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How should we measure metacognitive (‘‘type 2’’) sensitivity, i.e. the efficacy with which
observers’ confidence ratings discriminate between their own correct and incorrect stimu-
lus classifications? We argue that currently available methods are inadequate because they
are influenced by factors such as response bias and type 1 sensitivity (i.e. ability to distin-
guish stimuli). Extending the signal detection theory (SDT) approach of Galvin, Podd, Drga,
and Whitmore (2003), we propose a method of measuring type 2 sensitivity that is free
from these confounds. We call our measure meta-d0, which reflects how much information,
in signal-to-noise units, is available for metacognition. Applying this novel method in a 2-
interval forced choice visual task, we found that subjects’ metacognitive sensitivity was
close to, but significantly below, optimality. We discuss the theoretical implications of
these findings, as well as related computational issues of the method. We also provide free
Matlab code for implementing the analysis.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In psychological tasks, one measure of interest may be how well an observer’s confidence ratings predict stimulus judg-
ment accuracy. For instance, suppose that observers perform a discrimination task, and on every trial provides a judgment
about how confident they are that their discrimination is correct. We may ask: to what extent are the observer’s confidence
judgments predictive of response accuracy? In the literature, the task of discriminating between one’s own correct and incor-
rect responses with confidence judgments has been called the ‘‘type 2 task’’ (Clarke, Birdsall, & Tanner, 1959; Galvin et al.,
2003), as opposed to the ‘‘type 1 task’’ of discriminating between stimulus alternatives.

There are several widely used measures of type 2 sensitivity. Assuming confidence judgments are characterized in a bin-
ary way (high or low), a straightforward way to measure type 2 performance is to measure how often confidence judgments
are congruent with accuracy, i.e. the probability that correct and incorrect judgments are ‘‘correctly’’ endorsed with high and
low confidence, respectively. (See e.g. the ‘‘advantageous wagering’’ measure in Persaud, McLeod, & Cowey, 2007). A related
approach is to compute a correlation coefficient between accuracy and confidence (e.g. phi in Kornell, Son, & Terrace, 2007
and gamma in Nelson, 1984). However, while these approaches are simple conceptually and computationally, they do not
model type 2 sensitivity and type 2 response bias as separate processes and thus risk confounding them. For instance, a
difference in two observers’ confidence-accuracy correlation coefficient may be due merely to a difference in overall likeli-
hood to endorse responses with high confidence, rather than a true difference in type 2 sensitivity. For this reason, signal
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Fig. 1. Signal detection theory analysis of type 2 (metacognitive) performance. (A) The standard signal detection model. The observer must discriminate
between stimulus classes S1 and S2. Each stimulus presentation generates a value on an internal decision axis, corresponding to the evidence in favor of S1
or S2. Evidence generated by each stimulus class is normally distributed across the decision axis, and the distance between these distributions in standard
deviation units (d0) measures how well the observer can discriminate S1 from S2. The observer sets a decision criterion c1, such that all signals exceeding c1

are labeled ‘‘S2’’ and all those failing to exceed c1 are labeled ‘‘S1.’’ The observer also sets criteria c2|r=’’S1’’ and c2|r=’’S2’’ to determine confidence ratings
(higher ratings for signals farther from c1). In this example, we set d0 = 2 and c1 = 0. (B) Expected type 2 sensitivity from d0 and c1. Consider only trials
where the observer responds ‘‘S2,’’ i.e. only the portion of the decision axis exceeding c1. Then the S2 distribution corresponds to the distribution of
evidence for correct responses (i.e. S2 stimuli classified as ‘‘S2’’), and the S1 distribution corresponds to the distribution of evidence for incorrect responses
(i.e. S1 stimuli classified as ‘‘S2’’). All trials surpassing c2|r=’’S2’’ are endorsed with high confidence. Sweeping the c2|r=’’S2’’ criterion across the decision axis
generates different values for type 2 false alarm rate (p(high confidence | incorrect)) and type 2 hit rate (p(high confidence | correct)), and thus generates a
type 2 ROC (Receiver Operating Characteristic) curve. (Similar considerations hold for ‘‘S1’’ responses.) Thus, d0 and c1 are jointly sufficient to determine
type 2 sensitivity for each response type, according to the standard signal detection model. (C) Characterizing type 2 sensitivity. Consider only trials where
the observer responds ‘‘S2,’’ i.e. only the portion of the decision axis exceeding c1. The analysis from (A) and (B) can be inverted in order to characterize
type 2 sensitivity. Suppose that the observer has d0 = 2 and c1 = 0, with ‘‘S2’’ responses having a type 2 hit rate = .64 and a type 2 false alarm rate = .41. We
may characterize type 2 sensitivity as meta-d0 , i.e. the level of d0 that would have been expected to have generated the observed type 2 data. In this
example, meta-d0 = 1 even though d0 = 2, indicating type 2 sensitivity below expectation. Though not pictured here, this analysis can likewise be applied to
‘‘S1’’ responses.
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detection theory (SDT) approaches (Macmillan & Creelman, 2005) should be preferred, because they allow one to separate
the independent contributions of sensitivity and response bias in type 2 task performance.

