained using fixed random corticothalamic

weights (STAR Methods).
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Which corticothalamic projections are most suitable for thala-

mocortical learning could depend on the task. To test this

hypothesis, we consider two prototypical neuroscience tasks

with distinct computations—an autonomous motor control task

and a working memory task. The goal of the autonomous control

task is to output a complex temporal waveformwithout the aid of

external inputs (i.e., analogous to the EMG activity required for

internally generated movement). The goal of the working mem-

ory task is to output the amplitude of one of eight possible tran-

sient input pulses during a subsequent delay period (STAR

Methods). We optimized corticothalamic weights for each task

as outlined above, and found that meta-learned corticothalamic

weights substantially improved learning supported by thalamo-

cortical weights in both tasks (Figure 2C). The error dropped

severalfold across both tasks when thalamocortical learning

was performed using optimized corticothalamic weights as

opposed to random corticothalamic weights (Figure 2D; median

factor of reduction in error: motor control, 5.8; working memory,

5.1). We found qualitatively similar results when learning in the

presence of random error-feedback weights, B (STAR Methods;

Figure S2A), showing that the improvement in learning perfor-

mance cannot be attributed to feedback alignment used in the

meta-learning procedure.

We next sought to understand what structure in the optimized

corticothalamic weights led to improved performance. We

calculated the alignment b between the optimized corticothala-

mic weights and both the direction with the highest variance

(principal-component direction) and the direction that drives

output (readout direction) (STAR Methods; Figure 2E). We ex-

press the alignment in a normalized scale ðb � b0Þ=ð1 � b0Þ,
where b0 corresponds to the average alignment between

meta-learned corticothalamic weights and a random direction

in the cortical activity space.Whereas alignment with the readout

direction was significantly greater than the alignment with the

leading PC in the motor control task (p = 1:63 10� 4, paired t

test), this pattern was inverted for the working memory task

where in fact the corticothalamic weights were more strongly

aligned with the direction of the leading PC (p = 2:83 10� 3,

paired t test, Figure 2E). Pre-aligning corticothalamic weights

to the readout direction at the beginning of the meta-learning

procedure did not alter these results (Figure S2B). Together,

these results demonstrate a nontrivial interplay between cortico-

thalamic structure and task demands. Specifically, corticothala-

mic projections promote learning of autonomous control largely

by communicating the cortical output to the thalamus, while

learning of working memory benefits from communicating the

PCs of the cortical activity to the thalamus.

Subspace-aligned corticothalamic connectivity
outperforms random corticothalamic projection
The above analyses suggest that alignment of corticothalamic

weights with specific subspaces of cortical activity improves

performance. To directly test whether these subspaces are

able to support learning by themselves, we consider three ideal-

ized models with categorically different forms of corticothalamic

connectivity that correspond to varying degrees of structure

(STARMethods; Figure 2B). First, we consider unstructured con-

nectivity that carries a random subspace of the cortical activity.
Then, we consider connectivity aligned with the leading principal

components (PCs) of cortical activity. Finally, we consider corti-

cothalamic connectivity that is aligned with the readout direction

and thus transmits a copy of the network output to the thalamus.

We first trained the above models separately on both tasks by

assuming maximum corticothalamic compression (M = 1). We

found that learning thalamocortical synapses from a single

thalamic neuron is sufficient to perform the tasks provided the

corticothalamic projection onto that neuron is chosen appropri-

ately. For autonomous control, aligning corticothalamic connec-

tivity with the readout direction yielded a substantial improve-

ment over other strategies (Figure 3A). In contrast, the working

memory task benefited from aligning corticothalamic connectiv-

ity to the leading PC of cortical activity (Figure 3B). These results

are consistent with the structure of corticothalamic weights

when optimized by meta-learning for each task (Figure 2E).

Models with a single thalamic neuron represent an extreme

scenario in which only a one-dimensional subspace of cortical

activity supports learning. We therefore asked how our results

change for higher-dimensional corticothalamic projections. We

tested this by training the variants of the above models with

different numbers of thalamic neuronsM. When aligning cortico-

thalamic connectivity with the readout subspace, the remaining

M � 1 thalamic neurons receive random projections. When cor-

ticothalamic connectivity is aligned with PCs, each thalamic

neuron receives one of the M leading PCs of cortical activity.

The performance of all models gradually improved with the num-

ber of thalamic neurons (Figures 3C and 3D). This makes sense

because an increasingly larger subspace of cortical activity par-

ticipates in learning, as we approach the limit where there would

be no compression (M = N). Nonetheless, the advantage of

aligning corticothalamic projections with the readout direction

(for autonomous control; Figure 3C) or PC directions (for working

memory; Figure 3D) persists even when M is relatively large,

demonstrating that structured connectivity is beneficial for real-

istic ratios of thalamic to cortical neurons.

To verify that the relative performance of different corticothala-

mic structures is governed by the type of task and not the level of

complexity, we trained the models on variants of both types of

tasks at different levels of complexity (STAR Methods). We found

that the choice of corticothalamic structure that maximized

learning depends only on the type of task being learned and not

on task complexity (Figures 3E and 3F). An exception is when

the tasks aremade too simple, where performance is substantially

better than random regardless of whether the corticothalamic

structure is aligned with the PC direction or the readout direction

(median factor of reduction in error relative to random connectiv-

ity: motor control task, PC-aligned, 2.6; readout-aligned, 2.7;

working memory task, PC aligned, 3:83 103; readout aligned,

6:13 104). Notably, even for the simplest task variants, models

with random corticothalamic connectivity learn poorly.

In the models considered so far, we made two simplifying

choices. First, they comprise a fixed small number (N = 256) of

cortical neurons. It is unclear whether the benefit of structured

corticothalamic projections for learning generalizes to larger

networks. Second, we assume that the optimized or subspace

aligned corticothalamic projections target just one of the neurons

in the thalamus. In contrast, it has beenargued that brain networks
Cell Reports 43, 114059, April 23, 2024 5



Figure 3. Different corticothalamic structures support different tasks

(A) Top: median outputs (across simulations) of networks with a single thalamic unit (M = 1) and different corticothalamic connectivity, trained on the auton-

omous control task. Bottom: the deviation of the output from the target function. Black dashed line denotes the target function.

(B) Network inputs and outputs for eight different conditions of the working memory task.

(C) Median performance of models with different numbers of thalamic units, M. Lower values of 1 � R2 correspond to better performance.

(D) Similar to (C), but for the working memory task.

(E) Median performance as a function of task complexity (STAR Methods).

(F) Similar to (E), but for the working memory task. All models have N = 256 cortical units. Error bars denote standard errors estimated by bootstrapping.
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employ a coding scheme in which signals are distributed across a

neural population.58–60 To extrapolate to more realistic settings,

we performed simulations by relaxing both choices (STAR

Methods). We found that the performance benefit of learning by

preferentially aligning the corticothalamic projections with the di-

rections identified above was stable across different sizes of the

cortical network (Figures 4A and 4B). The results were also not

strongly dependent on the size of the thalamus: decreasing the

compression ratio from 100 to 10 produced only a modest drop

in the performance benefit (Figures 4A and 4B, solid vs. dashed),

suggesting that the results are valid for the range of corticothala-

mic compression factors found across species.42 Furthermore, in

both tasks, we found that corticothalamic connectivity that com-

municates a fraction of variance in the activity from the cortical

subspaces identified abovewas sufficient to produce an improve-

ment in learning performance (Figures 4C and 4D).

