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How Do Patents Affect Follow-On Innovation?
Evidence from the Human Genome'

By BHAVEN SAMPAT AND HEIDI L. WILLIAMS?

We investigate whether patents on human genes have affected fol-
low-on scientific research and product development. Using admin-
istrative data on successful and unsuccessful patent applications
submitted to the US Patent and Trademark Office, we link the exact
gene sequences claimed in each application with data measuring
follow-on scientific research and commercial investments. Using
these data, we document novel evidence of selection into patenting:
patented genes appear more valuable—prior to being patented—
than non-patented genes. This evidence of selection motivates two
quasi-experimental approaches, both of which suggest that on aver-
age gene patents have had no quantitatively important effect on
follow-on innovation. (JEL 110, 031, 034)

Competitive markets may under-incentivize innovation due to the public good
nature of new ideas. Intellectual property rights, such as patents, aim to address this
under-investment problem by allowing inventors to capture a higher share of the
social returns to their research investments. By awarding inventors a temporary right
to exclude others from marketing their invention, patents aim to allow inventors
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to earn quasi-rents (temporarily) as a way to recoup their research and develop-
ment costs, thus providing dynamic incentives for investments in new technologies.
Dating back at least to analyses such as Nordhaus (1969), optimal patent policy
design has traditionally been framed as a trade-off between this benefit of providing
incentives for the development of new technologies and the cost of deadweight loss
from higher prices during the life of the patent.

Nordhaus-style models of optimal patent policy design have traditionally mod-
eled innovations as isolated discoveries. However, in practice, many or most inno-
vations are cumulative, in the sense that a given discovery may be an input into later
follow-on discoveries. When innovation is cumulative, optimal patent policy design
also depends on how patents on existing technologies affect follow-on innovation.
One prominent example in recent policy debates is a patented human gene sequence.
Sequenced genetic data are a research input into subsequent follow-on discoveries:
by analyzing sequenced genetic data, scientists may discover links between genetic
variations and diseases, and such knowledge can be applied to commercialize med-
ical technologies such as pharmaceutical treatments and diagnostic tests. If patents
on discoveries such as human genes affect follow-on innovation, that effect is a
key additional input into optimal patent policy design. In this paper, we investigate
whether patents on human genes have affected follow-on scientific research and
product development. Our broad goal is to inform whether the Nordhaus-style trade-
off between ex ante incentives and deadweight loss is sufficient for optimal patent
policy design, or whether, at least in this context, the effects of patents on follow-on
innovation need to be considered.

Investigating how patents on existing technologies affect follow-on innova-
tion requires addressing two key challenges. First, in most markets it is difficult
or impossible to take a given set of technologies which are claimed as intellec-
tual property in patents and measure follow-on innovation on those technologies.
Follow-on innovations which infringe the original patent legally require a license
from the original innovator. But because licenses are very rarely publicly disclosed,
constructing appropriate measures of follow-on innovation for any given patented
invention is quite difficult. Second, a priori we expect a selection bias problem to
arise if inventors are more likely to file for or to obtain patents on technologies that
are inherently more valuable. This type of selection raises the concern that any mea-
sured differences in follow-on innovation across patented and non-patented tech-
nologies may reflect the selection of which technologies are patented, rather than a
causal effect of patents on follow-on innovation.

The contribution of this paper is to construct new data and develop two new
quasi-experimental approaches to address these challenges. To address the first
challenge—measurement—we take advantage of the fact that US patent applica-
tions claiming human genes as intellectual property must disclose the exact DNA
sequences claimed in the text of the patent. By applying bioinformatics methods
(Jensen and Murray 2005), these DNA sequences can be annotated with gene iden-
tifiers, and these gene identifiers can in turn be linked to standard scientific and
medical datasets providing measures of follow-on scientific research and product
development related to each gene. Specifically, we measure the scientific publica-
tions related to each gene as an indicator of scientific research investments, and
measure the use of genes in pharmaceutical clinical trials and diagnostic tests as
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indicators of commercial research investments. Gene patents have been widely
interpreted as sufficiently broad that these types of commercial follow-on inven-
tions would require gene patent licenses. For example, then-United States Patent
and Trademark Office (USPTO) biotechnology examination unit head John Doll
noted in 1998: “...once a [gene] is patented, that patent extends to any use, even
those that have not been disclosed in the patent” (Doll 1998, p. 690). This implies
that our measures of follow-on innovation correspond closely to the way follow-on
innovation has been defined in the theoretical literature on cumulative innovation,
where licenses are required for follow-on innovations developed outside of the firm
holding the patent.

Because we observe our measures of follow-on scientific research and product
development for all genes, this DNA sequence-based linkage allows us to compare
follow-on innovation across patented and non-patented genes. If patents were as good
as randomly assigned across genes, this would be sufficient to estimate the causal
effect of interest. However, if inventors are more likely to file for and obtain patents on
technologies that are more valuable, then this type of simple comparison could instead
reflect the selection of which genes are patented. By taking advantage of the fact that
we observe our measures of follow-on innovation both before and after gene patents
are granted, we are able to document novel evidence of selection into patenting: genes
that will be patented in the future are the focus of more scientific research and more
commercial investments prior to being patented, relative to genes that will not be pat-
ented. This evidence suggests that estimating a causal effect of patents on follow-on
innovation requires constructing an empirical strategy to address this selection bias.

To address this second challenge (selection bias) we develop two new
quasi-experimental methods for estimating how patents have affected follow-on
innovation. First, we present a simple comparison of follow-on innovation across
genes claimed in accepted versus rejected patent applications. In our context,
this method is reasonable if, conditional on being included in a patent application,
whether a gene is granted a patent is as good as random. Again taking advantage of
the fact that we observe our measures of follow-on innovation both before and after
gene patents are granted, we document empirically that genes claimed in accepted
and rejected patent applications are the focus of similar levels of scientific research
and commercial investments prior to the applications being filed, providing evi-
dence for the validity of this empirical approach. Second, we develop a novel instru-
mental variable for which patent applications are granted patents: the “leniency” of
the assigned patent examiner. Patent examiners are charged with a uniform mandate:
grant patents to patent-eligible, novel, non-obvious, and useful inventions. However,
prior research has documented that in practice this mandate leaves patent examiners
a fair amount of discretion (Cockburn, Kortum, and Stern 2003, Lemley and Sampat
2010, 2012). We leverage the interaction of this across-examiner heterogeneity with
the quasi-random assignment of patent applications to examiners as a source of vari-
ation in which patent applications are granted patents. Past qualitative evidence, and

! Strictly speaking, patent applications are never formally rejected by the USPTO, only abandoned by applicants
(see the discussion in Lemley and Sampat 2008). Online Appendix A provides both a qualitative discussion and
some quantitative analyses of this issue. For brevity, we colloquially refer to such applications as “rejected” and
discuss the relevance of this point for our measurement and empirical approaches as relevant throughout the text.
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new empirical evidence we document, supports the assertion that the assignment of
patent applications to examiners is plausibly random conditional on some covariates
(such as application year and technology type), suggesting that the leniency of the
patent examiner to which a patent application is assigned can provide a valid instru-
ment for whether the patent application is granted a patent.

In contrast with what one would infer from a naive comparison of follow-on
innovation on patented and non-patented genes, both of our quasi-experimental
approaches suggest that gene patents have not had quantitatively important effects
on either follow-on scientific research or follow-on commercial investments. The
estimates from our first quasi-experimental approach—comparing follow-on inno-
vation across genes claimed in successful versus unsuccessful patent applications—
document estimates which are economically small and meaningfully precise. While
the estimates from our second quasi-experimental approach—using the leniency
of the assigned patent examiner as an instrument for which patent applications are
granted patents—are less precise, the fact that these two approaches generate similar
conclusions provides additional confidence in our estimates.

When interpreting these empirical results through the lens of the well-devel-
oped theoretical literature on cumulative innovation (e.g., Green and Scotchmer
1995), several points are relevant to highlight. First, as best we can measure, very
little of the follow-on innovation in this market is done by the gene patent holders,
suggesting that follow-on innovation in this market will often require licensing
agreements. Second, essentially all (96 percent) of the patent applications in our
sample are assigned to for-profit firms, and in the vast majority of clinical trials
(86 percent) both the patent assignee and the follow-on innovator are for-profit
entities. Taken together, these facts suggest that cross-firm licensing contracts in
this market seem to have operated at least somewhat efficiently. Consistent with
this interpretation, there has been relatively little patent litigation observed in this
market.

Interpreting these empirical results in the context of existing empirical evidence,
perhaps most closely related to this paper is work by one of the authors (Williams
2013), who found that a non-patent form of database protection held by the pri-
vate firm Celera on their version of the sequenced human genome was associated
with large declines in follow-on scientific research and commercial product devel-
opment, on the order of 30 percent. Why did Celera’s intellectual property cause
declines in follow-on innovation, while gene patents did not? Theoretical models
tend to analyze stylized characterizations of intellectual property rights in which
Celera’s intellectual property could reasonably be seen as practically identical to
patent protection. However, Celera’s intellectual property differed from the gene
patents we analyze in one key dimension. The sequenced genetic data in both the
accepted and the rejected patent applications we analyze were disclosed in a way
that enabled open access to the data for all prospective follow-on users. In contrast,
Celera’s data were disclosed in a much more restrictive way. We argue that this
difference in disclosure may plausibly account for the different observed effects of
Celera’s intellectual property and gene patents on follow-on innovation outcomes.
Importantly, this disclosure interpretation reinforces one important reason why our
estimates may not generalize beyond the case of human gene patents: as we discuss
in more detail in Section V, the USPTO’s specific (and more stringent) requirements
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for the disclosure of sequenced genetic data may have made the disclosure function
particularly effective in our context.

From a policy perspective, one reason this disclosure feature of the patent system
may be important is that it highlights a potential unintended consequence of a recent
set of high-profile legal rulings on the case Association for Molecular Pathology v.
Myriad Genetics.” The firm Myriad Genetics was granted patents on human genes
correlated with risks of breast and ovarian cancer, and in June 2013 the US Supreme
Court unanimously ruled to invalidate a subset of Myriad’s gene patent claims, argu-
ing that such patents “would ‘tie up’ ... [genes] and ... inhibit future innovation...”
(p. 11). That is, the Court argued that gene patents had sufficiently strong negative
effects on follow-on innovation that genes should be ineligible for patent protection.
While, consistent with the Court’s view, there has been widespread concern that pat-
ents on human genes may hinder follow-on innovation, as argued by a 2006 National
Academies report and by Caulfield et al. (2013) there was no empirical evidence
available to either support or refute that assertion prior to this paper. From the dis-
closure perspective discussed above, underlying this ruling seems to be an assump-
tion that if genes are not patented, they would be placed in the public domain. But at
least in the case of Celera, when Celera’s patent applications were rejected the firm
instead chose to rely on an alternative form of intellectual property which, taken at
face value, resulted in both lower private returns and lower social returns to Celera’s
research investments. Stated differently, our analysis corresponds to a partial equi-
librium analysis which holds disclosure constant, but in general equilibrium firms
may choose to protect their inventions with, e.g., trade secrecy or other strategies
rather than with patents if patent protection is not available. This type of behavioral
response would be critical to assessing the potential welfare consequences of the
US Supreme Court’s ruling not just for human genes but also for other technologies
which have recently been declared to be unpatentable.