Several SDT approaches to characterizing type 2 performance have been put forth. Kunimoto, Miller, and Pashler (2001)
proposed modeling type 2 performance in the same way SDT models type 1 performance. In the simplest type 1 SDT model,
we assume that two stimulus alternatives generate normal distributions of evidence along some internal decision axis (see
e.g. Fig. 1A), with the normalized distance between the distributions, d0, providing a measure of stimulus discrimination sen-
sitivity. In Kunimoto et al.’s approach, we similarly assume that correct and incorrect judgments generate normal distribu-
tions of evidence along some decision axis, with the normalized distance between them, a0, providing a measure of type 2
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sensitivity. However, specifying the parameters of the standard SDT model1 already places strong constraints on the distribu-
tions of evidence for correct and incorrect judgments (Fig. 1B; Galvin et al., 2003), and these distributions in general do not con-
form well to the model proposed by Kunimoto et al.; in a sense, their type 2 SDT model is thus inconsistent with the type 2
implications of the standard type 1 SDT model. Thus, a’ does not satisfactorily separate type 2 sensitivity from type 2 response
bias theoretically (Galvin et al., 2003) or empirically (Evans & Azzopardi, 2007).

Clarke et al. (1959) and more recently Galvin et al. (2003) discussed how distributions of evidence for correct and incor-
rect stimulus judgments could be derived from the type 1 SDT model. An important lesson from this work is that type 1 sen-
sitivity (d0) and response bias (c1) influence the area under the type 2 ROC curve (Fig. 1B). This entails that two
metacognitively optimal observers could differ on type 2 performance due only to differences in type 1 performance.2

This observation invites a distinction between what might be called ‘‘absolute’’ type 2 sensitivity and ‘‘relative’’ type 2
sensitivity.3 Suppose observer A has d0 = 1, c1 = 0 and observer B has d0 = 2, c1 = 0, but that both observers make optimal use
of the type 1 information available to them when performing the type 2 task. B will have greater area under her type 2 ROC
curve than A, and in general her confidence ratings will be more predictive of accuracy. In this sense, B has greater ‘‘absolute’’
type 2 sensitivity than A. But by hypothesis, the difference in their metacognitive performance derives entirely from informa-
tional differences at the type 1 level, and so in a sense it is misleading to conclude that the metacognitive mechanisms of B are
operating at a higher level of efficiency or sensitivity than those of A. The difference in their absolute type 2 sensitivity reflects
the difference in the quality of type 1 information they are metacognitively evaluating, rather than in the quality of the eval-
uation itself. Once we take type 1 performance into account, we see that A and B are in fact equally effective at metacognitively
evaluating the type 1 information available to them. In this sense, A and B have equivalent ‘‘relative’’ type 2 sensitivity, i.e. type
2 sensitivity relative to type 1 performance.

Note that absolute and relative type 2 sensitivity assess different aspects of metacognitive performance. Absolute type 2
sensitivity measures how much information confidence ratings carry about task performance. Relative type 2 sensitivity fac-
tors out the contribution of type 1 performance to absolute type 2 sensitivity, thus revealing the efficacy of metacognitive
processing in and of itself. In other words, absolute type 2 sensitivity tells us how much we should trust an observer’s con-
fidence ratings, which depends on the quality of information being metacognitively evaluated as well as the quality of the
metacognitive evaluation itself. Relative type 2 sensitivity separates these factors, providing a measure of the quality of the
metacognitive evaluation itself.