To understand why the relationship between corticothalamic

structure and learning performance is task dependent, we exam-

ined the PCs of the cortical dynamics in both tasks. In the autono-

mous motor control task, the temporal fluctuations of the leading

PCs tend to be very slow (Figure S3A). Communicating signals in

this subspace to the thalamus cannot support learning because

these signals are not adequate to generate the high-frequency

components in the target function. In contrast, the leading PCs
6 Cell Reports 43, 114059, April 23, 2024
of the cortical activity in the working memory task are dominated

by the transient external inputs, and therefore encode the identity

of the input (Figure S3B). Projecting these signals to the thalamus

allows thalamocortical synapses to facilitate learning by contrib-

uting to building persistent activity (reflected in the gradual

decrease in dimensionality of cortical activity; Figure S3D) that en-

codes stimulus identity during the subsequent delay period.

Accordingly, the leading PCs are substantially aligned with the

readout direction in the model trained on this task (Figure 4E,

blue). In contrast, the readout direction in themodel trainedonmo-

torcontrol ismostlyalignedwithcorticalPCscharacterizedbyhigh

frequency fluctuations, which have low variance (Figures 4E, red,

and S5I). Furthermore, the readout shifts toward PCs with even

lower variance as the task complexity is increased (Figure S3C)

since modes containing high frequencies needed to support

complex movement patterns tend to have low variance with few

exceptions.61 This difference in the readout profile between tasks

implies that fewer cortical PCs are needed to explain the activity

of thalamic neurons participating in working memory tasks

comparedwithmotor control (Figure4F).We later show thatneural

activity in themouse thalamus is consistentwith thesepredictions.

Taken together, these results highlight the need for communi-

cating signals from specific subspaces via corticothalamic

projections and suggest that the subspace of cortical activity



Figure 4. Findings generalize to larger models with distributed thalamic representation

(A) Performance benefit of aligning corticothalamic weights with the readout direction over aligning with a random subspace for motor learning, as a function of

the size of the cortical population up toN = 2;048. It is quantified as ð1 � R2
0Þ=ð1 � R2Þ, whereR2

0 is the fraction of variance in the target function predicted by the

output of a model that uses random corticothalamic weights (a value of 1 corresponds to no benefit). Solid and dashed lines correspond to models with two

biologically plausible choices of compression ratio, N=M.

(B) Similar to (A), but demonstrating the performance benefit of aligning with the leading principal component (PC) of the cortex for learning of working memory.

(C) Median learning performance in the motor control task as a function of the fraction of variance in the readout direction communicated to the thalamic

population for N = 2;048.

(D) Learning performance in the working memory task as a function of the fraction of variance in the leading PC of the cortex communicated to the thalamic

population for N = 2;048.

(E) Alignment of different cortical PCs (sorted by variance, high to low) with the readout direction for motor control (red) and working memory (blue) tasks.

(F) Cumulative variance in the activity of thalamic neurons explained by the leading cortical PCs. (E and F) Correspond to a compression ratio of 100. Error bars

denote ± 1 SEM estimated by bootstrapping. See also Figure S3–S5.
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to which thalamic neurons should be tuned is task dependent.

The benefits of optimized corticothalamic connectivity are

not observed unless thalamocortical synapses are learned

(Figures S4A and S4B). This suggests that performance cannot

be improved if thalamus simply relays the activity in this sub-

space. Instead, structured corticothalamic connectivity im-

proves task performance by enabling thalamocortical learning.

Moreover, we found that structure in the corticothalamic con-

nectivity is useful even if this structure is established gradually

in conjunction with the learning of thalamocortical synapses

(Figures S4C and S4D). Thus, learning is facilitated regardless

of whether the corticothalamic connectivity is developmentally

hardwired (as for efferent copies of signals to the motor periph-

ery) or via activity-dependent mechanisms such as Hebbian

learning (as for projections of the PCs of cortical activity).

Furthermore, in contrast to a reservoir network where learning

is limited to readout weights, the model with thalamocortical

learning is more robust to noise in the initial activity state of the

cortex (Figures S4E and S4F).
We sought to determine the conditions under which structured

corticothalamic connectivity confers an advantage to thalamo-

cortical learning by relaxing some modeling assumptions. First,

we found that, when plasticity in thalamocortical synapses is im-

plemented by BPTT instead of a three-factor rule (RFLO), the

structure of corticothalamic weights does not influence the

learning performance substantially (Figures S5A and S5B). This

implies that structure specifically benefits simple thalamocortical

learning algorithms by allowing them to operate on an appro-

priate neural representation. Second, we found that, even

when thalamocortical plasticity is implemented by RFLO, the

benefit of corticothalamic structure is dampened in the presence

of recurrent excitatory connections between thalamic neurons

(Figures S5C and S5D). Together with the effect of compression

size on performance described above (Figures 4A and 4B, solid

vs. dashed), this suggests that the connectivity constraints iden-

tified in this study apply to brain areas with properties that are

characteristic of the thalamus—fewer neurons relative to the cor-

tex and a lack of local recurrent excitation. Third, models in
Cell Reports 43, 114059, April 23, 2024 7



Figure 5. Thalamocortical model of goal-

directed reaching

(A) The model comprises two thalamic modules,

one of which is active only during movement

preparation (time periods shaded in gray) and the

other only during movement execution. The 2D

output of the network controls the angular accel-

erations of the links of a two-joint arm.

(B) Performance of models with different types of

corticothalamic connectivity onto preparatory and

execution thalamic modules. Median performance

of the best models from each row and column are

shown in the bar plots.

(C) Left: outputs of the best model (blue square in

B) for eight different reach conditions, shown in

different shades of blue. Right: hand trajectories

(center-out) corresponding to the outputs shown

on the left. Open circles show target locations.

Error bars denote standard errors. See also Fig-

ure S5.
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which corticothalamic weights are updated using BPTT outper-

form other models (Figures S5E and S5F), suggesting that the

structured corticothalamic weights are useful insofar as sophis-

ticated plasticity mechanisms do not exist within the thalamus.

Finally, we found that models with structured corticothalamic

weights outperform randommodels even in the presence of cor-

ticocortical learning provided the latter is slow relative to thala-

mocortical learning (Figures S5G and S5H).