Methodologically, our two quasi-experimental approaches build on similar appli-
cations in labor economics and public finance. Our comparison of accepted and
rejected patent applications builds on Bound (1989) and von Wachter, Song, and
Manchester’s (2011) investigations of the disincentive effects of disability insur-
ance on labor supply, and Aizer et al.’s (2016) investigation of the effects of cash
transfers on mortality. Likewise, our approach of using examiner “leniency” as a
source of variation in which patent applications are granted patents builds on past
work investigating the effects of incarceration length using variation across judges
(Kling 2006), the effects of foster care using variation across foster care case work-
ers (Doyle 2007, 2008), and the disincentive effects of disability insurance on labor
supply using variation across disability insurance examiners (Maestas, Mullen, and
Strand 2013). Especially given the relatively small number of patent law changes

2Online Appendix B provides some additional background on this case.

3 More specifically, this same line of argument has shaped at least three other recent US Supreme Court rulings
which have moved to restrict the set of discoveries eligible for patent protection in other industries (Kesselheim
et al. 2013). First, in Bilski v. Kappos the Court invalidated patent claims on an investment strategy, announcing it
supported a “high enough bar” on patenting abstract ideas that it would not “put a chill on creative endeavor and
dynamic change.” Second, in Mayo v. Prometheus, the Court invalidated patent claims on methods of using genetic
variation to guide pharmaceutical dosing, expressing concern that “patent law not inhibit further discovery by
improperly tying up the future of laws of nature.” Finally, in Alice Corp v. CLS Bank the Court invalidated patent
claims on software based on similar arguments.
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in countries like the United States in recent years, these two new sources of qua-
si-experimental variation will likely provide valuable opportunities to investigate
the effects of patents in a variety of other applications.

Section I describes our data, and Section II documents some descriptive statis-
tics on our data. Section III presents estimates from our first quasi-experimental
approach, comparing follow-on innovation across genes claimed in successful and
unsuccessful patent applications. Section IV presents estimates from our second
quasi-experimental approach, using the leniency of the assigned patent examiner
as an instrumental variable for whether the patent application was granted a patent.
Section V provides some interpretations of our empirical results, and Section VI
concludes.

1. Data

This section describes our data construction.” To fix ideas, we start by describing
an example patent application (USPTO patent application 08,/483,554) claiming
intellectual property over the BRCA1 gene, and describe our measures of follow-on
innovation in the context of that example (Section IA). We then describe in more
detail how we construct our sample of USPTO patent applications claiming intel-
lectual property over human genes (Section IB), and our gene-level measures of
follow-on scientific research and product development (Section IC).

A. Example: USPTO Patent Application 08/483,554

On June 7, 1995, Myriad Genetics filed USPTO patent application number
08/483,554: 17Q-Linked Breast and Ovarian Cancer Susceptibility Gene. This
application was subsequently granted a patent on May 5, 1998 (US patent num-
ber 5,747,282), and would later become a focus of the US Supreme Court case
Association for Molecular Pathology v. Myriad Genetics.

This patent claimed intellectual property over an isolated sequence of nucle-
otide bases (adenine, cytosine, guanine, and thymine), the sequence of which is
listed explicitly in the patent (SEQ ID NO:1: AGC TCG CTG...). By comparing
this sequence of nucleotide bases to the census of human gene sequences, we can
uncover that this sequence corresponds to the BRCA1 gene.

The text of the Myriad patent describes how variation in the precise sequence of
nucleotide bases in the BRCA1 gene can induce variation in an individual’s risk of
developing breast and ovarian cancers. For example, women with certain abnormal
types of BRCA1 or BRCA?2 genes have a 38 to 87 percent lifetime risk of develop-
ing breast cancer, relative to about 12 percent in the general population.”

Such links between genetic variation and diseases are referred to as
genotype-phenotype links. In the case of the BRCAI1 gene, scientific papers have
investigated links between BRCA1 and breast cancer (181 publications), ovarian

#Indeed, a number of papers have already started to apply these methodologies in other contexts. See, for exam-
ple, Gaule (2015); Feng and Jaravel (2018); Farre-Mensa, Hegde, and Ljungqvist (2017); and Kline et al. (2017).

3 Online Appendix C describes our data construction in more detail.

SThese statistics are drawn from GeneReviews, published by the US National Institutes of Health (NTH).
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cancer (96 publications), and pancreatic cancer (3 publications).” Once scientific
knowledge of a given genotype-phenotype link has been documented, this knowledge
can be applied to develop medical technologies such as pharmaceutical treatments
and gene-based diagnostic tests. In the case of the BRCA1 gene, 17 pharmaceutical
clinical trials have been conducted that focus on mutations in the BRCA1 gene,
and a BRCA1 genetic test is marketed by the firm Myriad Genetics.’ The goal of
our data construction is to trace these measures of follow-on scientific research and
product development for each human gene, and to link the data to records of which
human genes have been included in USPTO patent applications and granted patents.

B. Constructing USPTO Patent Application Sample

Our quasi-experimental approaches require constructing data on the census of
published USPTO patent applications that claim intellectual property over human
genes: both successful (granted patents) and unsuccessful (not granted patents).
Traditionally, unsuccessful USPTO patent applications have not been made publicly
available. However, as part of the American Inventors Protection Act of 1999, the
vast majority of USPTO patent applications filed on or after November 29, 2000 are
published in the public record—regardless of whether they are granted patents—at
or before 18 months after the filing date.”

From the census of USPTO patent applications filed on or after November 29,
2000 and published on or before December 31, 2013, we identify the subset of
applications claiming intellectual property over genes. To do this, we follow the
methodology proposed by Jensen and Murray (2005), which can be briefly sum-
marized as follows.'Y Since the early 1990s DNA sequences have been listed in
USPTO patent applications in a standard format, labeled with the text “SEQ ID
NO” (sequence identification number).'! This standardized format allows for DNA
sequences to be cleanly extracted from the full text of USPTO published patent
applications. Once extracted, standard bioinformatics methods can be used to com-
pare these sequences against the census of human gene DNA sequences in order to

7The data are drawn from the NIH Online Mendelian Inheritance in Man (OMIM) database, described below,
and is accurate as of July 27, 2017.

8The data are drawn from the Citeline Pharmaprojects database (accurate as of July 9, 2012) and the NIH
GeneTests.org database (accurate as of September 18, 2012), both described below.

For more details, see http:/www.uspto.gov/web/offices/pac/mpep/s1120.html and the discussion in Lemley
and Sampat (2010). Most applications not published 18 months after filing are instead published 60 months after
filing. Some US patent applications opt out of publication: Graham and Hegde (2013) document that around 8
percent of US applications opted for pre-grant secrecy of patent applications. For the NBER patent technology
field “drugs and medical,” which includes the most common patent class in our sample, the share was 3.5 percent.

19While we focus on the Jensen and Murray (2005) definition of gene patents, there are many different types
of DNA-related patent claims: e.g., protein-encoding sequences, expressed sequence tags (ESTs), single-nu-
cleotide polymorphisms (SNPs), sequence-based claims, and method claims that pertain to specific genes or
sequences; see Scherer (2002) and Holman (2012) for more discussion. As one point of comparison, nearly all
of the patent applications in our sample are included in the DNA Patent Database (http://dnapatents.georgetown.
edu/SearchAlgorithm-Delphion-20030512.htm), which is constructed using a completely different methodology;
we are grateful to Robert Cook-Deegan and Mark Hakkarinen for sharing the patent application numbers included
in the DNA Patent Database, which enabled this comparison. Our empirical strategies could of course be applied
to any empirically implementable definition of gene patent applications, but we are not aware of data on any other
alternative definitions.

1 See https://www.uspto.gov/web/offices/pac/mpep/s2422.html. For a legal perspective on disclosure of genetic
innovations in patent applications more generally, see Berman and Schoenhard (2004).
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annotate each sequence with standard gene identifiers that can in turn be linked to
outside databases./'”

We apply this Jensen and Murray (2005) methodology to construct two samples.
First, we construct a “first-stage sample” that aims to include the census of pub-
lished USPTO patent applications that claim any non-human (e.g., mouse) DNA
sequences in their patent claims (Bacon et al. 2006). Second, we construct a “human
gene sample” that includes only the subset of published USPTO patent applications
that claim human genes (Lee et al. 2007). This human gene sample is the focus of
our analysis, given the focus in this paper on investigating how patents on human
genes have affected follow-on innovation. However, this sample includes far fewer
patent applications than the first-stage sample: we have around 1,500 patent applica-
tions in the human gene sample, relative to around 14,000 patent applications in the
first-stage sample. This matters for our second quasi-experimental design, for which
it is (as we will discuss more below) econometrically useful to estimate variation in
the examiner patent grant propensities in a separate sample of patent applications.
Hence, we use the first-stage sample to estimate the examiner patent grant propensi-
ties, and apply those estimates to the examiners in our human gene sample.

It is worth noting that one limitation of our quasi-experimental approaches is that
they can only be implemented over the time period when unsuccessful patent appli-
cations were published (that is, applications filed on or after November 29, 2000).
Some criticisms of gene patents (such as Heller and Eisenberg 1998) focus on the
subset of gene patents covering expressed sequence tags (ESTs), which Rai (2012)
argues were less commonly granted in later years.'”

C. Measuring Follow-On Innovation

We collect data on three measures of gene-level follow-on innovation: scientific
publications as a measure of scientific research effort; and two measures of product
commercialization: gene-related pharmaceutical research, and gene-based diagnos-
tic tests.

We collect data on the scientific publications related to each gene from the Online
Mendelian Inheritance in Man (OMIM) database, which catalogs scientific papers
that have documented evidence for links between genetic variation and phenotypes.
Using these data, we construct a count of the number of scientific papers published
related to each gene—across all phenotypes—in each year.