For many research applications we are interested specifically in assessing the efficacy of metacognitive mechanisms in
and of themselves. In such instances, measures of absolute type 2 sensitivity such as area under the type 2 ROC curve
(e.g. Kolb & Braun, 1995; Wilimzig, Tsuchiya, Fahle, Einhäuser, & Koch, 2008) may not be appropriate, because such measures
are likely to be influenced by both the efficacy of metacognitive function and the quality of information those mechanisms
are evaluating.

How should we measure relative type 2 sensitivity? We endorse the proposal of Galvin et al. (2003) to evaluate observed
type 2 sensitivity with reference to the type 2 sensitivity that would be expected to occur, given an SDT analysis of the ob-
served type 1 performance (henceforth, ‘‘SDT-expected type 2 sensitivity’’). Galvin et al. envisioned doing this comparison at
the level of type 2 distributions of evidence, conditional on response accuracy. But this approach meets with several diffi-
culties. It is difficult to compute SDT-expected type 2 sensitivity since it is difficult to derive general mathematical forms
of the type 2 distributions from the type 1 model. And it is unclear how to compute observed type 2 sensitivity from observed
type 2 ROC data in terms of parametric type 2 distributions, given their complexity and dependence on type 1 model
parameters.

We observe that the spirit of Galvin et al.’s analysis can be retained while bypassing the difficulties of working directly
with type 2 distributions (Fig. 2). Due to the theoretical link between type 1 and type 2 SDT models (Fig. 1B), type 2 sensi-
tivity can be expressed at the level of type 1 distributions (Fig. 2A). That is, we can characterize observed type 2 sensitivity as
the value of d0 that a metacognitively optimal observer would have required to produce the empirically observed type 2 data.
We call this measure ‘‘meta-d’’ to reflect that it is a measure of type 2 sensitivity (meta-) expressed at the level of type 1 SDT
(d0). One can think of meta-d0 as a measure of the signal that is available for the subject to perform the type 2 task. While
meta-d0 measures observed type 2 sensitivity, its counterpart for SDT-expected type 2 sensitivity is simply the empirically ob-
served value of d0. Importantly, since meta-d0 is expressed in the same scale as the conventionally estimated d0 value, the two
can be compared directly. The comparison of meta-d0 with d0 achieves the comparison of observed type 2 sensitivity to SDT-
expected type 2 sensitivity. In turn, this comparison gives us a measure of relative type 2 sensitivity.

Meta-d0 has high interpretational value. If meta-d0 = d0, then the observer exhibits type 2 sensitivity in agreement with
what the standard SDT model would expect it to be, given the observed type 1 performance. In other words, on an SDT anal-
ysis we could say that the observer is metacognitively ‘‘ideal,’’ making use of all the information available for the type 1 task
1 In the following, we use the term ‘‘standard SDT model’’ to refer to the model depicted in Fig. 1A, where stimuli generate normal distributions of evidence
on an internal decision axis, and observers set criteria to determine stimulus classification responses and confidence ratings. This model has had great success
in capturing patterns in empirical data; see Macmillan and Creelman (2005).

2 In the following, we use the term ‘‘type 1 performance’’ to refer jointly to the sensitivity and response bias of stimulus discrimination. We use ‘‘type 2
sensitivity’’ to refer to the efficacy with which confidence judgments discriminate between correct and incorrect responses. ‘‘Type 2 response bias’’ refers to the
overall propensity to endorse type 1 decisions with high confidence.

3 Note that absolute and relative type 2 sensitivity are not defined analogously to previously used metacognitive measures, absolute and relative accuracy.



Fig. 2. Schematic representation of two ways to quantify absolute and relative type 2 sensitivity in an SDT framework. Absolute type 2 sensitivity is a
quantification of how well confidence ratings distinguish between correct and incorrect type 1 decisions. Absolute type 2 sensitivity can be expressed at
either the level of type 1 or type 2 processes due to the theoretical relationship between type 1 and type 2 processes in SDT (Fig 1). Relative type 2
sensitivity measures how well metacognitive mechanisms function. It is derived by a quantitative comparison between observed and SDT-expected values
of absolute type 2 sensitivity occurring on the same level of expression. (A) From type 2 to type 1. The observed type 2 ROC can be expressed in terms of the
type 1 SDT parameter meta-d0 that would make the observed type 2 data most likely to have occurred. Meta-d0 can be compared to d0 to yield a measure of
relative type 2 sensitivity. (B) From type 1 to type 2. An estimate of the area under the observed type 2 ROC can serve as an absolute measure of type 2
sensitivity. The observed values of type 1 parameters d0 and c1 can be used to generate an expectation for the type 2 ROC. The areas underneath the observed
and expected curves can be compared to yield a measure of relative type 2 sensitivity.

