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Abstract. We consider two ways of thinking about negation: (i) as a form of complementa-
tion (the negation of a proposition p holds exactly in those situations in which p fails), and (ii)
as an operation of reversal, or inversion (to deny that p is to say that things are the other way
around). These two conceptions are significantly different. But whereas a variety of techniques
exist to model the intuition behind conception (i)—from Euler and Venn diagrams to Boolean
algebras—conception (ii) has not been given comparable attention. In this note we outline a
simple, geometric proposal. In fact, conception (ii) can be modeled in different ways depending
on whether one understands the geometric metaphor of an inversion as involving a rotation or a
reflection. These two options are equivalent in classical two-valued logic, but they differ sig-
nificantly in many-valued logics. Here we show that they correspond to two basic sorts of ne-
gation operators— familiar from the works of Post and Kleene, respectively—and we provide a
simple group-theoretic argument demonstrating their generative power.

1. Introduction

There are, naturally, two ways of thinking about ordinary sentential negation. On
one conception, negation is a form of complementation. To deny a proposition p
is to make an assertion that holds exactly in those situations in which p fails.
More generally, if a proposition p is identified or otherwise correlated with a
class of worlds (situations, contexts) W , then the negation of p is identified or
correlated with the relative complement W  of W , and to deny that p is to assert
that the actual world is a member of W . Thus, this sort of operation presupposes
a previous classification, or partition, of the set of all possible worlds into those
that verify p and those that falsify p. The other way of thinking about sentential
negation is well exemplified by Ramsey’s [14] suggestion that the negation of a
proposition p be represented by writing p upside down (or by mirror reflecting p
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about its vertical axis, as one could also suggest). In this sense negation is a form
of reversal or inversion: to deny a given proposition is to say that things are the
other way around. Semantically, the same intuition can be found also in Beh-
mann’s typographical convention of writing ‘T’ for truth and ‘⊥’ for falsehood
[2], or in Hintikka’s game-theoretic characterization of negation as swapping of
roles between players [7], or even in Peirce’s rule for “negativing” a graph by
cutting through the Phemic sheet and turning over the excised piece [12]. Classi-
fication does not play a significant role in such inversions; for example, Ram-
sey’s suggestion does not presuppose that one knows in what circumstances the
negated proposition p is true, and the convention of writing ‘T’  and ‘⊥’  does not
presuppose any particular reading of these labels. We could as well agree to un-
derstand ‘T’ as falsehood and ‘⊥’ as truth. More simply, on the inversion con-
ception negation is an operator that treats its argument (the statement or proposi-
tion to be negated, or the corresponding truth-value) as a sort of black box. Ne-
gation is a way of manipulating a (syntactic or semantic) object.

Extensionally, of course, these two conceptions of negation are equivalent, in
that both yield the same truth-functions.1 This equivalence finds its most obvious
representation in the familiar apparatus of truth-tables (Figure 1), where each row
corresponds to a class into which the relevant states of affairs can be partitioned,
as the case may be.

p

T

T

T

T

not p

Figure 1

Intensionally, however, the two conceptions are quite distinct. But whereas a vari-
ety of techniques exist to model the intuition behind negation as complementation
(from Euler and Venn diagrams to Boolean algebras), the modeling of negation
as inversion has not been given comparable attention, apart from Peirce’s idio-
syncratic graph-theoretic account and Ramsey’s typographical (and occasional)
intuition. Our purpose in this note is to outline a simple, geometric proposal. In

                                                
1 And there are conceptions of negation that are not extensional at all—e.g., negation as refu-
tation (intuitionistic logic), as incompatibility (quantum logic), or as failure (logic program-
ming). (See [6, 18] for a general map and [8] for linguistic ramifications.) Here we are con-
cerned exclusively with conceptions that admit of a truth-functional account.
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fact, two different strategies can be considered depending on whether one under-
stands the geometric metaphor of an inversion as involving a rotation or a reflec-
tion. These two strategies turn out to be equivalent in classical two-valued logic,
but they differ significantly in many-valued logic. Here we show that they corre-
spond to two basic sorts of negation operators—familiar from the works of Post
and Kleene, respectively—and we provide a simple group-theoretic argument
demonstrating the generative power of such operators.