Because of the long time lags between basic drug discovery and the marketing
of new drugs, new approvals of drugs that take advantage of sequenced genetic
data are just barely starting to enter the market.'¥ Given these time lags, rather than
using drug approvals as a measure of pharmaceutical research, we instead focus
on an intermediate measure of drug discovery: namely, drug compounds under

2Following Jensen and Murray (2005), we focus attention on the subset of DNA sequences that are explicitly
listed in the claims of the patent applications (excluding DNA sequences that are referenced in the text of the patent
application—and hence listed in the SEQ ID NO format—but not explicitly claimed as intellectual property).

13 For the purposes of our descriptive analyses we can (and do) apply the Jensen and Murray (2005) methodol-
ogy to identify granted USPTO patents that claim human genes but were filed prior to November 29, 2000. The data
are also drawn from Lee et al. (2007), and include USPTO patents granted through 2005.

14 Nicholas Wade, “A Decade Later, Genetic Map Yields Few New Curves,” New York Times, June 12, 2010.
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development, as disclosed in clinical trials.!> Specifically, we measure gene-related
pharmaceutical clinical trials using the Citeline Pharmaprojects database, a pri-
vately-managed competitive intelligence database that tracks drug compounds in
clinical trials and, critically for our project, assigns gene identifiers to compounds
related to genetic variation on specific genes (see online Appendix C for details on
how Citeline describes their construction of this measure). Using these data, we
construct a count of the number of clinical trials related to each gene in each year.

Finally, we collect data on gene-based diagnostic tests from the GeneTests.org
database, a genetic testing registry. Some gene-based tests provide individuals with
information about disease risk, such as the BRCA tests related to risks of breast and
ovarian cancers; other gene-based tests identify individuals as relatively more or less
appropriate for a given medical treatment, such as a test which predicts heteroge-
neity in the side effects of the widely prescribed blood thinner warfarin. Using the
GeneTests.org data, we construct an indicator for whether a gene is included in any
gene-based diagnostic test as of 2012. Unfortunately, these data are only available
in a cross section (not a panel).

A priori, the impact of patents on follow-on scientific research could differ from
the impact of patents on product development. For example, many have argued that
most patented inventions are made available to academic researchers on sufficiently
favorable licensing terms that academics are able to continue their research (USPTO
2001). Hence, even if transaction costs hinder licensing agreements for commercial
applications we could expect to see no impact of patents on measures of follow-on
academic research such as scientific publications. Alternatively, patents may change
researchers’ incentives of whether to disclose the results of their research through
academic publications (Moon 2011), in which case observed differences in scien-
tific publications could be explained by differences in disclosure rather than by dif-
ferences in the true amount of underlying scientific research. By contrast, we would
not expect the product development outcomes we measure to be affected by such
disclosure preferences given that the measures we observe are revealed in the natu-
ral course of firms commercializing and selling their technologies.

I1. Descriptive Statistics
A. Summary Statistics

presents patent application-level summary statistics on our first-stage
sample and our human gene sample. Our first-stage sample includes 14,476 USPTO
patent applications with DNA sequences listed in their claims, while our human
gene sample includes 1,545 USPTO patent applications with human genes listed in
their claims. As described in Section I, our sample includes US patent applications
filed starting in 2000, given that the requirement for unsuccessful patent applications
to be published came into force for patent applications filed on or after November
29, 2000. The first-stage sample ends with application year 2010. The human gene

'5Data on clinical trial investments have also been used as a measure of research effort in prior work, starting
with Acemoglu and Linn (2004) and Finkelstein (2004) and including more recently Galasso and Schankerman
(2015).
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TABLE 1—PATENT APPLICATION-LEVEL SUMMARY STATISTICS

Mean Standard deviation ~ Minimum  Maximum  Observations

Panel A. First-stage sample

Application year 2005 2.715 2000 2010 14,476
0 / 1, patent granted as of 2010 0.3043 0.4601 0 1 14,476
Panel B. Human gene sample

Application year 2002 0.692 2000 2005 1,545
0/1, patent granted as of 2010 0.2557 0.4364 0 1 1,545

Note: This table shows summary statistics for our patent application-level data in each of our two samples: panel
A for the first-stage sample of patent applications, and panel B for the human gene sample of patent applications.

sample ends earlier, with application year 2005, because 2005 is the last year of data
used as an input into the data construction done by Lee et al. (2007).'¢

In both samples, about 30 percent of the patent applications had been granted pat-
ents by 2010. This patent grant rate tabulated in Table 1 is a so-called simple grant
rate that does not account for the fact that US patent applications can spawn closely
related “new” applications, such as so-called continuations or divisionals. Carley,
Hegde, and Marco (2015) use internal USPTO data to calculate simple and “fam-
ily” (including patents granted to continuations or divisionals) grant rates in the
universe of new utility patent applications filed at the USPTO from 1996-2005. In
their sample, 55.8 percent of applications were granted patents directly, and includ-
ing patents granted to children increases the allowance rate to 71.2 percent. For
the NBER patent technology field “drugs and medical,” which includes the most
common patent class in our sample, the progenitor allowance rate is 42.8 percent
and the family allowance rate is 60.7 percent. This measurement issue is relevant to
our second empirical strategy—which analyzes application-level data—but not to
our first empirical strategy, which analyzes gene-level data, and hence captures all
patent applications related to each gene. In practice, this issue does not appear to be
quantitatively important in our sample: the family grant rates in our first-stage and
second-stage samples are 32.5 percent and 27.7 percent, which are relatively close
to the analogous simple grant rates tabulated in Table 1 of 30.4 percent and 25.6
percent. As would be expected given these small differences, we show in online
Appendix Table D.1 that if we implement our second empirical strategy using a fam-
ily grant rate instead of a simple grant rate that our main conclusions are unchanged.

Online Appendix Table D.2 tabulates gene-level summary statistics on our fol-
low-on innovation outcomes, for the sample of genes included in our human gene
patent application sample (N = 15,524). The counts of scientific publications per
gene in calendar year 2011 and clinical trials per gene in calendar year 2011 are both
right-skewed: the median gene has a value of zero for each of these variables, but the
maximum values are 22 and 230, respectively. Around 12 percent of genes are used
in a diagnostic test as of calendar year 2012.

16 Unfortunately, we do not know of a data source which applies the Lee et al. (2007) methodology to later
years of data.
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B. Comparison of Patented and Non-Patented Human Genes

Our interest in this paper is in comparing follow-on innovation across patented and
non-patented genes. In this subsection, we investigate the selection process in order to
analyze which genes are patented. On one hand, we may expect inventors to be more
likely to both file for and be granted patents on technologies that are more valuable:
inventors may be more willing to pay the time and monetary cost of filing patent
applications for inventions that are more valuable, and patent applications claiming
intellectual property over more valuable inventions may also be more likely to “clear
the bar” and be granted patents. On the other hand, the USPTO grants patents based
on criteria that may not closely correspond with measures of scientific and commer-
cial value (Merges 1988). Hence, it is an empirical question whether inventions with
higher levels of scientific and commercial value are more likely to be patented.

There is a remarkable absence of empirical evidence on this question, largely
due to a measurement challenge: in most markets, it is very difficult to measure the
census of inventions, and to link those inventions to patent records in order to iden-
tify which inventions are patented. The only other paper we are aware of which has
undertaken such an exercise is Moser (2012), who constructs a dataset of innovations
exhibited at world’s fairs between 1851 and 1915 and documents that “high-quality”
(award-winning) exhibits were more likely to be patented, relative to exhibits not
receiving awards. Given this dearth of previous estimates, documenting evidence on
the selection of inventions into patenting is itself of interest. In addition, if we do
observe evidence of selection into patenting, that would imply that any measured
differences in follow-on innovation across patented and non-patented genes may
in part reflect the selection of which genes are included in patent applications and
granted patents, as opposed to an effect of patents on follow-on innovation.

For this exercise, we start with the full sample of human genes (N = 26,440). As
measured in our data, approximately 30 percent of human genes have sequences that
were explicitly claimed in granted US patents (N = 7,975).!"|Figure 1|documents
trends in follow-on innovation by year separately for genes that ever receive a pat-
ent (triangle-denoted solid blue series), and for genes that never receive a patent
(circle-denoted dashed red series). In panel A of Figure 1, we plot the average log
number of scientific publications by year in each year from 1970 to 2012.'% In panel
B, we plot the average log number of clinical trials by year in each year from 1995 to
2011."

17 As a point of comparison, Jensen and Murray (2005) document that as of 2005, approximately 20 percent of
human genes had sequences that were explicitly claimed in granted patents. Because our sample includes patent
applications that were granted patents after 2005, we would expect our estimate to be larger.

18 We focus on the average log number of scientific publications by year because even within a calendar year,
the number of publications per human gene is quite right-skewed. The pattern of selection that we document is
unchanged if we instead plot the share of genes with at least one scientific publication by year (online Appendix
Figure D.1, panel (a)), or the average number of scientific publications by year (online Appendix Figure D.1, panel
(¢)). Here and elsewhere, we add one to our outcome variables before logging them in order to include observations
with no observed follow-on innovation.

19These years 1995 to 2011 are the only years for which the Pharmaprojects data are available. As with the
scientific publications measure, we focus on the average log number of clinical trials by year because this variable
is quite right-skewed. Again, the pattern of selection that we document is unchanged if we instead plot the share
of genes with at least one clinical trial by year (online Appendix Figure D.1, panel (b)), or the average number of
clinical trials by year (online Appendix Figure D.1, panel (d)).
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FIGURE 1. FOLLOW-ON INNOVATION ON PATENTED AND NON-PATENTED HUMAN GENES

Notes: This figure plots trends in follow-on innovation by year separately for genes that ever receive a patent and for
genes that never receive a patent. The figure is constructed from gene-level data. Panel A uses gene-level scientific
publications as a measure of follow-on innovation, and plots the average log number of scientific publications by
year in each year from 1970 to 2012. Panel B uses gene-level clinical trials as a measure of follow-on innovation,
and plots the average log number of clinical trials by year in each year from 1995 to 2011.

Because by construction our human gene patents are measured starting in the
mid-1990s (when the SEQ ID NO notation was introduced), the cleanest test of
selection into patenting is a comparison of pre-1990 follow-on innovation across
(subsequently) patented and non-patented genes. While the clinical trials data only
start later (in 1995), the scientific publications data are available prior to 1990 and
therefore can be used for this comparison. Looking at the data series in Figure 1,
panel A from 1970 to 1990 provides clear evidence of positive selection: genes that
will later receive patents were more scientifically valuable—based on this publica-
tions measure—prior to being patented. Moreover, even within the 1970 to 1990
period this positive selection appears not just in the levels of follow-on innovation,
but also in the trends: genes that will later receive patents appear to have divergent
trends in scientific publications relative to genes that will never receive patents, even
before any patents are granted.