Fig. 3. Observed vs. expected type 2 sensitivity in a spatial 2IFC task using meta-d0 . 27 subjects performed a spatial 2IFC task and rated confidence in
response accuracy (Study 1 from main text). Their absolute type 2 sensitivity was characterized using meta-d0 (Fig1; Fig 2A). Dots represent individual
subject data and the dashed line shows the curve expected from SDT, meta-d0 = d0 . There is a strong correlation between d0 and meta-d0 (r = .68, p = .0001),
such that d0 serves as an approximate upper bound on meta-d0 , in agreement with the theoretical link between type 1 and type 2 SDT models. Yet there is
substantial between-subject variance in the relationship between meta-d0 and d0 , such that several subjects fall well below the level of expected type 2
sensitivity and the group average for meta-d0 is significantly lower than d0 (paired t-test, p = .009). This suggests that we cannot take it for granted in
empirical data that d0 = meta-d0 , and thus meta-d0 has meaningful empirical work to do in contributing to absolute and relative measures of type 2
sensitivity.
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when performing the type 2 task. If meta-d0 – d0, then the observer’s type 2 sensitivity either outperforms or underperforms
expectation (Fig. 1C). Typically, one would expect meta-d0 6 d0, on the assumption that the information available for the type
1 task is exhaustive of the information available for the type 2 task. In this case, the degree to which meta-d0 is smaller than d0

reflects the degree to which the observer is metacognitively inefficient.
Because d0 has ratio scaling properties (Macmillan & Creelman, 2005), differences and ratios of d0 values are meaningful;

for instance, if observer A has d0 = 2 and observer B has d0 = 1, it is meaningful to say that A has twice the sensitivity of B.
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Since meta-d0 is expressed on the same scale as d0, numerical comparisons between d0 and meta-d0 are also yield meaningful
quantities. Thus, we are not limited to testing the null hypothesis that d0 = meta-d0, but can make graded assessments of rel-
ative type 2 sensitivity based on the outcome of differences or ratios. For instance, one can meaningfully state that a certain
psychophysical manipulation changed an observer’s metacognitive capacity from 100% to 70%, or that a certain drug reduced
the observer’s metacognitive capacity by 0.3 signal-to-noise ratio units (since d0 and meta-d0 are expressed in signal-to-noise
ratio units).

The detailed method for estimating meta-d0 is described in Supplementary Online Materials. In brief, the central idea of
the estimation is that the type 1 SDT model entails what the type 2 ROC curves for each type 1 response should be (Fig. 1B).
Thus, we can directly fit the parameters of a type 1 SDT model so as to optimize the fit of the type 1 SDT model’s predicted
type 2 ROC curves to the observed type 2 ROC data (Fig. 1C). Meta-d0 is the d0 of the type 1 SDT model that maximizes the
likelihood of the observed type 2 ROC data (given a response bias similar to that observed in the empirical data; see Supple-
mentary Online Materials). So for instance, if an observer has d0 = 2 and meta-d0 = 1, we could say that although their actual
d0 is 2, their response-conditional type 2 ROC curves behave as if their d0 were only 1.

For implementation, we provide free Matlab code for easy estimation of meta-d0 (http://www.columbia.edu/~bsm2105/
type2sdt/). On that website we also provide further documentation that gives full technical treatment to several theoretical
and computational issues.

In the present study, we applied this new analysis approach to estimate subjects’ metacognitive sensitivity in a spatial
2IFC (2-interval forced-choice) visual task. Specifically, we tested how far they deviated from optimal metacognitive sensi-
tivity given their type 1 performance.

2. Methods

Thirty participants performed a spatial 2IFC task. In each trial, participants distinguished between 2 spatial arrangements
of visual stimuli and then rated their confidence in the accuracy of their responses on a four-point scale. Details are reported
in Supplementary Online Materials.