Findings generalize to composite motor/memory task
We have seen that different patterns of corticothalamic

compression benefit autonomous control and working mem-

ory. However, naturalistic tasks often require both computa-

tions. To test whether our results generalize to such settings,

we consider a delayed reaching task that combined aspects

of working memory and motor control.62 In this task, the

model is required to execute reaching movements to a tran-

siently cued location in a two-dimensional space represented

on a screen. However, the movement can be initiated only

upon the arrival of a go cue that follows the location cue after

a random delay. Although the learning objective is solely a

function of action and does not explicitly promote working

memory, success in this task depends both on the ability to

remember the target location during the delay (working mem-

ory) and the ability to execute movements in the absence of

visual feedback (autonomous control). Therefore, we hypoth-

esized that performance would be improved when different

cortical subspaces are communicated to the thalamus during

the delay and movement periods. Specifically, we hypothe-

sized that learning benefits from communicating the PC direc-
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tions during the delay period vs. the

readout direction during the movement

period.

To test this, we considered a thalamo-

cortical model in which a cortical network

is reciprocally connected to two distinct

thalamic nuclei that are active either dur-
ing preparation or execution (STARMethods; Figure 5A). This ar-

chitecture is motivated by recent experiments, which show that

distinct populations of thalamic neurons are active before and

during movement.63 Due to the two-dimensional nature of this

task, we considered a minimal model in which thalamic nuclei

have two neurons each (M = 2). The cortex receives transient

input pulses whose amplitudes encode one of eight possible

target locations and a binary input, which serves as the go signal.

The goal is to generate a pair of temporal waveforms that corre-

spond to torques applied to the links of a two-joint arm, such that

the endpoint of the arm reaches the target location (STAR

Methods).We systematically varied the structure of corticothala-

mic connectivity onto both thalamic nuclei to select between a

random subspace, leading PCs, or readout directions. Thalamo-

cortical synapses were trained with RFLO. Consistent with our

hypothesis, maximal performance was obtained in a model

that conveyed PCs and readout signals to the thalamic nucleus

that engaged in learning during preparation and execution,

respectively (Figure 5B). This model exhibited excellent reaching

performance to all targets (Figure 5C). The results were un-

changed as we varied the number of target locations or the dis-

tribution of delays (Figure S5J). These results suggest that thala-

mocortical learning allows the cortex to perform different

movements over a range of realistic delays, provided the cortico-

thalamic structure is chosen appropriately.

Data are consistent with model predictions
Two recent studies in rodents used a combination of neurophys-

iology and optogenetics to demonstrate that dexterous move-

ment generation14 and working memory10 both depend on
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interactions between the thalamus and the cortex. We wanted to

knowwhether this dependence is consistent with structured cor-

ticothalamic interactions that are optimized for learning. Since

our findings indicate that thalamocortical learning of movement

and memory are optimized by distinct patterns of corticothala-

mic interactions, we reanalyzed data from both experiments to

directly test whether thalamic activity during those tasks de-

pends on the components of cortical activity predicted by our

model.

In the first task,14 neural recordings were performed in themo-

tor cortex and motor thalamus while mice performed a reach-to-

grasp movement to grab a food pellet (Figures 6A, left and S6A).

In the second,10 recordings were performed in the frontal cortex

(specifically the anterior lateral motor cortex [ALM]), and the thal-

amus (specifically ventral medial [VM] and ventral anterior-lateral

[VAL]) nuclei, whilemice performed a delayed discrimination task

to report the location of an object following a delay of � 1.3 s

after the object was removed (Figures 6B, left and S6B). We

used a linear regression model to decode behavior (hand accel-

eration or choice depending on the task) and the activity of indi-

vidual thalamic neurons, from the cortical population activity

(Figures 6A and 6B, right; STAR Methods). This technique iden-

tifies which modes of cortical activity propagate to behavior (i.e.,

estimate of readout weights, WO) and to the thalamus (estimate

of corticothalamic weights, WTC). We restricted our analyses to

the movement period and delay period for the motor control

and working memory task, respectively.

We found that behavior was well explained by cortical activity

in both tasks (R2—motor control, 0.93; working memory, 0.97).

To determine specifically which directions of cortical activity

correlate with these behaviors, we examined the alignment of

the readout weights with the PCs of cortical activity. In mice per-

forming the working memory task, leading PCs of the frontal cor-

tex activity had a large influence on the animal’s behavioral

choice (Figure 6C, blue). In contrast, hand movements during

the motor task were primarily influenced by PCs of lower vari-

ance in the motor cortex (Figures 6C, red, and S6C). This differ-

ence is consistent with our model results and suggests that the

PCs of the cortex that drive behavior are different for the two

tasks.

Due to the greater contribution of lower variance PCs to the

behavioral readout in the motor control task, we can test the

key model prediction pertaining to the structure of corticothala-

mic connectivity—namely whether the structure is optimized for

learning each task. Specifically, we predict that corticothalamic

weights should be aligned with readout weights in the motor

control task. This means that we would need lower variance

PCs of cortical activity to capture the response of neurons in

the thalamus (Figure 4F, red). In contrast, in the working memory

task, we predict that corticothalamic weights should extract the

leading PCs of cortical activity (Figure 4F, blue). If this is the case,

we should be able to capture thalamic responses using only the

high-variance PCs in the working memory task. Alternatively, our

predictions would be violated if the leading cortical PCs do not

capture more thalamic variance in the working memory task.

We first quantified the fraction of variance explained (R2) in

each thalamic neuron when using the activity of all neurons re-

corded in the cortex (STAR Methods). We found that we could
capture a substantial fraction of thalamic variance in both tasks,

although the fraction was higher in the working memory task

(motor control, 0:46± 0:01; working memory, 0:70± 0:01; Fig-

ure S6D). We then repeated this analysis to compute the fraction

of variance explained in each thalamic neuron when using only

the k leading PCs of cortical activity (R2ðkÞ). To compare cortico-

thalamic interactions across the two tasks, we computed

the fraction of explainable variance as a function of the number

of PCs, R2ðkÞ=R2. Consistent with the model prediction

(Figures 4E and 4F), we found that more PCs are needed to

explain thalamic activity during the motor control task than in

working memory task (Figures 6D, red vs. blue, S6E, and S6F).

The fraction of explainable variance in thalamus captured by

the top 5 cortical PCs was significantly greater during the work-

ing memory task than motor control (motor control, 0:29± 0:02;

working memory, 0:63± 0:04).

In the working memory task, inhibiting the cortex dramatically

reduces variability in the thalamus, indicating that the interac-

tions identified above are causal.10 Similar inactivation experi-

ments were not performed in the motor control task, but we

took advantage of the fact that neural recordings were simulta-

neous to test whether trial-by-trial fluctuations in motor cortex

propagate to themotor thalamus.We found that thalamic activity

on any given trial was substantially better predicted by cortical

activity in the same trial (Figure 6E, top), suggesting that the cor-

ticothalamic interactions do not merely reflect common inputs to

motor cortex and thalamus. Furthermore, we found that cortico-

thalamic weights that capture trial-by-trial activity in thalamic

neurons were better aligned with the readout weights than those

that capture only trial-averaged thalamic activity (Figure 6E, bot-

tom). Therefore, fluctuations in corticothalamic signals across

trials reflect fluctuations in the output of the motor cortex, sug-

gesting that motor thalamus receives an efference copy of the

motor command.