These patterns—a level difference, and a divergence in trends—also appear in
the clinical trials data presented in panel B of Figure 1, although it is not possible
to cleanly separate selection and “treatment” (that is, any causal effect of patents
on subsequent research effort) because that data series starts in 1995. Likewise, if
we tabulate the probability that genes are used in diagnostic tests for patented and
non-patented genes, 13.6 percent of patented genes are used in diagnostic tests,
compared to 6.2 percent of non-patented genes.

Taken together, these patterns suggest strong evidence of positive selection:
genes that will later receive patents appear more scientifically and commercially
valuable prior to being granted patents, relative to genes that will never receive
patents. This evidence is important for three reasons. First, this evidence suggests
that our measures of value (pre-patent filing scientific publications and clinical
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trials) are correlated with patenting activity, which supports the idea that these
measures can provide a meaningful basis for assessing selection in our two qua-
si-experimental approaches. Second, this analysis provides novel evidence on the
selection of technologies into patenting, in the spirit of Moser (2012). Third, this
evidence implies that a simple comparison of follow-on innovation across pat-
ented and non-patented genes is unlikely to isolate an unbiased estimate of how
gene patents affect follow-on innovation. While a naive comparison that did not
account for selection would conclude based on Figure 1 that patents encourage
follow-on innovation, our two quasi-experimental approaches will suggest a dif-
ferent conclusion.

III. Comparison of Accepted and Rejected Patent Applications

Our first quasi-experimental source of variation investigates a simple idea, which
is whether genes that were included in unsuccessful patent applications can serve as
a valid comparison group for genes that were granted patents.

This approach has previously been applied to other research questions in labor
economics and public finance. For a wide range of public programs, a key challenge
in identifying the effect of the program is identifying a plausible counterfactual: what
would recipients’ lives have been like in the absence of the program? Dating back
at least to the work of Bound (1989), researchers have proposed constructing this
counterfactual by comparing accepted and rejected applicants. The validity of this
approach of course depends on the extent to which accepted and rejected applicants
differ on observable and unobservable characteristics, and researchers have hence
explored the validity of this approach by comparing accepted and rejected applicants
based on observable characteristics fixed at the time of application. For example,
Aizer et al.’s (2016) analysis of accepted and rejected applicants for the Mothers’
Pension program documented balance tests comparing accepted and rejected appli-
cants on various covariates fixed at the time of application, such as mother’s age
and family size. If accepted and rejected applicants are similar on observables, then
under the assumption that they are also similar on unobservables rejected applicants
can provide a plausible counterfactual for the outcomes of accepted applicants in the
absence of the program.?"

We apply an analogous framework to our dataset of gene patent applications, in
which some applications are accepted and some are rejected. One nuance is that
our outcomes of interest are at the gene level, not at the patent application level. If
every patent application included only one gene, and each gene was never included
in more than one patent application, this distinction would be irrelevant. But in
practice, patent applications can include more than one gene, and a given gene can
be included in more than one patent application. To address this divergence from the
simplest thought experiment, we divide the sample of genes that are ever included

20Note that Bound (1989) and others (including Aizer et al. 2016) argue that in their context they can make a
slightly different assumption, which is that rejected applicants are better in terms of counterfactual outcomes than
are accepted applicants. For example, in his context of disability insurance, Bound (1989) argues that rejected
applicants are healthier and more capable of work, and thus that their labor force participation should provide an
upper bound for what work could be expected of accepted beneficiaries. In our view, this type of “signing the bias”
argument does not have a natural analog in our empirical context.
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in any patent application into two subsamples: a subsample of genes that is included
in at least one accepted patent application, and a subsample of genes included in at
least one patent application but never in an accepted patent application.

Defined in this way, a comparison of follow-on innovation on genes included
in accepted and rejected patent applications will be valid if—conditional on being
included in a patent application—whether a gene is granted a patent is as good as
random. A priori, it is not clear that this offers a valid comparison. The USPTO is
responsible for assessing whether patent applications should be granted patents based
on five criteria: patent-eligibility (35 USC. §101), novelty (35 USC. §102), non-ob-
viousness (35 USC. §103), usefulness (35 USC. §101), and the text of the applica-
tion satisfying the disclosure requirement (35 USC. §112). These criteria suggest that
patent grants are not quasi-randomly assigned across patent applications.”! However,
because any given patent application in our sample may claim intellectual property
rights over more than one gene, and given that our interest is in how patent grants
affect gene-level outcomes, what is required for this first quasi-experimental approach
to be valid is that—conditional on being included in a patent application—whether a
gene is granted a patent is as good as randomly assigned. That is, the relevant assump-
tion is that genes that are included in patent applications that are granted patents are
comparable to genes that are included in patent applications that are not granted pat-
ents. Analogous to the balance tests used in the previous literature to assess the valid-
ity of accepted/rejected designs, we will document a comparison of “accepted” and
“rejected” genes based on covariates fixed at the time of application (in our case,
gene-level scientific publications and gene-level clinical trial activity at the time of
application). As we will see, “accepted” and “rejected” genes look quite similar based
on these observables at the time the patent application is filed. Hence, we will con-
clude that “rejected” genes can provide a plausible counterfactual for what follow-on
innovation on the “accepted” genes would have looked like in the absence of being
granted patents. While this comparison is quite simple, we will see that the resulting
estimates are similar to the estimates from our second quasi-experimental source of
variation (the examiner leniency variation, presented in Section IV).

A. Graphical Analysis

For this exercise, we start with the sample of human genes included in at least one
patent application in our USPTO patent applications sample (N = 15,524; 59 per-
cent of the full sample of 26,440 human genes). Of this sample, 4,858 genes are
claimed in a patent application that is subsequently granted a patent (31 percent),
relative to 10,666 genes that are never observed to be subsequently granted a patent
(69 percent).?? Panel A of|Figure 2illustrates the time pattern of when the patented

21 Although, to foreshadow our second empirical approach, note that if patent applications were randomly
assigned to patent examiners and patent examiners—who varied in their leniency—completely determined grant
outcomes, that would be one substantive example of why patent grants could be as good as randomly assigned
across accepted and rejected applications.

22 Note that this 4,858 figure is lower than the 7,975 figure in Section II, because we here focus only on patents
granted on patent applications filed after November 29, 2000 (the date when unsuccessful applications began to be
published).
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FIGURE 2. PATENTS AND FOLLOW-ON INNOVATION ON HUMAN GENES CLAIMED IN ACCEPTED/REJECTED
PATENT APPLICATIONS

Notes: This figure plots trends in patenting and follow-on innovation by year separately for three groups of genes:
genes claimed in at least one granted patent; genes claimed in at least one patent application but never in a granted
patent; and (in panels B and C) genes never claimed in a patent application. The figure is constructed from gene-
level data. Panel A documents the share of genes receiving a patent grant by year; by construction, this is zero for
the circle-denoted red dashed line in all years and reaches one for the triangle-denoted blue line in 2010; the inter-
mediate years simply illustrate the time path of patent grants between 2001 and 2010 for the triangle-denoted blue
line. Panel B uses gene-level scientific publications as a measure of follow-on innovation and plots the average log
number of scientific publications by year in each year from 1970 to 2012. Panel C uses gene-level clinical trials as a
measure of follow-on innovation and plots the average log number of clinical trials by year in each year from 1995
to 2011. The vertical line in the calendar year 2001 in panels B and C denotes that, because this figure focuses on
patents that were filed in or after November 2000, all years prior to 2001 can be considered a pre-period and used
to estimate the selection of genes into patenting based on pre-patent filing measures of scientific research (publica-
tions) and commercialization (clinical trials).

group receives its (first) patent grant over time. Over half of these genes have
received a patent by 2005, and (by construction) all have received a patent by 2010.

Panels B and C of Figure 2 document trends in follow-on innovation by year. As
in Figure 1, we plot the average log number of scientific publications by year in each
year from 1970 to 2012 (Figure 2, panel B), and the average log number of clinical
trials by year in each year from 1995 to 2011 (Figure 2, panel C).22 The solid blue

23 Online Appendix Figure D.2 documents analogous figures if we instead plot the share of genes with at least
one scientific publication or clinical trial by year (panels (a) and (b)) or the average number of scientific publica-
tions or clinical trials by year (panels (c) and (d)).
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triangle-denoted line represents genes claimed in at least one granted patent, and
the dashed red circle-denoted line represents genes claimed in at least one patent
application but never in a granted patent.

As a point of comparison, the dashed green square-denoted line represents genes
never claimed in a patent application filed after November 29, 2000 (N = 10,916;
41 percent of the full sample of 26,440 human genes). Comparing this group of
genes to the other two groups of genes, we see clear evidence of selection into
patent filing: genes included in successful and unsuccessful patent applications are
much more valuable both scientifically (publications) and commercially (clinical
trials) prior to the patent application filing compared to genes that are never claimed
in a patent application. In terms of interpreting the results in Section IIIB, the data
suggest that the major source of selection into which genes are patented is selection
in which genes are included in patent applications (as opposed to which genes are
granted patents, conditional on being included in patent applications).

The key comparison of interest in this section is across the first two data series:
genes included in successful patent applications, and genes included in unsuccess-
ful patent applications. The vertical line in calendar year 2001 denotes that because
this figure focuses on patent applications filed in or after November 2000, all years
prior to 2001 can be considered a “pre-period” and used to estimate the selection of
genes into patenting based on pre-patent filing measures of follow-on innovation.
Strikingly, we see little evidence of selection in pre-2001 levels or trends of our two
follow-on innovation measures once we limit the sample to genes included in patent
applications. For scientific publications (panel B of Figure 2), the two groups follow
each other quite closely from 1970 to 1990, and diverge slightly in trends from 1990
to 2000—with genes that will subsequently be included in unsuccessful patent appli-
cations having slightly more scientific publications.?* For clinical trials (panel C of
Figure 2), the two groups follow each other quite closely in both levels and trends
over all available pre-2001 years of data. Taken at face value, the similarity of these
two groups in pre-2001 outcomes provides evidence for the validity of this empirical
approach. A priori, one might have expected genes that were more scientifically or
commercially valuable to have been more likely to receive patents. However, condi-
tional on being included in a patent application, this appears not to be the case.

Looking at the post-2001 time period, we see that although these two groups
of genes diverge (by construction) in whether they are claimed in granted patents
(panel A of Figure 2), we do not see any evidence of a divergence in follow-on
innovation outcomes. That is, these figures suggest that gene patents have not had
a quantitatively important effect on either follow-on scientific research or on fol-
low-on commercialization.