3. Results

Despite the fact that we tried to titrate the stimulus contrast to control for type 1 performance level, there was substantial
between-subject variation in (type 1) d0. Nonetheless, we can use this to our advantage by observing the results of the meta-
d0 estimation across a range of d0 values. In Fig. 3, we plotted meta-d0 vs d0 for every subject. Note that there was a substantial
positive relationship between these variables with most data points clustering near the line meta-d0 = d0, in line with the SDT
prediction (Pearson’s r = .68, p = .0001). Further, while very few subjects outperformed the SDT expectation, several fell be-
low expectation (i.e. below the line meta-d0 = d0). Indeed, a paired t-test reveals that the mean level of meta-d0 (1.37) was
significantly lower than the mean d0 (1.78), t(26) = 3.0, p = .006. The mean value of meta-d0/d0 was 0.77, indicating that on
average subjects in this task exhibited absolute type 2 sensitivity at only about 77% of what would have been expected from
their type 1 task performance.

The log likelihood of the meta-d0 fits (see Supplementary Online Materials) did not correlate with meta-d0 (p = .2) or meta-
d0–d0 (p = .8), suggesting that measured variation in absolute and relative type 2 sensitivity in this data set cannot be attrib-
uted merely to variation in the quality of data fitting.

4. Discussion

In this study we have employed a novel method for isolating and measuring the sensitivity with which metacognitive
mechanisms differentiate between correct and incorrect decisions. One of the primary strengths of SDT is that we can use
it to calculate d0, a measure of stimulus classification sensitivity independent from the influence of response bias. In a similar
spirit, we have demonstrated a method for extending the standard SDT model in order to estimate meta-d0, a measure of type
2 sensitivity. Unlike most previously proposed measures of type 2 sensitivity, meta-d0 is not confounded with type 1 sensi-
tivity (d0), type 1 response bias (propensity to use one stimulus classification response more than another), or type 2 re-
sponse bias (propensity to give high confidence ratings).

Although the potential confounding of sensitivity and response bias is familiar from standard SDT, another potential con-
found looms in any analysis of type 2 data. This potential confound arises from the insight that, according to the standard
SDT model, type 1 task performance influences the area under the type 2 ROC curve. Thus, apparent differences in observers’
metacognitive capabilities may in fact be attributable merely to differences in how they perform on the primary stimulus
classification task. Our approach characterizes type 2 sensitivity in terms of meta-d0, the d0 one would expect to have gen-
erated the observed type 2 hit rates and false alarm rates. In the spirit of Galvin et al. (2003), meta-d0 can then be compared
to the actual d0 exhibited by the observer in order to quantify how well observed type 2 sensitivity compares to the type 2
sensitivity that would be expected to result from the observed type 1 performance. Meta-d0 measures type 2 sensitivity inde-
pendently from type 2 response bias, and evaluating meta-d0 with respect to d0 (e.g. calculating meta-d0–d0 or meta-d0/d0)
takes into account the effect of type 1 performance on the type 2 data.

http://www.columbia.edu/~bsm2105/type2sdt/
http://www.columbia.edu/~bsm2105/type2sdt/
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One potential source of concern in our analysis is the assumption that type 1 evidence is distributed normally along an
internal decision axis. If the assumption of normality does not hold then meta-d0 is not an appropriate measure of type 2
sensitivity. However, historically the assumption of normality has been observed to fit a wide range of psychological data
well (Macmillan & Creelman, 2005); it is for precisely this reason that SDT has been so successful. We note also that the gen-
eral approach we describe can be readily generalized to any model where two stimulus classes generate distributions of evi-
dence along a type 1 decision axis; that is, the assumption of normality per se is not critical to the spirit of the kind of
analysis we propose.