2. Cyclic Inversions

Consider first the following way of representing a Ramsey-style inversion in
classical, two-valued logic. (Figure 2). Here the line connecting T and ⊥ indicates
that there is no intermediate truth-value, and the arrow indicates the result of the
inversion: the truth-value set is flipped upside down, i.e., rotated 180 degrees.
Thus truth turns to falsehood and falsehood to truth. Of course, if we flip the
truth-value set twice, we get back to the original configuration—a fact that reflects
the classic principle of double negation.

T

T
T

T

⇒

Figure 2

If we now consider the possibility that statements may take a third truth-
value, say ‘I’ (for “intermediate” or “indeterminate”), one natural way of gen-
eralizing this representation is illustrated in Figure 3:

⇒
I

T

T

I

T T

Figure 3

Here, again, the solid lines indicate the existence of a direct link between the
truth-values and the arrow represents the outcome of the manipulation. Since
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there are three values, the structure is only rotated 120 degrees and it takes three
negations rather than two to get back to the original configuration. Double nega-
tion fails and triple negation—as we may say—holds instead.

In general, for any number n of distinct truth-values t1, ..., tn we can imagine
a corresponding polygonal representation, with the relevant transformations rep-
resented graphically in the obvious way as the result of a rotation of 360/n de-
grees (Figure 4). Here the intuition is that the negation of each value is the next
(clockwise) value, and since the polygon is closed the negation of the last value tn
(intuitively: falsehood) returns the initial value t1 (intuitively: truth). The principle
of double negation is then replaced by a corresponding principle of n-fold nega-
tion: denying a proposition n times is tantamount to asserting the proposition.
Intuitively: after a complete cycle we are back to the starting point.

⇒
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Figure 4

Regardless of the number of truth-values, in each case the representation re-
lies on the ordinary assumption that the set of truth-values forms a single, con-
nected, topologically rigid structure. This structure may be called, quite naturally,
a truth-polygon (or truth-segment for n=2). And it is precisely the connectedness
of polygons that makes them available for manipulation.

3. Symmetric Inversions

The cyclic nature of negation illustrated above represents one natural way of in-
terpreting and generalizing Ramsey’s suggestion that negation is a way of turn-
ing things around. Mathematically, the upshot corresponds to the negation op-
erator as characterized in the many-valued logic of Post [13]. Negation turns each
value ti to ti+1, mod n+1.

Let us consider a different, perhaps more intuitive way of representing nega-
tion-as-inversion, based on an alternative interpretation of Ramsey’s suggestion.
Take again the classic case depicted in Figure 2. We have described the arrow as
indicating the result of a rotation. But one could describe it equally well as indi-
cating the result of a symmetric reflection: rather than yielding a 180 degree shift
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in the truth-values, negation flips them upside down—it mirror-reflects the truth-
segment along the horizontal axis. Equivalently, if we represent the truth-segment
as a horizontal structure, then again the first interpretation corresponds to a half
rotation but the alternative interpretation corresponds to a reflection about the
vertical axis:

⇒T

T

T

T

Figure 5

If this alternative interpretation is exploited, then the generalization to the
n-valued case is different from the one considered above and corresponds to
the negation operator as characterized in different systems of many-valued
logics.
For reasons of graphic convenience, let us focus on horizontal mirror reflections
(reflections along the vertical axis, as in Figure 5). The case n=3 can be repre-
sented as in Fugure 6. Mathematically, this corresponds to negation as treated in
the “strong” version of Kleene’s three-valued logic [9], or in the system of Lu-
kasiewicz [10]: truth and falsehood are opposite and the third value, inde-
terminacy, is self-opposite (the intuition being that the denial of an indeterminate
statement is just as indeterminate as the statement itself). There is, accordingly, no
cyclic process involved in iterating negation, and the principle of triple negation
does not hold. What holds, rather, is a straigthforward extension of the principle
of double negation of classical logic: not-not-T = T, not-not-⊥ = ⊥, and not-not-
I = I.