DISCUSSION

We developed a model of learning in thalamocortical networks

by optimizing the structure of corticothalamic connectivity to

support learning in thalamocortical synapses. We found that

autonomous motor control requires a specialized corticothala-

mic pathway that communicates an efferent copy of the motor

command, whereas the connectivity structure that projects the

PCs of cortical activity facilitates working memory tasks. We

analyzed neural recordings from the cortex and thalamus of

mice during both types of tasks and found that the influence of

the cortex on the thalamus is qualitatively consistent with these

predictions.

Constraints on anatomy
We used meta-learning40,41 to optimize corticothalamic weights

while a local plasticity rule was applied to thalamocortical synap-

ses. Similar approaches have recently been applied to other neu-

ral systems65–67 and to identify biologically plausible learning

rules.68,69 Since this approach involves a slow optimization pro-

cess based on gradient descent, in the context of our model the

structure of the corticothalamic pathway identified in thismanner

is best viewed as a product of evolutionary and developmental
Cell Reports 43, 114059, April 23, 2024 9



Figure 6. Corticothalamic interactions in mice are consistent with the model

(A) Left: motor control task—mice reached for a pellet of food following an acoustic cue, during recordings from the motor cortex and the motor thalamus. Right:

regression of cortical activity against behavior (hand acceleration) and thalamic neuron activity, respectively. Traces show the activity of a subset of cortical

neurons (middle panel), and decoded estimates of behavior and example of thalamic neuron activity (right panel; data in black and decoded estimate in color).

Data were aligned to movement onset prior to regression.

(B) Left: working memory task, modified from Bjerre and Palmer64—mice reported the location of a pole by directional licking after a delay period, during re-

cordings from the frontal cortex and thalamus. Right: regression of cortical activity against behavior (choice) and thalamic neuron activity. Data are aligned to the

onset of delay period.

(C) Mean alignment between the direction of readout weights and different cortical PCs, in both tasks. Error bars denote ± 1 SEM. Motor control: n = 3 sessions;

working memory: n = 5. Compare with model predictions in Figure 4E.

(D) Cumulative fraction of explainable variance in thalamic activity as a function of the number of cortical PCs. Fractions were normalized to a scale between 0 and

1 for each thalamic neuron before averaging. Compare with model predictions in Figure 4F.

(E) Top: fraction of variance in an average thalamic neuron explained by cortical PCs during the motor task. Bottom: average alignment between readout weights

and corticothalamic weights across thalamic neurons. Red bars indicate single trial analyses; gray bars denote chance levels obtained by shuffling trial indices.

Error bars in (D) and (E) denote standard errors in mean. Motor control: n = 101; working memory: n = 72. See also Figure S6.
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processes. This view is consistent with a lack of clear evidence

for plasticity in the corticothalamic pathway during learning,

and supported by our finding that error-driven, biologically plau-

sible learning algorithms are ineffective in adjusting corticothala-

mic synapses except when the network is initialized with small

weights. While synapses in the cortex might undergo more so-

phisticated forms of plasticity by leveraging the complex den-

dritic machinery involving distinct apical and basal compart-

ments,49,70 such structures are absent in the thalamus and

therefore cannot be used to perform credit assignment in corti-

cothalamic synapses. It is possible that feedback pathways

communicating error signals to the thalamus are themselves

optimized by evolution and confer corticothalamic synapses

with the potential for error-driven plasticity. Modeling studies

have shown that such an approach is effective in the context

of feedforward networks,71–73 and would make for an interesting

alternative hypothesis of learning in thalamocortical loops.

Anatomical tracing studies show that there is, indeed, an

evolutionarily conserved pathway from layer V pyramidal neu-

rons in the cortex to the higher-order thalamus through axonal

branching of corticofugal projections.74–78 Since a major target

of corticofugal projections is lower motor centers such as the

spinal cord, this pathway is ideally suited to convey an effer-

ence copy of the cortical motor output.79,80 This is precisely

the signal that would optimize thalamocortical learning of motor

control according to our model. Our analysis of neural data

confirmed that the alignment of the activity of thalamic neurons

with the cortical motor output was significantly greater than

chance during pellet grasping. While the degree of alignment

was not perfect, we showed that learning with partial alignment

is sufficient to facilitate learning (Figure S4C). Since the poste-

rior region of the ventrolateral nucleus (VLp) is known to receive

inputs from collateral axons in layer V of primary motor cor-

tex,81 it is a particularly good candidate for investigating motor

learning.

For learning to maintain stimulus identity in working memory,

we found that communicating the PCs of cortical activity to the

thalamus is sufficient. This could be accomplished through un-

supervised plasticity mechanisms that tune corticothalamic

weights. Unlike error-based learning, unsupervised mecha-

nisms such as Hebbian learning do not require credit assign-

ment and can successfully operate on corticothalamic synap-

ses.82 This possibility is consistent with our analysis of neural

data during the delayed discrimination task, which suggests

that the corticothalamic pathway from the ALM to the VM/

VAL complex communicates the PCs of activity in the ALM.

While there is evidence for both Hebbian and homeostatic

forms of plasticity in sensory thalamus,83–86 evidence for plas-

ticity in the higher-order thalamus is limited.87 Our results iden-

tify the pathway from the ALM to the thalamus5 as a leading

candidate to investigate whether corticothalamic synapses un-

dergo Hebbian plasticity, but we note that such mechanisms

may be at play even in thalamic nuclei receiving motor effer-

ence copies.

Relationship to other studies
By accommodating experimental findings demonstrating an

association between behavioral improvement and thalamo-
cortical plasticity,31–33,35 our model expands a body of work

that conceptualizes connectivity in recurrent cortical net-

works as a sum of a random matrix and a tunable low-rank

perturbation.26,27,36,88 Our results suggest that changes in

cortical representations observed during learning89–91 may

not be entirely due to plasticity of corticocortical synapses.

While there is evidence for corticocortical plasticity that con-

tributes to activity remapping observed during training,33,92,93

we found that CTC loops can contribute substantially even in

the presence of corticocortical plasticity. Therefore, thalamo-

cortical and corticocortical plasticity play similar roles in

our model, resulting in improved performance with increasing

thalamic population size. This is in contrast to other systems

where networks with bottlenecks outperform fully connected

networks.23 Determining the differential contribution of thala-

mocortical and corticocortical plasticity to learning is an

important direction for future studies. One possibility is that

different CTC loops are engaged in different contexts

such that thalamocortical plasticity contributes to learning

context-specific behavioral components whereas corticocort-

ical plasticity helps consolidate components that are shared

across contexts. Such coordination between cortex and thal-

amus is a potential solution to the problem of continual

learning.94

Limitations of the study
In our models, thalamocortical synapses are updated accord-

ing to a local plasticity rule for error-based learning.39 There is

also evidence for a role of dopamine in mediating cortical plas-

ticity,95,96 suggesting that reward-based learning rules may

also modify thalamocortical synapses. The study does not

address whether our results generalize to other forms of

plasticity including spike-based algorithms.56 Second, for

simplicity, we used a coarse-grained model composed of a ho-

mogeneous neural populations in the cortex and thalamus. This

overlooks experimental findings showing convergent inputs

from multiple cortical areas to individual thalamic neurons,97

rich heterogeneity in wiring across cortical layers that project

to/from the thalamus,7 and diversity in the membrane proper-

ties across thalamic neurons,98 which may place additional

constraints on computation in CTC loops. Finally, the thalamic

reticular nucleus mediates local inhibition in the thalamus and

alters its dynamical regime,99 which we did not consider in

our models.