Finally, we note that the majority of supposedly ‘‘non-parametric’’ measures do not offer a satisfactory alternative.
Although measures such as advantageous wagering and trial-by-trial correlation coefficients between confidence and accu-
racy are not explicitly built upon parametric assumptions, they nonetheless imply curves of constant sensitivity on an ROC
plot, which in turn entails the values of the likelihood ratios of the underlying distributions of evidence at every point on the
decision axis (Macmillan & Creelman, 2005). Thus, although these measures are not explicitly parametric, they nonetheless
tacitly imply parametric assumptions. In fact, this is true for any measure that assigns a sensitivity value to a single hit rate
and false alarm rate. Alternatively, one may characterize absolute type 2 sensitivity in a non-parametric way by empirically
estimating the area under the type 2 ROC curve. However, it seems that converting this into a relative measure of type 2 sen-
sitivity by correcting for the influence of type 1 performance requires parametric assumptions after all, in order to generate
an SDT-expected type 2 ROC based on type 1 performance (Figs. 1B and 3B).

4.1. Sources of variation in type 2 sensitivity

Our results indicate that subjects’ type 2 sensitivity was below the point of optimality and exhibited substantial inter-
subject variability. What mechanisms might be responsible for an observed level of type 2 sensitivity that deviates from
SDT-expectation? We briefly consider two general kinds of mechanisms that could account for such deviations, although this
treatment is not intended to be exhaustive.

One way of interpreting a finding that meta-d0 = d0 is that the cognitive mechanisms responsible for making type 1 and
type 2 decisions access the same source of information. However, it is possible that in some situations, the different decision
making mechanisms do not access the same information. If type 1 and type 2 mechanisms access information that differs in
quality, quantity, source, or type, such differential access could entail a relative difference in sensitivity such that meta-
d0 – d0.

For instance, on some models, type 2 decisions are based upon further processing of the same information used to make
type 1 decisions (Lau & Rosenthal, 2011; Maniscalco & Lau, 2010; Pleskac & Busemeyer, 2010). In such cases, information
may decay or accrue internal noise subsequent to the type 1 decision. If so, then although type 1 and type 2 mechanisms
access the same source of information, the quality of the information available for each level may differ.

Alternatively, type 1 decision making mechanisms may have access to information that is entirely unavailable to type 2
mechanisms, or vice versa. For instance, an ‘unconscious’ processing stream may contribute to type 1, but not type 2, deci-
sions (Del Cul, Dehaene, Reyes, Bravo, & Slachevsky, 2009). More complicated processing structures implying an asymmetry
of information access are also possible (e.g. Pasquali, Timmermans, & Cleeremans, 2010).

A third possibility is that type 1 and type 2 decisions are made based upon different representations or transformations of
the same underlying information. In SDT terms, the observer may apply different decision axes in internal evidence space for
type 1 and type 2 decisions, where each decision axis embodies a particular way of summarizing and evaluating the available
information (Macmillan & Creelman, 2005). One decision axis may represent a more optimal decision rule than the other,
which could entail differences in decision sensitivity.

A second general kind of mechanism that could account for unexpected type 2 sensitivity is differential noise in the type 1
and type 2 decision process, rather than differential access to the information being evaluated. When applying SDT to data,
researchers usually model the decision criteria as if they are constant from trial to trial. However, it may be the case that
criterion setting is actually a noisy process in which criteria are placed at differing locations of the decision axis from trial
to trial (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008). Increasing criterion variability has the effect of decreas-
ing measured sensitivity. Thus, if type 2 criterion setting is noisier than type 1 criterion setting, we should expect that meta-
d0 < d0. Likewise, if the type 1 criterion is more variable than the type 2 criteria, we should expect that meta-d0 > d0.

4.2. Alternative approaches to estimating type 2 sensitivity

It is popular practice to estimate multiple pairs of false alarm rate (FAR) and hit rate (HR) for a single observer by asking
the observer to provide a stimulus classification and confidence rating on every trial. When the observer has two possible
stimulus classification responses ‘‘S1’’ and ‘‘S2’’ and N possible confidence ratings, there are 2 � N possible responses an ob-
server may give on any trial. If these responses are ordered from ‘‘highest confidence S1’’ to ‘‘highest confidence S2’’, there
are 2 � N � 1 ways of partitioning the total response scale into two sets. Each such partition represents a way of combining
the observer’s classification and confidence ratings into two categories of responses, one favoring ‘‘S1’’ and the other favoring
‘‘S2,’’ and these combined response categories can be used to calculate a (FAR, HR) pair. Thus, we can calculate 2 � N � 1 (FAR,
HR) pairs and thereby create an empirical ROC curve using rating data.
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One interesting feature of type 1 ROC constructed from rating data is that it depends jointly on type 1 performance and
type 2 sensitivity (Clifford, Arabzadeh, & Harris 2008). For instance, suppose d0 > 0 but meta-d0 = 0. In this case, each rating-
constructed type 1 ROC point for ‘‘S2’’ responses will lie on the line between (0,0) and (type 1 FAR, type 1 HR). Likewise, each
rating-constructed type 1 ROC point for ‘‘S1’’ responses will lie on the line between (type 1 FAR, type 1 HR) and (1,1). Thus,
the shape of the type 1 ROC curve will be piecewise linear. When meta-d0 = d0, the shape of the type 1 ROC curve will be iden-
tical to the smooth, continuous shape predicted from standard SDT. When 0 < meta-d0 < d0, the type 1 ROC curve will lie be-
tween these two extremes.