B. Regression Analysis
We quantify the magnitudes of these patterns in a regression framework in Table 2.

Because our scientific publication and clinical trial outcomes are quite skewed, a
proportional model or binary outcome (measuring “any follow-on innovation”) is

24Note that this slight divergence is not apparent in the robustness check documented in online Appendix Figure
D.2, panel (c), where we plot the average number of scientific publications by year.
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TABLE 2—PATENTS AND FOLLOW-ON INNOVATION ON HUMAN GENES CLAIMED IN
ACCEPTED/REJECTED PATENT APPLICATIONS: REGRESSION ESTIMATES

log of follow-on Any follow-on
innovation in 2011-2012  innovation in 2011-2012

(1) 2)

Panel A. Scientific publications

Patent granted 0.0019 —0.0014
(0.0060) (0.0054)
Mean of dependent variable 0.1104 0.1094
Observations 15,524 15,524
Panel B. Clinical trials
Patent granted 0.0006 —0.0015
(0.0080) (0.0043)
Mean of dependent variable 0.1038 0.0659
Observations 15,524 15,524
Panel C. Diagnostic test
Patent granted - —0.0092
- (0.0056)
Mean of dependent variable - 0.1199
Observations - 15,524

Notes: This table estimates differences in follow-on innovation on genes claimed in at least one
granted patent relative to genes claimed in at least one patent application but never in a granted
patent. The sample for these regressions is constructed from gene-level data, and includes
genes claimed in at least one patent application in our USPTO human gene patent applica-
tion sample (N = 15,524). Each coefficient is from a separate regression. Estimates are from
ordinary-least-squares models. Heteroskedasticity robust standard errors.

more econometrically appropriate than modeling the outcome in levels. We focus
on the log of follow-on innovation and (separately) an indicator for any follow-on
innovation.

Given the absence of strong visual evidence for a difference in follow-on innova-
tion across patented and non-patented genes, our focus here is on what magnitudes
of effects can be ruled out by our confidence intervals. Across these specifications,
our 95 percent confidence intervals tend to reject declines or increases in follow-on
innovation on the order of more than 5-15 percent. For brevity, we focus on inter-
preting the log coefficients. For our measures of follow-on scientific research (pub-
lications; panel A of Table 2) and commercialization (clinical trials; panel B of
Table 2), the 95 percent confidence intervals can reject declines or increases of more
than 2 percent. For our measure of diagnostic test availability (only measured as a
binary indicator; panel C of Table 2), we estimate that genes receiving patents had a
0.9 percentage point decrease in the likelihood of being included in a diagnostic test
as of 2012 relative to genes included in patent applications but not granted patents
(statistically significant at the 10 percent level). Our 95 percent confidence interval
can reject declines of greater than 2 percentage points and reject increases of more
than 0.2 percentage points. Relative to a mean of 12 percent, this confidence interval
suggests that we can reject declines in this outcome of greater than 17 percent.”

25 As a point of comparison, only 3 percent of genes never included in a patent application are included in a
diagnostic test as of 2012.
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IV. Analyzing Examiner-Level Variation in Patent Grant Propensities

Our second source of quasi-experimental variation constructs an instrumental
variables strategy for predicting which patent applications are granted patents. Our
key idea is to build on previous research which has established that although patent
examiners are charged with a uniform mandate, in practice examiners have a fair
amount of discretion, and this discretion appears to translate into substantial vari-
ation in the decisions different examiners make on otherwise similar patent appli-
cations (Cockburn, Kortum, and Stern 2003; Lichtman 2004; Lemley and Sampat
2010, 2012).%¢ In the spirit of prior analyses such as Kling (2006), we leverage these
patterns in order to use variation in the “leniency” of different patent examiners as a
predictor of which patent applications are granted patents.

The exclusion restriction for this instrumental variables approach requires assum-
ing that the examiner only affects follow-on innovation through the likelihood that
a gene is patented. As we describe below, the institutional context suggests that the
assignment of patent applications to USPTO patent examiners should be effectively
random conditional on some covariates (such as application year and technology
type). While the exclusion restriction is inherently untestable, we will document
empirically that—consistent with our qualitative description of the institutional con-
text—genes assigned to “lenient” and “strict” examiners look similar on observable
characteristics fixed at the time of patent application.?’

To motivate our empirical specification, Section IVA provides some qualitative
background on the key institutional features underlying our empirical strategy.*®

A. Assignment of Patent Applications to Patent Examiners

A central USPTO office assigns application numbers to incoming patent appli-
cations, as well as patent class and subclass codes detailing the type of technology
embodied in the application.?” These class and subclass numbers determine which
of approximately 300 so-called Art Units—specialized groups of examiners—will
review the application.” Within an Art Unit, a supervisory patent examiner assigns
the application to a patent examiner for review. While the patent application process

260ne of the individuals interviewed by Cockburn, Kortum, and Stern (2003, p. 21) described this variation
informally by saying “there may be as many patent offices as there are patent examiners.” Similarly, a trade publi-
cation written by a former USPTO patent examiner and current patent agent (Wolinsky 2002, p. 1) described this
variation by saying “The successful prosecution of a patent application at the USPTO requires not only a novel
invention and adequate prosecution skills, but a bit of luck... If you knew the allowance rate of your examiner, you
could probably estimate the odds of getting your patent application allowed.”

27While conditional random assignment of applications to examiners assuages many potential concerns about
this exclusion restriction, some additional issues remain. In particular, while we focus on variation in patent grant
propensity, examiner heterogeneity may also manifest itself in other ways, such as the breadth of patent grants (in
terms of the number or strength of allowed claims) and time lags in grant decisions (Cockburn, Kortum, and Stern
2003).

2gThe discussion in Section IVA draws heavily on Cockburn, Kortum, and Stern (2003); US Government
Accountability Office (2005); Lemley and Sampat (2012); and Frakes and Wasserman (2017). See online Appendix
A for more detail on the USPTO patent examination process.

29There are currently over 450 patent classes, and more than 150,000 subclasses; see http:/www.uspto.gov/
patents/resources/classification/overview.pdf.

30See http://www.uspto.gov/patents/resources/classification/art/index.jsp. For the current version of the class/
subclass-to-Art Unit concordance, see http://www.uspto.gov/patents/resources/classification/caau.pdf. The main
Art Units in our sample are from the 1600 group (Biotechnology and Organic Chemistry).


http://www.uspto.gov/patents/resources/classification/overview.pdf
http://www.uspto.gov/patents/resources/classification/overview.pdf
http://www.uspto.gov/patents/resources/classification/art/index.jsp
http://www.uspto.gov/patents/resources/classification/caau.pdf
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up to this point is quite structured, from this point forward substantial discretion is
left in the hands of individual examiners, who are responsible for determining which
(if any) claims in the application are patentable.

Because no “standard” method for the within-Art Unit assignment of applica-
tions to examiners is uniformly applied in all Art Units, Lemley and Sampat (2012)
conducted written interviews with roughly two dozen current and former USPTO
examiners to inquire about the assignment process. While the results of these inter-
views suggested that there is not a single “standard” assignment procedure that is
uniformly applied in all Art Units, these interviews revealed no evidence of deliber-
ate selection or assignment of applications to examiners on the basis of characteris-
tics of applications other than those observed in standard USPTO datasets (on which
we can condition). For example, in some Art Units supervisors reported assigning
applications to examiners based on the last digit of the application number; because
application numbers are assigned sequentially in the central USPTO office, this
assignment system, while not purposefully random, would be functionally equiva-
lent to random assignment for the purposes of this study. In other Art Units, supervi-
sors reported placing the applications on master dockets based on patent classes and
subclasses, with examiners specializing in those classes (or subclasses) being auto-
matically assigned the oldest application from the relevant pool when requesting a
new application. Our key conclusion from this institutional context is that effective
conditional random assignment of applications to examiners—within Art Unit and
application year—is plausible. Consistent with this assumption, we will document
that patent applications assigned to “lenient” and “strict’”’examiners look similar
based on observable characteristics fixed at the time of patent application.

From a practical perspective, it is worth noting that informational barriers limit
the extent to which we would expect patent applications to be systematically sorted
across examiners in a way that would be problematic for our empirical specifica-
tions. Because of the limited attention given to patents prior to their assignment
to a specific examiner, and the judgment required to determine the characteristics
of a given invention, it seems plausible that informational barriers would impose
real constraints on sorting (this argument has been made in more detail by Merges
1999).*! In particular, the “patentability” of applications is difficult to assess ex ante,
and there is no evidence that supervisory patent examiners attempt to do so before
assigning applications to particular examiners.

B. Examiner Leniency Variation

To the best of our knowledge, Kling (2006) was the first paper to leverage this
type of variation: in his case, using the random assignment of court cases to judges
as an instrument for incarceration length. He adopted the jackknife instrumental
variables (JIVE1) approach proposed by Angrist, Imbens, and Krueger (1999),

31 Merges (1999) also argues that although sorting of patent applications to examiners may be efficient, an
additional barrier to such sorting is the strong “all patents are created equal” tradition at the USPTO, which cuts
strongly against any mechanism for separating and sorting patents.
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which predicts the judge effect for each case based on data for all other cases.>?

However, JIVE estimators have been criticized for having undesirable finite sample
properties (see, e.g., Davidson and MacKinnon 2006). In our case, a natural alter-
native is to adopt a two-sample two-stage least squares (TS2SLS) variant of Angrist
and Krueger’s (1992) two-sample instrumental variable estimator. Specifically, for
each patent examiner in our sample, we observe the decisions that examiner makes
on non-human gene patent applications, and we can use that separate sample to esti-
mate variation in leniency across examiners.’? Motivated by the institutional con-
text, we condition on Art Unit-by-application year fixed effects, so that we capture
an examiner’s patent grant propensity relative to other examiners reviewing appli-
cations in that Art Unit in that application year.”¥ We use the two-sample two-stage
least squares standard error correction provided by Inoue and Solon (2010), and
cluster at the patent application level by extending Pacini and Windmeijer’s (2016)
generalization to the heteroskedastic case.™

C. First-Stage Estimates

provides a visual representation of our first stage. In our first-stage
sample, we calculate the mean grant rate for each examiner, residualized by Art

Unit-by-application year fixed effects, and relate this measure of examiner “leni-
ency” to patent grant outcomes.’ Visually, there is a strong relationship.