I I

⇒

T

T

T

T

Figure 6

One could also consider different accounts, corresponding to different ways
of choosing an axis of symmetry, or different ways of structuring the truth-
polygon. Such variants, however, can all be regarded as species of the same ge-
nus, which can be represented abstractly as in Figure 7. Depending on how the
three values are intuitively interpreted, the resulting operator will correspond to a
different account of negation in three-valued logic. In no way, however, can the
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negation of Post’s three-valued logic be recovered as a special case of this pat-
tern, since here one of the values (t3) is not affected by the inversion.

⇒

t 1 t2

t 3

t2 t1

t3

Figure 7

The generalization of this model to arbitrary n-valued truth-polygons is now
obvious. For example, when the value of n is even we have the pattern in Figure
8. Again, it is immediately seen that this pattern satisfies a simple principle of
double negation (rather than the principle of n-fold negation delivered by cyclic
inversions).
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Figure 8

An interesting special case is the one obtained by setting n = 4 and inter-
preting t4 as truth, t2 as falsehood, t3 as indeterminacy (neither true not false), and
t1 as overdeterminacy (both true and false, written ‘O’). Then the pattern in Fig-
ure 8 corresponds to the negation connective in the four-valued logic of Belnap
[1], which in turn is sometimes described as the obvious four-valued extension of
Kleene’s three-valued logic (see e.g. [5]): the two classical values are opposite
and the two extra values are self-opposite. (Figure 9)

T

T⇒

I I

T

T

O O

Figure 9
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4. Manipulating Truth-Polygons: The Dihedral Group

Post negations and Kleene-like negations correspond to the operations of cyclic
rotation and (horizontal) symmetric reflection, respectively—two natural ways of
manipulating a truth-polygon. Are there others? There are. But it is easy to see
that they are not as basic.

For example, consider Fitting’s [4] operation of convolution, which is de-
fined with reference to Belnap’s four-valued logic. Convolution has the effect of
flipping I and O (indeterminacy and overdeterminacy), while leaving T and ⊥
fixed. It is a kind of “vertical” symmetric reflection, and it cannot be obtained by
any number of repeated applications of either type of negation. Nonetheless it is
easy to see that convolution can be generated via a suitable composition of the
two negations, specifically by applying Kleene reflection once and Post rotation
twice. (Figure 10)

T

T

T

T⇒ ⇒ ⇒

T

⊥

I

I

I

I
T

T O

O

O O

Figure 10

The idea of composition suggests an algebraic generalization of this example
that preserves its geometric inspiration. Given any n > 2, the rotations and reflec-
tions of an n-sided regular polygon Pn define a familiar group structure, called the
dihedral group ∆n [11]. This is the group of all symmetric operations on the
polygon Pn that leave its shape unaltered, without breaking it or deforming
it—i.e., those operations that are topologically rigid. (The number of such opera-
tions is the order of the group, which is 2n.) Now, it turns out that regardless of
the value of n, the dihedral group ∆n can be generated using just rotation and re-
flection, together with a set of identity relations. Hence, just as convolution can be
defined in terms of Post negation and Kleene negation, so can every other sym-
metric operation on the 4-sided truth-polygon. More generally, each one of the
2n symmetric operations on an n-sided truth-polygon can be generated from the
corresponding n-valued operations of Post and Kleene negation.

Formally, if we use the symbols ‘∼’ and ‘¬’ for these two n-valued nega-
tion operations (respectively) and ‘i’ for the identity operation, then the corre-
sponding dihedral group is defined by the following relations:
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(a) ¬2=i
(b) ∼n=i
(c) (¬∼)2=i

The first two equalities are straightforward. Equality (a) says that for any n-sided
polygon (n ≥ 2), only two mirror reflections are needed to produce a configura-
tion equivalent to the starting one (this fact corresponds to the double negation
property). Equality (b) says that n rotations are needed to get back to a con-
figuration in space equivalent to the starting one (this is Post’s n-fold negation
property). Finally, equality (c) concerns the interaction between ¬ and ∼. It says
that their composition always yields the double negation property, regardless of
the number n of truth-values.2

When truth-values are restricted to two, the corresponding dihedral group is
the classic tetragroup, ∆2, representing symmetries of a 2-gon. A 2-gon can be
thought of as a plane figure with two sides constituted by two edges. (Figure 11)
In this case, Post and Kleene negations collapse onto classic negation, and their
behavior is indistinguishable, since in ∆2 the equality in (b) is just double nega-
tion. From this perspective, too, classic negation can be considered as a special
case of both generalized Kleene and Post negations.3

∼

¬∼¬

i

∼
¬

Figure 11

                                                
2 The standard presentation of (c) in group theory (e.g. [10]) is slightly different:

(c') ¬∼ = ∼n–1¬.