Conclusion
Generic network architectures in which synaptic weights are

trained end-to-end using, e.g., the backpropagation algo-

rithm,100–103 do not reveal how the brain makes use of specific

anatomical circuit motifs and local plasticity rules to facilitate

learning. We fill this gap in the context of CTC loops by

demonstrating that task-specific, structured corticothalamic

connectivity is necessary to optimize learning when biologi-

cally plausible plasticity rules are employed, thereby estab-

lishing a link between anatomy and computation. Our findings

show that understanding the structure of corticothalamic con-

nectivity may be key to determining the computational role of

the higher-order thalamus in orchestrating behavior.
Cell Reports 43, 114059, April 23, 2024 11
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METHOD DETAILS

Task description
We trained networks separately to solve three different types of tasks based on experiments that study computations underlying

different functions – motor control, working memory, and goal-directed reaching. The motor control task tests the ability of networks

to generate complex temporal patterns (like electromyograms) autonomously in the absence of external inputs. The workingmemory

task tests howwell networks maintain the identity of transient inputs, shortly after they have been removed. The reaching task tests a

combination of the above two skills: the ability to remember a transiently cued target location, and then generate an appropriate

movement pattern to reach that location upon the arrival of a go cue.

Motor control

The input xðtÞ is set to zero. The target function is a sum of sinusoidal functions, y�ðtÞ =
P
i

wi sin
�
2pct
T fi

�
, where f = ½1;2; 4; 6� denotes

the frequencies of the sinusoids, w = ½1;0:75;0:5;0:25� denotes their relative strengths, and T is the total duration. In the basic

version of the task, we set c = 2 and T = 20t where t is the time-constant of the cortical neurons. Task complexity is controlled

by varying c from 1 to 5 which has the effect of scaling all frequency components of the target function by the same factor.

Working memory

The input xðtÞ is a pulse with one of P possible amplitudes Ap spaced evenly between + 1 and� 1 and a duration of 10t. The goal is to

reproduce the input amplitude during the subsequent delay period, so the target is a constant function y�ðtÞ = Ap for a period of 30t

after the end of the input pulse. The basic version of the task corresponds to P = 8. Task complexity is controlled by varying P from 1

to 16 on a logarithmic scale.

Reaching

The input xðtÞ˛R2 comprises the target location encoded in the amplitude of a 2Dpulse of duration 4t, and the go signal encoded in a

step function 1t < g where g˛ ð5t;20tÞ denotes the variable timing of the go signal. The goal is to generate a 2D output pattern that is

zero for t < g, and subsequently deliver appropriate torques to control a two-link arm, such that the endpoint of the arm reaches the

target location within a period of 10t. The moment of inertia of the arms was taken to be unity such that the amount of torque applied

is identical to the angular acceleration of the arms. The precise temporal pattern of angular acceleration, y�ðtÞ needed to perform

successful reaching was obtained by training a recurrent neural network via backpropagation through time. The function y�ðtÞ
was then used as the target function for training biologically plausible models.

ALM and thalamus data Guo et al. DANDI: dandiarchive.org/dandiset/000009
16 Cell Reports 43, 114059, April 23, 2024
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Thalamocortical model
The thalamocortical model has a network architecture in which N interconnected cortical neurons is reciprocally connected with M

uncoupled thalamic neurons where� N . In this model, the cortical population activity h depends on thalamic activity r and external

input x according to Equation 1, t _ht = � ht +4ðWCCht +WCTrt +W IxtÞ, where the nonlinearity 4ð $Þ is the tanh function. The

thalamic activity depends only on cortical activity as there is no recurrence within the thalamus, rt = 4ðWTChtÞ, and the

network output is assumed to be a linear readout of the cortical activity: yt = WOht. Simulations were performed using a timestep,

dt = 10ms, and the neuronal time constant was set to t = 100 ms (10 timesteps). The dimensionality of the network input, S, and the

network output, R, are task specific. S is 0,1, and 3 respectively for motor control, working memory, and reaching. R = 1 for motor

control and working memory tasks and R = 2 for reaching. The number of cortical units,N, is fixed at 256 and the number of thalamic

units,M, is varied systematically from 1 to 256 on a logarithmic scale. Elements of the input weight matrixW I and the recurrent weight

matrix WCC are Gaussian, sampled from N ð0; 1 =SÞ and N ð0; g2 =NÞ, respectively. The strength of recurrent connectivity was

chosen such that the network operated in the chaotic regime, g = 1:5. Output weightsWO are sampled from a uniform distribution,

U ð0;2 =NÞ. Thalamocortical weights WCT are sampled from N ð0;g2 =MÞ.
Connection sparsity in the cortex is controlled by varying the fraction of cortical neurons that each cortical neuron makes

a synaptic contact with (f). The fraction is varied from f = 1=N (very sparse) to f = 1 (fully connected) on a log scale. To

ensure that the variance of total input current into single neurons remains independent of connection sparsity, we sampled

the elements of WCC from N ð0; g2 =ðfNÞÞ. The dynamical regime of the cortex is controlled by varying the strength of recur-

rence within the cortex, g = ½0:5; 0:75; 1:0; 1:25; 1:5�. For the simulations in which we vary the output dimensionality, we use

variants of the motor control and working memory tasks with R = ½1;2;3;4� outputs. In all simulations, we used a timestep

dt = 0.1*t where t is the neuronal time constant. A table of simulation parameters that were varied in individual analyses is

included in Table S1.

Learning algorithm
Thalamocortical weights are trained using a biologically plausible algorithm called Random Feedback Local Online, RFLO 39 (Fig-

ures 2, 3, 4, and 5). With the exception of Figure 1 (see below), we use meta-learning to optimize corticothalamic weights while

learning thalamocortical weights concurrently via RFLO 40,41(Figure 2).

RFLO

The goal of learning is to minimize the discrepancy between the network output and a desired target function. Therefore, the loss

function is taken to be the squared-error across all output units, integrated over time where the error in dimension r of the output

is the difference between the target and the actual output of the network in that dimension, εrðtÞ = y�r ðtÞ � yrðtÞ.

L =
1

2T

XT
t = 1

XR
r = 1

½εrðtÞ�2 (Equation 3)

The weight updates in RFLO are derived by making three approximations to standard gradient-based algorithms that minimize the

loss with respect to the weights. The first approximation consists of dropping nonlocal terms from the gradient, so that computing

the update to a given synaptic weight requires only pre- and postsynaptic activities, rather than information about the entire state of

the cortex including all of its synaptic weights. Second, we project the error back into the cortical network for learning using random

feedback weights B sampled from U ð0;2 =NÞ, rather than feedback weights that are precisely tuned to match the readout weights.