To quantify this relationship, we estimate the following equation for a patent
application i examined by patent examiner j filed in year ¢ assigned to Art Unit a in
our first-stage sample:

(1) 1 (patent grant);;,, = o+ - Z, + Sy, 1 (art unit) , + €55,

where the outcome variable 1 (patent grant) iita 18 an indicator variable equal to 1 if
patent application i was granted a patent, Z;;, is the examiner’s mean non-human
gene patent grant rate, and 3,1 (art unit) « are a set of Art Unit-by-application year
fixed effects.

In our first-stage sample, we estimate a (3 coefficient in this specification of 0.876,
with a standard error of 0.037. This point estimate implies that a 10 percentage
point increase in an examiner’s average patent grant rate is associated with a 8.8
percentage point increase in the likelihood that a patent application is granted a

32Much of the subsequent literature (e.g., Doyle 2007) has approximated JIVE through an informal leave out
mean approach.

331n practice, our results are similar if we use a leave-one-out-mean approach that computes examiner leniency
on the same sample as our outcomes are measured; see online Appendix Tables D.3 and D.4.

34 A separate concern is that if we only observed a small number of applications per examiner, our estimate
of the variation in leniency across examiners would be overstated. To address this concern, we limit the first-stage
sample to examiners that saw at least ten applications (Heckman 1981, Greene 2001). To match our conceptual
thought experiment, we also limit the sample to Art Unit-years with at least two examiners.

33 Conceptually, we would prefer to cluster our standard errors at the gene level. However, only a very small
share of the patent applications in our first-stage sample can be matched to gene identifiers, making that adjustment
infeasible. As a second best, we instead cluster at the patent application level in our two-sample two-stage least
squares specifications, and cluster at the gene level in robustness checks where that is feasible, such as in the leave-
one-out-mean approach in online Appendix Tables D.3 and D.4.

36We will describe the overlaid plot of lighter yellow triangles in Section IVD.
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FIGURE 3. PROBABILITY OF PATENT GRANT BY EXAMINER LENIENCY

Notes: The figure relates our examiner leniency measure, residualized by Art Unit-by-application year fixed effects,
to two variables: (1) the patent grant rate and (2) the predicted patent grant rate, where we predict patent grant as a
function of our two measures of patent value fixed at the time of application (patent family size and claims count).
All measures are constructed in our first-stage sample (N = 14,476).

patent.?’ The F-statistic on the examiner’s grant rate is on the order of 500, well
above the rule of thumb for weak instruments (Stock, Wright, and Yogo 2002).

As arobustness check, in online Appendix Table D.5 we replace Art Unit-by-year
fixed effects in this specification with Art Unit-by-year-by-class-by-subclass fixed
effects, on the subsample for which these finer fixed effects can be estimated. The
point estimates from this more stringent specification are very similar to and not
statistically distinguishable from the baseline point estimate described above, sug-
gesting that at least in our context, variation in the measured leniency of different
examiners is unlikely to be generated by the systematic sorting of patent applica-
tions by classes or subclasses.’®

37Qur patent grant outcome is measured as of 2010 and is censored for patent applications that are still in the
process of being examined, but this censoring should be less of a concern for earlier cohorts of gene patent appli-
cations. The point estimates on a subsample of early cohorts of applications are very similar to our baseline point
estimates (results not shown), suggesting that censoring appears to not substantively affect the magnitude of the
estimated first-stage coefficient. Note that this is likely because the Art Unit-by-application year fixed effects largely
account for differences in the probability of patent grant that are mechanically related to time since application.
Given this similarity, we retain all cohorts of gene patent applications to retain a larger sample size.

38Righi and Simcoe (2017) provide a set of formal tests for random assignment of patent applications to exam-
iners, and show that random assignment is rejected in the full sample of patent applications. Specifically, they doc-
ument that in some art units examiners appear to specialize in reviewing particular types of technologies. This fact
is consistent with the qualitative literature discussed above (such as Lemley and Sampat 2012), which suggested
that in some art units examiners are responsible for reviewing particular classes/subclasses and technology types. In
general, this type of technology specialization based on observables could raise the concern that there is also tech-
nology specialization based on unobservables that are correlated with both patentability and our measures of follow
on research. For two reasons, this does not appear to be a concern in our empirical setting. First, our point estimates
are very similar when we condition on Art Unit-by-year-by-class-by-subclass fixed effects, which suggests that
technology specialization based on observables is not a first-order issue in our setting. Second, as we document in
Section IVD, we do not uncover evidence of sorting based on other observable proxies for the value of applications.
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D. Investigating Selection

In order for examiner leniency to be a valid instrumental variable for the like-
lihood that a given gene patent application is granted a patent, it must satisfy the
exclusion restriction: the instrument can only affect follow-on innovation outcomes
through the likelihood that a gene is patented. The institutional details described in
Section IVA suggest that the assignment of applications to examiners is plausibly
random conditional on Art Unit-by-application year fixed effects, lending some a
priori credibility to the exclusion restriction. In this section, we empirically assess
whether this assumption is reasonable by investigating whether patent applications
assigned to “lenient” and “strict” examiners look similar on observable characteris-
tics fixed at the time of patent application.

Ideally, we would empirically assess selection using variables that are correlated
with the “patentability” of the application at the time of filing, so that we could
test whether applications that appear more patentable tend to be assigned to more
lenient examiners. As discussed by Lemley and Sampat (2012), it is difficult to
identify variables that measure the “patent-worthiness” of an invention.?” A variety
of metrics have been proposed as measures of the value of granted patents: forward
citations (Trajtenberg 1990), patent renewal behavior (Pakes 1986, Schankerman
and Pakes 1986, Bessen 2008), patent ownership reassignments (Serrano 2010),
patent litigation (Harhoff, Scherer, and Vopel 2003), and excess stock return values
(Kogan et al. 2017). For our purposes, these measures are not appropriate: we need
measures of patent value that are defined for patent applications (not just for granted
patents), and also want a measure that is fixed at the time of application (and hence
unaffected by subsequent grant decisions). For these reasons, we focus on two value
measures which fit these criteria: patent family size and claims count.™

Generally stated, a patent “family” is defined as a set of patent applications filed
with different patenting authorities (e.g., United States, Europe, Japan) that refer to
the same invention. The key idea is that if there is a per-country cost of filing for a
patent, firms will be more likely to file a patent application in multiple countries if
they perceive the patent to have higher private value. Past work starting with Putnam
(1996) has documented evidence that patent family size is correlated with other
measures of patent value. We define patent family size as the number of unique
countries in which the patent application was filed.

We use claims count as an alternative value measure that is fixed at the time of
patent application, as proposed by Lanjouw and Schankerman (2001). The key idea
underlying this measure is that patents list “claims” over specific pieces of intellec-
tual property, and that patents with more claims may be more valuable.

For our purposes, there are two key empirical questions we want to investigate
using these measures. First, do patent family size and/or claims count predict patent
grant? While clearly imperfect metrics of patentability, these variables are predictive

391In their paper, Lemley and Sampat (2012) show that two observable characteristics fixed at the time of appli-
cation—the number of pages in the application and the patent family size—are not correlated with a measure of
examiner experience (years of employment at the USPTO). That evidence provides some indirect support for our
exclusion restriction.

40Unfortunately, backward citations-based measures cannot be constructed for patent applications, because
published US patent applications do not list backward citations.



VOL. 109 NO. 1 SAMPAT AND WILLIAMS: HOW DO PATENTS AFFECT FOLLOW-ON INNOVATION ~ 225

of patent grants: if we regress an indicator variable for patent grant on these two vari-
ables, the p-value from an F-test of joint significance is <0.001. Second, is the pre-
dicted probability of patent grant—predicted as a function of family size and claims
count—correlated with our examiner leniency instrument? If we regress the predicted
probability of patent grant (predicted as a function of family size and claims count) on
our examiner leniency instrument (residualized by Art Unit-by-application year fixed
effects), we estimate a coefficient of 0.013 (standard error 0.003). This relationship is
displayed nonparametrically in the plot of lighter yellow triangles in Figure 3: consis-
tent with our economically small regression estimate, there is no visual relationship
between the predicted probability of patent grant and our instrument.

Taken together, the analysis in this section provides indirect support of our exclu-
sion restriction in the following sense: we find no evidence that applications which
appear more likely to be patented based on covariates that are fixed at the time of
filing are differentially assigned to more lenient examiners. Hence, the variation in
grant rates across examiners appears to reflect differences in the decisions made on
ex ante similar applications.

E. Instrumental Variables Estimates

documents our instrumental variable estimates, relating patenting (instru-
mented by examiner leniency) to follow-on innovation outcomes.*’

For our measures of follow-on scientific research (publications; panel A of Table 3)
and commercialization (clinical trials; panel B of Table 3), the 95 percent confidence
intervals on our log estimates can reject declines of more than 9 percent; the 95 per-
cent confidence intervals on our binary versions of these outcomes (“any publication”
or “any clinical trial””) are much less precise. For our measure of diagnostic test avail-
ability (panel C of Table 3), the 95 percent confidence interval suggests that, relative to
a mean of around 9 percent, we can reject declines in this outcome of greater than 42
percent and reject increases of greater than 11 percent. While some of the individual
estimates are statistically significant at conventional levels (for example, the p-value
for our estimate of how log scientific publications were affected is 0.024), we empha-
size here that the economic magnitudes of these estimates are small.

The estimates from our first quasi-experimental approach—comparing follow-on
innovation across genes claimed in successful versus unsuccessful patent applica-
tions—are more precise than these estimates. Our confidence in interpreting those
estimates as causal is strengthened by the fact that the examiner leniency instrument
generates similar results, albeit which are much less precise. From an economic
perspective, the estimates from our first approach can cleanly reject the effect sizes
documented in the prior literature on how non-patent forms of intellectual prop-
erty affect follow-on innovation (Williams 2013, Murray et al. 2016). For exam-
ple, Williams (2013) documents that a non-patent form of intellectual property
on the human genome generated declines in follow-on innovation on the order of
30 percent, whereas the estimates from our first approach tend to reject declines or
increases in follow-on innovation of more than 5-15 percent. The estimates from

“1Online Appendix Table D.6 documents corresponding ordinary least squares (OLS) estimates for this speci-
fication, for comparison.
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TABLE 3—PATENTS AND FOLLOW-ON INNOVATION ON HUMAN GENES BY EXAMINER LENIENCY:
INSTRUMENTAL VARIABLES ESTIMATES

log of follow-on Any follow-on
innovation in 2011-2012  innovation in 2011-2012
) 2
Panel A. Scientific publications
Patent granted (instrumented) —0.0230 —0.0187
(0.0102) (0.0089)
Mean of dependent variable 0.0798 0.0888
Observations 293,652 293,652
Panel B. Clinical trials
Patent granted (instrumented) —0.0488 —0.0293
(0.0209) (0.0118)
Mean of dependent variable 0.0690 0.0500
Observations 293,652 293,652
Panel C. Diagnostic test
Patent granted (instrumented) - —0.0141
- (0.0123)
Mean of dependent variable - 0.0918
Observations - 293,652

Notes: This table presents instrumental variable estimates, relating follow-on innovation to whether a patent appli-
cation was granted a patent, instrumented by our examiner leniency instrument. The sample for these regressions is
constructed from application-gene-level data, and includes patent application-gene-level observations in our human
gene sample (N = 293,652). All regressions include Art Unit-by-application year fixed effects. Each coefficient
is from a separate regression. Standard errors are clustered at the patent application level (Inoue and Solon 2010,
Pacini and Windmeijer 2016).

our second approach, which are much less precise, can generally but not always
reject declines in follow-on innovation on the order of 30 percent.