The formulation we use, more expressive for our aims, can be derived from this one by apply-
ing in sequence equalities (c'), (a) and (b):

(c) (¬∼)2 = ¬∼¬∼  = ∼n–1¬¬∼ = ∼n–1¬2∼ = ∼n–1i ∼ = ∼n–1∼ = ∼n = i.
3 Alternatively, we could say that when n=2 the corresponding dihedral group is ∆1,  represent-
ing symmetries of a segment. In this case, however, Post negation would collapse to identity,
since the equality in (b) would reduce to ∼ = i. (By contrast, Kleene negation would reduce to
classic negation, as expected.)
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5. Extensions

The generative power of the (generalized) Kleene and Post negations can be as-
sessed by looking at the order of the ∆n group. Thus, for n truth-values, these two
negations will suffice to generate a set of 2n unary connectives. Not all unary
connectives can be generated this way, though. (The total number of n-valued
unary connectives is nn.) Not even all “normal” negation-like connectives can be
generated, counting as normal those connectives that assign distinct values to T
and ⊥, i.e., more generally, to the designated and antidesignated values [15].
Among those normal connectives that cannot be generated are, for example, those
corresponding to transformations that violate shape invariance, e.g., connectives
that “mash” the truth-polygon. Bochvar’s [3] “external negation” for three-
valued logic (also known as Kleene’s “strong negation”4) is one such example.
It sends both ⊥ and I to the same value T, hence it has the effect of reducing a
three-valued truth-polygon to a classic, two-valued truth-segment (Figure 12).
But this limitation of the generative power of the generalized Kleene and Post
negations is not accidental. Bochvar-like negations, it could be argued, are of a
significantly different sort precisely because they violate the constraint of shape
invariance.

T ⊥

I

⊥ T

Figure 12

Furthermore, for n < 4 the dihedral group represents all possible permuta-
tions of truth-values. For example, for n = 3 there are six possible permutations
of the truth-values, and they can all be generated by relevant Kleene and Post ne-
gations. However, things get more complex with n ≥ 4. Consider the simplest
case, n = 4. The corresponding truth-polygon is the one shown on the left of
Figure 9. The reader can check that there is no way to generate by rotation and

                                                
4 Or as Von Wright’s “weak negation” [17]. As it turns out, the relevant terminology is not
very consistent.
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reflection the truth-polygon in Figure 13, left. To generate this as well as the
other topologically non-rigid permutations one need resort to operations involv-
ing one more dimension, considering the rotations and symmetric reflections of
what may be called, by extenting our terminology, a truth-polyhedron—in this
case a truth-cube (Figure 13, right). Such an extension, however, would once
again correspond to a major conceptual jump.

I

T

O

T

T

T

I

O

T

T

O

I

Figure 13

6. Final Remarks

We have argued that the inversion-based conception of negation leads to a natural
geometric semantic modeling based on rotation and reflection of truth-polygons.
These transformations correspond to two basic ways of manipulating topo-
logically rigid objects and their generative power—it turns out—leverages on a
powerful group structure, the dihedral group.5 As our last example suggests,
broader combinatorial possibilities could now be achieved by allowing for other
sorts of manipulations, e.g., manipulations involving the gluing of truth-sim-
plexes (polygons) in higher-dimensional complexes (polyhedrons). Bochvar’s
“mashing” of truth-values goes just the other way around, reducing dimension-
ality through topological identification. The conceptual and mathematical compli-
cations introduced by such manipulations promises to be a rewarding subject for
further explorations along the lines illustrated in this note.6
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