This relaxation is made possible by learning readout weights in conjunction with thalamocortical weights. Third, the weight updates

are performed in real-time instead of accumulating gradients and updating the weights at the end of each trial. The resulting update

rules for thalamocortical weights WCT and readout weights WO are given by:

dWO
ij = hεiðtÞhjðtÞ (Equation 4)

where hj is the activity of cortical unit i,WO
ij denotes the readout weight from cortical unit j to output unit i, and h is the learning rate.

This is sometimes also referred to as the delta rule.

dWCT
ij = h½BεðtÞ�ipijðtÞ (Equation 5)

where WCT
ij denotes the thalamocortical weight from thalamic unit j onto cortical unit i; pij denotes the eligibility trace

that accumulates the correlation between the activity of the (presynaptic) thalamic unit j and the (postsynaptic) cortical unit

i: t _pij = � pijðtÞ+40ðuiðtÞÞrjðtÞ where rj is the activity of thalamic unit j, ui =
P

jW
CC
ij hj +

P
jW

CT
ij rj +

P
jW

I
ijxj is the total input current

to cortical unit i, and a is the leak rate of the cortical units. For the simulation in Figure 1C, the update rule for the update rule for cor-

ticocortical weights WTC is given by:

dWTC
ij = h½B0

εðtÞ�iqijðtÞ (Equation 6)
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where WTC
ij denotes the corticothalamic weight from cortical unit j onto thalamic unit i; qij denotes the eligibility trace defined as the

product of the activity of the (presynaptic) cortical unit j and the (postsynaptic) thalamic unit i: qij = 40ðviðtÞÞhjðtÞwhere hj is the activity

of cortical unit j, vi =
P

jW
TC
ij hj is the total input current to thalamic unit i. B0 denotes the random feedback weights through which

error signals arrive at the thalamus. Elements of B0 are sampled from U ð0; 2 =MÞ. Prior to learning, thalamocortical weights and

readout weights are both initialized randomly by sampling from N ð0; g2 =MÞ and Uð0; 2 =NÞ respectively. The learning rate was set

to h = 0:1 for readout and thalamocortical weight updates, and the training was performed for K = 10; 000 trials unless specified

otherwise. The learning rate for corticothalamic weights for the simulation in Figures 1C and 1D was determined by hyperparameter

optimization.

Meta-learning

We use meta-learning to determine the optimal structure of corticothalamic projection that supports biologically plausible of thala-

mocortical weights. Corticothalamic weights WTC are initialized randomly at the beginning of the meta-learning procedure by sam-

pling from N ð0;1 =NÞ, and weights are updated using backpropagation through time at the end of each epoch containing K = 200

learning trials. The objective is to minimize the average loss L across trials of the epoch, L = 1
K

P
kLk where the loss in each trial Lk

is given by Equation 3. Thalamocortical weights WCT are reinitialized randomly at the beginning of each epoch by sampling from

N ð0;g2 =MÞ, and weights are updated using RFLO according to Equation 5. We considered a model with N = 256 cortical neurons

and M = 32 thalamic neurons. Meta-learning was used to update corticothalamic weights onto only one of the thalamic units. Opti-

mization is performed for 10,000 epochs using Adam optimizer with a learning rate of 0.0001. By restricting meta-learning to a single

thalamic unit, we can readily evaluate the relative optimality of the different strategies used in Figure 2 by measuring the alignment of

the meta-optimized corticothalamic weights with the readout direction and the principal component direction. To ensure that this

technique promotes learning specifically via thalamocortical synapses, we fixed all other weights and enforced feedback alignment

(BT = WO). For simulations in Figure S2A, we relax this constraint and update both readout and corticothalamic weights.

Subspace aligned models of corticothalamic connectivity
We consider three types of thalamocortical models that differ in the structure of corticothalamic connectivity for the simulations

shown in Figure 3.

Random

In this version of the model, elements of WTC are sampled randomly from N ð0;1 =NÞ. Therefore, the thalamic activity in this model

corresponds to a random low-dimensional projection of the cortical activity. These weights are held fixed throughout learning.

Principal component

In this strategy, elements of WTC are proportional to the M leading eigenvectors U of the covariance in cortical population activity,

where the constant of proportionality is 1=
ffiffiffiffi
N

p
. The resulting thalamic activity corresponds to the M leading principal components

of the cortical activity. Since the structure of cortical dynamics changes during thalamocortical learning, corticothalamic weights

are dynamically updated in this version at the end of each learning trial:WTC
k+1 = ð1 � bÞWTC

k + bUk where Uk denotes the leading ei-

genvectors of the cortical covariance at the end of k trials, and b = 0:01 is the corticothalamic learning rate. The dynamic updating of

corticothalamic weights in this manner corresponds to a Hebbian learning strategy operating at the corticothalamic synapses. We

also trained a variant of this strategy where individual principal components are distributed across all M thalamic neurons instead

of being segregated in individual neurons. This variant was constructed by multiplying the corticothalamic weights that yield segre-

gated PCs, by a random orthonormal matrix.

Readout

This version of the model is characterized by a perfect alignment between readout weights WO and corticothalamic weights onto a

small subset of the thalamic units. This subset contains a maximum of R units whose activity mirrors the network output, where R

denotes the number of output units. Corticothalamic projections onto the remaining M � R thalamic units are sampled randomly

from N ð0;1 =NÞ. Similar to the principal component strategy, the corticothalamic weights onto the subset of R thalamic neurons

are updated dynamically: WTC
k+1 = ð1 � bÞWTC

k + bWO
k where WO

k denotes the readout weights at the end of k trials and b = 1.

This strategy is analogous to a pathway that carries signals from cortex to thalamus via axon collaterals. For models with M> R,

we also trained a variant of this strategy where the R-dimensional readout signal is distributed across allM thalamic neurons instead

of being concentrated in R neurons. This variant was constructed by multiplying the corticothalamic weights by a random ortho-

normal matrix.

Models of distributed thalamic representation with partial subspace alignment of corticothalamic connectivity
For the simulations shown in Figure 4, we constructed networks that differed in the number of cortical neurons ranging fromN = 64 to

N = 2048. For each of these networks, we simulatedmodels of thalamocortical learningwith large andmoderate compression ratios

(M=N = 100 and M=N = 10) where M was rounded up to the nearest integer. Depending on the task, we used structured cortico-

thalamic projections partially alignedwith either the readout direction (for motor control) or the leading principal component (for work-

ing memory) by varying the parameter r as explained below. Note that all other simulations of subspace-aligned models correspond

to setting r = 1 for corticothalamic weights onto one thalamic neuron.
18 Cell Reports 43, 114059, April 23, 2024
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Principal component

In this strategy, elements of WTC are configured such that each thalamic neuron receives a weighted sum of the leading principal

component (PC) of the cortical population activity and a random direction from the N � 1 dimensional subspace orthogonal to

the leading principal component. The ith row is given byWTC
i = rffiffiffi

M
p u+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
ut;i where u is the leading eigenvector of the covari-

ancematrix of the cortical population activity and ut;i denotes a random linear combination of the remaining eigenvectors. r controls

the fraction of variance in the leading PC explained by the thalamic neuron. Because the random component is on average uncor-

related across neurons, the fraction of total variance in the leading PC collectively explained by the thalamic population is r2.