V. Discussion
A. Connecting Theory to Data

A well-developed theoretical literature has generated predictions for how patents
will affect follow-on innovation under different conditions. For example, if a patent
holder can develop all possible follow-on inventions herself, then all socially desir-
able follow-on inventions will be developed. However, as stressed by Scotchmer
(2004), the patent holder may not know all potential opportunities for follow-on
innovation; in Scotchmer’s language, ideas for follow-on innovations may be
“scarce.” The data suggest this is the relevant case in our context: as best we can
measure, very little of the follow-on research in our sample is done by the patent
assignee.*” Tracing the identity of follow-on innovators is most feasible for our

42Note that documenting this type of heterogeneity requires some relatively unusual data construction efforts
because published patent applications are not required to list the assignee of the application, which is missing for
about 50 percent of published applications. Based on discussions with individuals at the USPTO, we developed an
approach which allows us to fill in missing assignee names in most but not all cases; details of this approach are
included in online Appendix C.
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clinical trials data, which record the name of the organization in charge of the clini-
cal trial.** We matched clinical trial organizations with assignee names in the patent
application data, and found that among all observed clinical trials in the human gene
sample these entities were the same in only 0.1 percent of cases.™ This suggests
the most relevant case in our setting is one in which follow-on innovations require
cross-firm licensing agreements.

If ex ante licensing agreements can be signed prior to follow-on inventors sink-
ing their R&D investments, all socially desirable follow-on inventions will still be
developed.™ However, if there are impediments to ex ante licensing, such as asym-
metric information, then follow-on innovation will be lower than socially desirable
due to the problem of how to divide the profit across firms (Scotchmer 1991, Green
and Scotchmer 1995). This profit division problem could be exacerbated if trans-
action costs hinder cross-firm licensing agreements (Heller and Eisenberg 1998,
Anand and Khanna 2000, Bessen 2004). One natural conjecture is that bargaining
failures may be less common in cases where one or both parties is a non-profit entity
such as a university. We investigated this possibility in our data by manually inspect-
ing each clinical trial organization and patent application assignee in order to clas-
sify each as a for-profit or not-for-profit. In essentially all cases (96 percent), patent
applications are assigned to for-profit firms.*S Moreover, in nearly all cases both
the assignee and the clinical trial organization are for-profit entities (86 percent of
our sample). Unfortunately, this means we lack sufficient variation in our sample to
explore heterogeneity in the for-profit status of assignees or follow-on innovators.*’

Interpreted through the lens of this theoretical literature, the fact that follow-on
innovations in this market will often require cross-firm licensing agreements (given
the low rates of follow-on innovation by patent holders themselves), together with
the fact that we empirically find no evidence that patents induce economically mean-
ingful reductions in follow-on innovation, suggests that licensing contracts in this
market operated at least somewhat efficiently.

Importantly, this interpretation depends critically on the assumption that gene
patents are sufficiently broad that the types of follow-on inventions we measure
would require gene patent licenses. In our view, legal and policy writings on this

43 Tracing the identity of follow-on innovators is much less feasible for our other two outcomes: in the case of
scientific publications, publicly available data on scientific publications (in PubMed) only record the institutional
affiliation of the first author (when the last would arguably be most relevant), and our diagnostic tests data do not
provide information on the institution offering the test.

44 Specifically, we matched using the Levenshtein distance divided by the average length of the two strings.
Pairs with low scores and pairs with at least one word in common were manually checked for false negative
matches. Because companies could conceivable operate clinical trials through subsidiaries, we purchased data from
ReferenceUSA on the parent companies of each firm in our clinical trials and patent application data in order to
classify firms that share the same parent company as belonging to the same “company family.” In practice, our
results in this section are essentially identical whether or not we account for company families using this data.

45 Also important to mention is the strand of research dating back at least to Kitch (1977), which has argued, in
contrast with this Scotchmer-style literature, that patents may facilitate investment and technology transfers across
firms (Arora 1995; Arora, Fosfuri, and Gambardella 2001; Kieff 2001; Gans, Hsu, and Stern 2002, 2008), increas-
ing incentives for follow-on research and commercialization.

46 Previous research such as Jensen and Murray (2005) documented that public sector assignees accounted for
around one-quarter of issued gene patents during an earlier time period than our data cover; this may indicate that
the public sector became less prominent in gene patenting over time, though we do not examine this directly.

47 Galasso and Schankerman (2015) also explore heterogeneity based on the size of the patent assignee. Again,
in practice, this dimension of heterogeneity is not meaningful in our sample of human gene patents: 88 percent of
the applications in our sample are assigned to one of four firms which would all be reasonably classified as small
biotechnology firms over our period of study (Genentech, Corixa, Incyte, and Millennium).
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topic clearly support this assumption. In a now-classic paper, Heller and Eisenberg
(1998) documented that more than 100 issued US patents included the term “adren-
ergic receptor’ in the claim language, and pointed to this as an example of the com-
plex biomedical patent landscape. Consistent with this concern, in a comment on
the Heller-Eisenberg paper published in the same issue of Science, the then-USPTO
biotechnology examination unit head John Doll argued that gene patents would
be interpreted quite broadly by the USPTO (Doll 1998). For example, Doll wrote
“... once a [gene] is patented, that patent extends to any use, even those that have
not been disclosed in the patent” (p. 690). This interpretation strongly supports the
assumption that the follow-on innovations we measure would require gene patent
licenses.

However, one can find writings which take the opposite position. For example,
in a second comment on the Heller-Eisenberg paper published in the same issue of
Science, Seide and MacLeod (1998) argued that based on a cursory patent clearance
review, at most only a small number of licenses might be required in the adrener-
gic receptor case. A similar argument has been made in the context of gene pat-
ents by Holman (2012): although a large number of human genes are claimed by
US patents, he argues that a reading of the claims suggests that not all subsequent
research on these genes would necessarily infringe. An anecdote is perhaps helpful
in illustrating a concrete example of why gene patent licenses may not always be
needed. Andrew Pollack reported in the New York Times'™ that pharmaceutical firm
Bristol-Myers abandoned research on more than 50 cancer-related proteins due to
conflicts with gene patent holders. While interpreted by many as evidence of gene
patents deterring follow-on innovation, in fact this example was reported as part of
a licensing agreement Bristol-Myers brokered with another firm (Athersys) for a
method enabling the use of protein targets without infringing gene patents. That is,
in this case, despite Bristol-Myers reporting frictions in licensing markets for gene
patents, the follow-on research they wished to pursue was able to occur.

One might think that the question of whether follow-on innovations require
licenses could be resolved simply by reading the text of the claims of the gene pat-
ents in our sample. However, patent breadth is determined not only by the text of the
patent, but also by courts’ interpretations of these claims. Because very few gene
patents have been litigated in court, we have little data on how broadly these patents
would be interpreted in practice.

We want to stress two key take-aways from this discussion of patent breadth. First,
from a theoretical perspective narrow patents should not deter follow-on innovation,
so to the extent that this alternative interpretation is correct our analysis would be
most useful in highlighting that documentation of biomedical patenting frequency
(as in Jensen and Murray 2005) should not necessarily be interpreted as evidence
of a problem; analyses such as the one in this paper are needed in order to inves-
tigate whether patents are sufficiently broad to actually be affecting real economic
behavior and outcomes. Second, while these two interpretations are interesting and
important to consider from an academic perspective, distinguishing between them
is not required from a policy perspective: the fact that gene patents do not appear to

48 Andrew Pollack, “Bristol-Myers and Athersys Make Deal on Gene Patents,” New York Times, January 8,
2001.
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have hindered follow-on innovation is sufficient to inform both the Nordhaus-style
theoretical question of interest in this market, and the policy-relevant question at the
basis of the recent US Supreme Court AMP v. Myriad ruling.

B. Interpreting Our Estimates: All Intellectual Property Is Not Alike

Our empirical estimates suggest that gene patents have not had quantitatively
important effects on follow-on scientific research nor follow-on product devel-
opment. This conclusion stands in contrast with a June 2013 US Supreme Court
decision which unanimously ruled that human genes should not be patentable
because such patents “would ‘tie up’ ... [genes] and... inhibit future innovation”
(p. 11). While the Court cited no empirical evidence on this point, and a broad
range of commenters (e.g., National Research Council 2006, Caulfield et al. 2013)
argued that there was essentially no empirical evidence available to either support
or refute that assertion, we here give some context for why the previous literature
may have been—perhaps erroneously—interpreted as supporting this view.

Perhaps most closely related to this paper is previous work by one of the authors
(Williams 2013), who analyzed a non-patent form of database protection held by
the private firm Celera on their version of the sequenced human genome. Celera
attempted (but largely failed) to obtain patents on its sequenced genetic data, most
likely because Celera’s sequenced genes alone were not sufficient to meet the
USPTO’s utility requirement in the absence of specific knowledge about the func-
tions of those genes in the human body. When they were unable to obtain patents,
Celera hired a well-known intellectual property lawyer and asked him to design an
alternative form of intellectual property that would be the next best available alter-
native means of capturing a return on their investment in sequencing the human
genome. This lawyer designed a contract-law based form of intellectual property
that had several key features. First, Celera’s data were “disclosed” in 2001 (Venter
et al. 2001), in the sense that any individual could view data on the assembled
genome through Celera’s website or by obtaining a data DVD from the company.
Second, viewing or obtaining Celera’s data required agreeing not to redistribute
the data. These restrictions on redistribution allowed Celera to grant academic
researchers free access to Celera’s data for non-commercial research, and to sell
its data to larger institutions such as pharmaceutical companies. Although terms of
specific deals were private, Service (2001) reports that pharmaceutical companies
were paying between $5 million and $15 million a year, whereas universities and
nonprofit research organizations were paying between $7,500 and $15,000 for
each lab given access to the data. Importantly, these restrictions on redistribution
also meant that Celera’s data were not disclosed in the main open-access data-
bases (e.g., GenBank) used by researchers over this period. Third, any researcher
wanting to use Celera’s data for commercial purposes was required to negotiate a
licensing agreement with Celera. Williams (2013) documents that this non-patent
form of intellectual property on human genes was associated with large declines in
follow-on scientific research and commercial product development—on the order
of 30 percent—relative to genes that were sequenced at the same time by the pub-
licly-funded Human Genome Project, which placed all of their sequenced genes
in public open-access databases such as GenBank.
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Why did Celera’s intellectual property cause declines in follow-on innovation,
while gene patents did not?*’ Theoretical models tend to analyze stylized charac-
terizations of intellectual property rights in which Celera’s contract law-based form
of intellectual property could reasonably be seen as practically identical to patent
protection: both intended to provide an incentive for the discovery of an invention,
and both required licensing agreements for any follow-on commercial applications
developed by inventors outside of the firm. Seen from this perspective, the contrast
in impacts on follow-on innovation between Celera’s intellectual property and gene
patents is perhaps surprising.

However, viewed through an alternative lens—what one might call the “disclo-
sure” lens—this contrast is less surprising and perhaps even expected. The patent
system requires inventors to disclose the claimed invention. Although theoretical
models of intellectual property have tended to pay relatively little attention to the
disclosure requirement, in our view this is a critical contrast between Celera’s intel-
lectual property and gene patents. For gene patent applications, the patent system’s
disclosure requirement induced explicit reporting of the claimed DNA sequence
in a way that enabled open access to the sequence data underlying both accepted
and rejected applications for all prospective follow-on users. In contrast, as detailed
above Celera’s data were disclosed in a much more restrictive way.

Both the institutional details of our context and a growing academic literature
suggest that this difference in disclosure may plausibly account for the different
observed effects of Celera’s intellectual property and gene patents on follow-on inno-
vation outcomes.”’ Over the time period of our study, all DNA sequences claimed in
patent applications submitted to the USPTO were disclosed in the main open-access
databases (e.g., GenBank) used by researchers.’! In contrast, the no-redistribution
restriction on Celera’s sequenced data meant that their data were not added to the
key open-access databases that were widely used by researchers. A natural hypoth-
esis is that this lack of open disclosure led to fewer scientific researchers analyz-
ing Celera’s data, and that this in turn led to fewer commercializable discoveries.
Consistent with this hypothesis, both the theoretical work of Aghion, Dewatripont,
and Stein (2008) and other sources of empirical evidence (Furman and Stern 2011,
Murray et al. 2016) suggest that limiting access to research materials may discour-
age follow-on research. Also consistent with this hypothesis, and with our empirical
results, Galasso and Schankerman (2015) find no evidence that patent invalida-
tions—which should induce a change in licensing requirements but no change in
disclosure—increase patent citations (their measure of follow-on innovation) in the
technology field that includes most of our gene patents.’”

49Notably, some commenters such as Joseph Stiglitz argued that gene patents were likely to deter follow-on
innovation on the basis of the Williams (2013) estimates; see Marshall (2013).

39Gallini (2017) makes a similar argument: patents require disclosure in exchange for property rights, whereas
non-patent IP does not. She discusses how this intuition can be formalized in a Green and Scotchmer (1995) style
model.

51 As we discuss below, this was not true for rejected patent applications filed before November 29, 2000, but is
true for all patent applications in our sample as all were filed after that date.

52 Specifically, the most common patent class in our sample is 435 (Chemistry: molecular biology and micro-
biology), which is included in the NBER patent technology field “drugs and medical”; Galasso and Schankerman
(2015) do not find evidence that patent invalidations increase follow-on citations in that subcategory.
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Our findings provide indirect support for the idea that gene patents effectively
disclose information. More precisely, our findings indirectly support the idea that
gene patent applications—both accepted and rejected, over the time period of our
study—effectively disclose information. One limitation of our analysis is that we
cannot speak to whether the effect of a gene patent application being accepted ver-
sus rejected may have been different for patent applications filed before November
29, 2000, when rejected applications were not required to be publicly disclosed.
Under that earlier regime, patent applicants had the option—if their applications
were rejected—of pursuing alternative forms of intellectual property protection on
their inventions. In the case of Celera, when their patent applications were rejected
and not required to be disclosed, the firm chose to rely on an alternative form of
intellectual property, which, taken at face value, resulted in both lower private
returns and lower social returns to their research investment. That is, the lower lev-
els of follow-on innovation on Celera’s genes suggest that both Celera and the social
planner may have preferred to have granted Celera’s gene patent applications rather
than rejecting them.

Importantly, this disclosure interpretation reinforces one important reason why
our estimates may not generalize beyond the case of human gene patents: the
USPTO’s specific (and more stringent) requirements for the disclosure of sequenced
genetic data may have made the disclosure function particularly effective in our
context. While the USPTO requires that all patent applicants satisfy the disclosure
requirement (35 USC. §112), it is generally not in patent applicants’ interest to
disclose details about their invention, as disclosure increases the risk of imitation.
For example, Fromer (2009) argues that it is in patentees’ interest to disclose as
little information as possible in their patent application.’ Patent attorneys, work-
ing on patentees’ behalf, arguably have a legal responsibility to minimize disclo-
sure subject to what the USPTO requires. Roin (2005) summarizes the effects of
these incentives: “the written descriptions are often drafted in ways that make them
tedious or difficult for engineers to understand” (p. 2024), “... the goals of clarity
and brevity take a back seat to drafting strategies meant to ensure that patents are
interpreted broadly by the courts” (p. 2025). While recent survey evidence paints a
somewhat more optimistic view (Ouellette, 2012, 2017),> our basic point stands:
the USPTO’s disclosure requirements for gene patents were much more stringent
than is usually the case, providing an important reason why our estimates may not
generalize beyond the case of human gene patents.

From a policy perspective, these findings point to a potential unintended con-
sequence of the US Supreme Court’s rulings that human genes as well as several
other types of technologies—such as business methods and diagnostic tests—are
no longer eligible for patent protection. These rulings seem to be based on the idea

53 She writes: “patentees rationally have little or no incentive to offer more information than the patent laws
require and have an incentive to obfuscate information they provide whenever possible” (Fromer 2009, pp. 552~
53). Cockburn, Kortum, and Stern (2003, footnote 4) argue that university and public sector patents are often writ-
ten less strategically than are those from private firms.

34Ouellette (2012, 2017) document survey evidence suggesting that researchers do rely on patents as a source
of technical information. In nanotechnology (Ouellette 2012), 64 percent of researchers surveyed report having read
at least part of a patent (other than their own) for a research purpose; in a broader sample of researchers (Ouellette
2017), 79 percent of industry researchers and 80 percent of researchers in other sectors report having read patents
for some scientific reasons, including looking for both general information and specific solutions.
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that if these inventions are not patented, they will be placed in the public domain.
However, the alternative to patent protection may instead be non-patent intellectual
property that could generate worse outcomes than allowing patent protection. As
a concrete example, in response to the Mayo v. Prometheus ruling which rendered
many medical diagnostic methods unpatentable, the law firm Goodwin Proctor
issued an “alert” arguing that the ruling called for “a renewed look at trade secret
law for protection of diagnostics innovations as an alternative to patents.”>> This
type of behavioral response would be critical to assessing the potential welfare
implications of the US Supreme Court’s decisions on many types of technologies
which have recently been declared to be unpatentable.

VI. Conclusion

The contribution of this paper is to investigate whether patents on human genes
have affected follow-on scientific research and product development. Using admin-
istrative data on successful and unsuccessful patent applications submitted to the US
Patent and Trademark Office (USPTO), we link the exact gene sequences claimed in
each patent application with data measuring gene-related scientific research (publi-
cations) and commercial investments (clinical development). Building on this data,
we develop two new sources of quasi-experimental variation: first, a simple com-
parison of follow-on innovation across genes claimed in successful versus unsuc-
cessful patent applications; and second, use of the “leniency” of the assigned patent
examiner as an instrumental variable for whether the patent application was granted
a patent. Both approaches suggest that—on average—gene patents have not had
quantitatively important effects on follow-on innovation.

This empirical evidence speaks against two existing views. First, there has been
widespread concern that patents on human genes may hinder follow-on innovation.
For example, in the 2013 Association for Molecular Pathology v. Myriad Genetics
case, the US Supreme Court invalidated patent claims on genomic DNA, arguing
that such patents “would ‘tie up’ the use of such tools and thereby inhibit future
innovation premised upon them” (p. 11). Our empirical estimates do not provide
support for patents inducing economically meaningful reductions in follow-on inno-
vation in the context of human genes. Second, dating back at least to the academic
work of Kitch (1977), many have argued that patents on basic discoveries play an
important role in facilitating subsequent investment and commercialization. Our
empirical estimates do not provide support for patents spurring follow-on innova-
tion in the context of human genes.

Taken together with the prior literature, our evidence suggests two conclusions.
First, for the case of human genes, the traditional patent trade-off of ex ante incen-
tives versus deadweight loss may be sufficient to analyze optimal patent policy
design, because any effects of patents on follow-on innovation appear to be quantita-
tively small. Second, our evidence, together with the evidence from Williams (2013)
on how a non-patent form of intellectual property on the human genome affected
follow-on innovation, suggests a somewhat nuanced conclusion: while patent

35See http://www.goodwinlaw.com/publications/2012/03/lessons-from-mayo-v-prometheus-assessing-patent-
ability-and-obtaining-patent-protection.


http://www.goodwinlaw.com/publications/2012/03/lessons-from-mayo-v-prometheus-assessing-patentability-and-obtaining-patent-protection
http://www.goodwinlaw.com/publications/2012/03/lessons-from-mayo-v-prometheus-assessing-patentability-and-obtaining-patent-protection

VOL. 109 NO. 1 SAMPAT AND WILLIAMS: HOW DO PATENTS AFFECT FOLLOW-ON INNOVATION 233

protection on human genes does not appear to have hindered follow-on innovation,
an alternative non-patent form of intellectual property—which was used by a private
firm after its gene patent applications were largely unsuccessful in obtaining patent
grants—induced substantial declines in follow-on scientific research and product
development. This pattern of evidence suggests that changes to patent policy must
carefully consider what strategies that firms will use to protect their discoveries in
the absence of patents, and that an understanding of the relative costs and benefits
of patent protection compared to those outside options is needed in order to evaluate
the welfare effects of patent policy changes.
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