Readout

In this strategy, elements ofWTC are configured such that each thalamic neuron receives a weighted sum of the signal in the readout

direction of the cortical population activity and a random direction from the N � 1 dimensional subspace orthogonal to the leading

principal component. The ith row is given byWTC
i = rffiffiffi

M
p WO +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
WO

t;i where u is the leading eigenvector of the covariancematrix

of the cortical population activity andWO
t;i denotes a random linear combination of the remaining eigenvectors. The fraction of total

variance in the readout collectively explained by the thalamic population is r2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Eachmodel tested in this study was simulated 40 times with different parameter initializations, and those initializations were identical

across models sharing similar architecture. Unless specified otherwise, we used median as the summary statistic and error bars

denote standard errors estimated by bootstrapping.

Task performance
We quantify task performance as 1 � R2 =

P
k
Var½y�

k
� yk �P

k
Var½y�

k
� and Var½ $� denotes variance across time. For tasks with multiple conditions –

Working memory and Reaching – the outputs from different conditions were concatenated before computing R2. A value of 0 corre-

sponds to perfect performance, while 1 corresponds to chance level. Note that this measure reduces to the loss L defined in Equa-

tion 3 when the target function has unit temporal variance.

Alignment between weights
We quantified the alignment between pairs of weight vectors m and n by taking their normalized dot product ðm$nÞ

kmkknk where k $ k de-

notes the l2 norm. For computing feedback alignment in the cortex (Figure 1C), m = B and n = WO where B denotes the feedback

weights projecting the error signal to cortical neurons. For computing feedback alignment in the thalamus (Figure 1C), m = B0 and
n = WCT40ðutÞWO where B0 denotes the feedback weights projecting the error signal to thalamic neurons. The alignment between

optimized corticothalamic weights and readout weights is computed by taking,m = WTC and n = WO. The alignment between opti-

mized corticothalamic weights and principal component weights is computed by taking, m = WTC and n = z, where z denotes the

leading eigenvector of the cortical covariance matrix.

Neural datasets
Detailed experimental methods for behavioral and neural recordings in the motor control task and working memory task are

described in14,104 and10 respectively. In the motor control task,14 neural recordings were performed simultaneously in the motor cor-

tex and motor thalamus while mice performed a reach-to-grasp movement to grab a food pellet (Figure 6A – left). The dataset in-

cludes one behavioral session each from 3 different mice. The mean number of cortical and thalamic units was 53± 9 and 33± 5

respectively. In theworkingmemory task,10 recordings were performed in separate sessions in the frontal cortex, specifically anterior

lateral motor cortex (ALM), and thalamus, specifically ventral medial (VM) and ventral anterior–lateral (VAL) nuclei, while mice per-

formed a delayed discrimination task to detect (by whisking) and report (by licking left/right) the location of a pole (anterior/posterior)

following a delay of� 1.3 s after the pole was removed (Figure 6B – left). The dataset includes 5 behavioral sessions from onemouse.

The total number of cortical and thalamic units was 151 and 72 respectively.

Estimation of readout weights
We estimated the readout weights for both tasks by regressing behavior against the activity of the population of cortical neurons. We

split the trials into a training set (80% for estimating weights), a validation set (10% for hyperparameter optimization), and a test set

(10% for computing variance explained R2).

For the motor control task, behavior was defined as the time-varying acceleration profile of the hand. To obtain acceleration pro-

files, hand position traces were first aligned to the onset of hand movement and averaged across trials in the training set. We then

numerically computed the second derivative to obtain the average acceleration profile along the three axes (axðtÞ;ayðtÞ;azðtÞ). Like-
wise, we aligned spike trains of motor cortex neurons to the onset of hand movement, convolved them with a Gaussian function

(width s as hyperparameter), and computed the trial-averaged population activity, hðtÞ in the training set. We regressed the
Cell Reports 43, 114059, April 23, 2024 19
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acceleration profiles against the population activity to estimate the readout weights bwO
x , bwO

y , and bwO
z using ordinary least squares,

and optimized the smoothing parameter s by cross-validation. Finally, we expressed the readout weights in the basis of the

principal components (PC) of the population activity. To do this, we first performed eigendecomposition of the population covariance,

ChhTD = ULUT, and then projected the estimated readout weights for each component of acceleration onto the top k = 16 eigen-

vectors, e.g., bwO
PC;x = bwO

x U1:k . Since the weight profiles of the three components of acceleration were qualitatively similar in the PC

basis, we averaged them to obtain a single readout weight profile for the motor control task ( bwO
PC = 1

3 ðj bwO
PC;xj + j bwO

PC;y j + j bwO
PC;zjÞ).

For the working memory task, behavior was defined as the choice made on each trial. We aligned spike trains of ALM neurons to

the onset of the delay period, convolved them with a Gaussian function (width s as hyperparameter), and averaged them separately

across trials with leftward and rightward choices (hlðtÞ and hrðtÞ). We restricted out analysis to trials in which the choice was correct.

We concatenated the response from the two sets of trials (hðtÞ = ½hlðtÞ hrðtÞ�) and used them as predictors in a linear regression

model to decode choice, cðtÞ = ½clðtÞ crðtÞ�, where clðtÞ = � 1 and crðtÞ = + 1. As in the motor control task, readout weights
bwO were estimated using ordinary least squares, and we optimized the smoothing parameter s by cross-validation. Finally, we ex-

pressed the readout weights in the basis of the principal components (PC) of the population activity to obtain bwO
PC.

Analysis of corticothalamic communication
For estimating corticothalamic weights, we used a procedure similar to the one outlined above, except now the activity of cortical

neurons hðtÞwas used to decode the activity of individual thalamic neurons rðtÞ, instead of decoding behavior. We used the principal

components of cortical activity as predictors instead of raw firing rates. Specifically, we first performed eigendecomposition of the

population covariance, ChhTD = ULUT, and projected the cortical activity onto the top k eigenvectors, hkðtÞ = hðtÞU1:k . We then esti-

mated the regression weights to decode rðtÞ from hkðtÞ. By varying k from 1 to 16, we estimated the corticothalamic weights bwTC
k that

captured the influence of the top k principal components of cortical activity on each thalamic neuron. The cumulative variance in the

thalamic neuron activity explained by the top k cortical principal components was quantified using the coefficient of determination,

R2ðkÞ = 1 � Var½rðtÞ� bwTC
k hðtÞ�

Var½rðtÞ� . Finally, we divided the cumulative variance explained by k principal components by the variance ex-

plained all K = 16 principal components to obtain a normalized measure of variance explained, R2ðkÞ=R2ðKÞ, for each thalamic

neuron in the dataset.
20 Cell Reports 43, 114059, April 23, 2024
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Figure S1: Local plasticity of thalamocortical and corticothalamic synapses. Related to
Figure 1. A. Corticocortical weights (WCC) are fixed. A local learning rule (RFLO, see text)
is applied to simultaneously update thalamocortical weights (WCT) and corticothalamic weights
(WTC). Error signals are projected to the cortex (via B) and thalamus (via B0) to facilitate learn-
ing in thalamocortical and corticothalamic synapses respectively. B. Across simulations, feedback
alignment in the cortex predicts learning performance (green circles), but feedback alignment in
the thalamus is uncorrelated with learning performance (black circles). C. Top: Learning perfor-
mance of a model in which plasticity was restricted to thalamocortical synapses (green), compared
with the performance of a model in which there was plasticity at both sites (gray) in the working
memory task. Bottom: The alignment between feedback weights (B) and readout weights (WO)
in cortical neurons (A). Alignment between feedback weights (B0) and e↵ective readout weights
(WCT

�
0
(ut)W

O, see Methods) in thalamic neurons (B). ut = WCT
rt denotes the membrane po-

tential of cortical neurons. D. Learning performance (top) and feedback alignment (bottom) when
initial corticothalamic weights are drawn from a distribution with variance ⇠ O(1/N) (see text).
All models have N = 256 cortical neurons.
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learning. Related to Figure 2. A. Models with optimized corticothalamic connectivity outperform
models with random connectivity even when both thalamocortical and readout weights are updated
in parallel. In these models, the component of optimized corticothalamic weights aligned with read-
out weights is updated during the learning phase, while keeping the orthogonal components fixed.
B. The degree of alignment of optimized corticothalamic weights with readout and principal com-
ponent directions does not depend on the alignment of the model at the beginning of meta-learning.
In these models, corticothalamic weights are either orthogonal or perfectly aligned with the readout
direction in the beginning of the meta-learning phase (“Initial”) but the final alignments are quali-
tatively similar (“Optimized”). Error bars denote standard errors estimated by bootstrapping. All
models have N = 256 cortical neurons and M = 32 thalamic neurons.
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of learning. Individual traces in B correspond to response to inputs with di↵erent amplitudes. All
models have N = 256 cortical neurons and M = 16 thalamic neurons. C. The principal component
with the highest contribution to readout weights as a function of the complexity of the motor control
task (see Methods for how complexity is varied). D. Evolution of the dimensionality of the cortical
activity across learning in models with random (orange) or PC-aligned (purple) corticothalamic
weights trained on the working memory task. Dimensionality was estimated by computing the
participation ratio of the covariance in cortical activity. Error bars denote ±1SEM estimated by
bootstrapping.
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models. Related to Figure 3. A-B. Task performance of models with and without learning in
thalamocortical synapses. In the motor control task (A), models di↵ered in terms of whether
corticothalamic weights are random or aligned with readout, whereas in the working memory task
(B), models di↵ered in terms of whether corticothalamic weights are random or aligned with the
principal component. Readout weights are updated in all models. C-D. Learning performance of
models in which corticothalamic weights were slowly updated to align with readout or principal
component: W

TC

k
= (1 � �) ⇤ W

TC

k�1
+ � ⇤ u, where u denotes either readout (C) or principal

component (D), and � denotes the speed of update. E-F. Performance of models as a function of
noise in the initial condition, drawn from a uniform distribution U [�✏,+✏]. In both sets of tasks,
the model with thalamocortical learning (cyan and purple) is more robust to noise than the model
in which only readout weights are learned (black).
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Figure S5: Alternative forms of learning. Related to Figures 4&5. A-B. E↵ect of corticotha-
lamic structure on thalamocortical weights are updated using RFLO and BPTT for motor control
and working memory tasks. C-D. E↵ect of adding recurrence within thalamus on thalamocortical
learning. fthal denotes the fraction of thalamic neurons that do not receive recurrent inputs from
other thalamic neurons. Black solid line denotes performance of the model without thalamic re-
currence. E-F. Learning performance of a model where corticothalamic weights are updated using
BPTT (green) relative to fixed corticothalamic weights of di↵erent structures. G-H. Performance
benefit of models when corticocortical weights are updated (using RFLO) in conjunction with tha-
lamocortical weights. Errors are normalized by those of a null model with random corticothalamic
weights. Values less than 1 indicate a benefit for structured corticothalamic weights (the lower
the better). I. Principal components. Left: The relative contribution of di↵erent principal
components to the readout weights in the motor control task. Right: Top 32 principal components
of the cortical activity. Thickness and saturation of the components are adjusted based on their
contribution to the readout. The target function is shown in black. J. Goal-directed reaching.
Left: The models in which corticothalamic weights onto thalamic neurons active during preparation
(execution) are aligned with the cortical principal component (readout) learn better than models
with other structures, regardless of the number of reach targets. Right: Similar to left panel, but
showing learning performance as a function of the maximum delay between the location stimulus
and the go cue. Note that in each condition, the delay was stochastic and drawn from a uniform
distribution, U [5, tmax], where tmax denotes the maximum delay period in units of neuronal time
constant ⌧ .
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Figure S6: Corticothalamic interactions in mice performing motor control and working

memory tasks. Related to Figure 6. A. Left: Data from14. Trial-averaged response matrix of
neurons in the motor cortex (top) and motor thalamus (bottom) during the pellet grasping task,
between onset and end of movement. Rows denote units and columns denote time. Response of
each neurons is z-scored for the purpose of visualization. Right: Three spatial components of hand
acceleration. Traces from individual trials are shown in color, and black traces denote the average
across trials. B. Left: Data from10. Similar to A (left), but during the delayed discrimination
task. Response from trials with leftward and rightward responses were separately averaged and
concatenated. Each trial comprised a ⇠1.3s cue period followed by a ⇠1.3s delay period. Right:
Confusion matrix showing the choice accuracy in the leftward and rightward conditions. C. Mean
alignment (across sessions) between the direction of readout weights and di↵erent cortical PCs, in
the motor control task. Alignment of readout weights corresponding to each of the three spatial
components of acceleration are shown separately (only the acceleration component with the highest
variance (z-component) was shown in Figure 6). Error bars denote ±1 SEM. D. Cumulative
probability distribution of the variance explained in the activity of thalamic neurons when decoding
all neurons recorded from the cortex. Note that in all analysis, the ALM cortical population
(n=151) was subsampled to match the dataset from motor cortex (n=53 ± 9). E. The fraction
of explainable variance in individual thalamic neurons, as a function of the number of cortical
principal components. Each curve denotes one thalamic neuron recorded during the motor control
(red) and working memory (blue) tasks. F. Alignment of corticothalamic weights of individual
thalamic neurons in the two datasets with the direction of the leading principal component of
cortical activity and the readout direction. White dots denote the median, black boxes denote
inter-quartile range and black lines denote adjacent values. Statistics of a one-sided paired t-test
are shown.
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Table S1. Simulation settings. Weights in the network were structured, random, or learned.

The learning rate was set using hyperparameter optimization everywhere unless noted otherwise.
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