In fact, Clifford et al. (2008) argued that the shape of the rating-constructed type 1 ROC curve could be used to assess type
2 sensitivity. In particular, they argued that if rating-constructed type 1 ROC points are better fit by a piecewise linear ROC
curve than the ROC curve predicted by SDT, then one can infer that metacognitive sensitivity is suboptimal. This approach
has the virtue of assessing type 2 sensitivity independently from type 1 performance (i.e. the location of ‘‘true’’ type 1 ROC
point in ROC-space) and type 2 response bias. It thus provides an assessment of relative type 2 sensitivity.

However, the approach of Clifford et al. (2008) is limited in several ways. Historically, it has been difficult to establish
empirical deviations from expectation in rating-constructed type 1 ROC shape (Macmillan & Creelman, 2005). One reason
for this difficulty may be that the area under the rating-constructed type 1 ROC curve does not change drastically even
for extreme differences in type 2 sensitivity. This is because the area under the rating-constructed type 1 ROC curve is pre-
dominately determined by the ‘‘true’’ type 1 ROC point, with only marginal contributions from variation in type 2 sensitivity.
For instance, when d0 = 2 and c1 = 0, the area under the rating-constructed type 1 ROC is .921 if meta-d0 = d0 = 2 and .841 if
meta-d0 = 0. Thus in this example, a 100% difference in relative type 2 sensitivity generates only an 8.7% difference in area
under the type 1 ROC curve. Recent studies such as Mueller and Weidemann (2008) have used the approach of assessing
the shape of the rating-constructed type 1 ROC curve to make inferences about type 2 sensitivity, but these approaches seem
to require manipulating the type 1 criterion in extreme ways via strong base rate or response incentive manipulations in
order to detect a difference between conditions in type 1 ROC shape. This is because increasing the bias of the type 1 criterion
tends to increase the influence of type 2 sensitivity on the area under the rating-constructed type 1 ROC curve.

Another weakness of this approach is that it makes graded assessment of type 2 sensitivity difficult. The approach Clifford
et al. (2008) endorse essentially amounts to a binary test of the null hypothesis that meta-d0 = d0. By contrast, the meta-d0

approach we propose in this paper allows one to assess relative type 2 sensitivity on a graded scale and make graded com-
parisons to expectation. Likewise, our approach allows one to detect cases where type 2 sensitivity outperforms expectation,
a possibility not accounted for by the approach of Clifford et al.

Yet another approach for comparing observed with SDT-expected type 2 sensitivity can be achieved at the level of the
type 2 ROC (Fig. 2B). In this case, SDT-expected area under the type 2 ROC curve (AUC) can be directly estimated from
the type 1 model (Fig. 1B), and observed type 2 AUC can be estimated from the empirical data using the non-parametric mea-
sure Ag (Pollack & Hsieh, 1969). This method of comparing observed and SDT-expected type 2 sensitivity is closely related to
the meta-d0 analysis discussed thus far, providing a viable alternative method that potentially provides greater conceptual
and computational simplicity.

The primary disadvantage of the type 2 AUC approach is the meaning of differences and ratios between two AUC values
are more difficult to interpret. For instance, it is presumably easier for an observer to improve AUC from 0.5 (chance perfor-
mance) to 0.6 than it is to improve from 0.9 to 1.0 (perfect performance). (Type 1 AUC values of 0.5, 0.6, 0.9, and 1 correspond
to d0 values of 0, 0.35, 1.85, and infinity, respectively.) The same difference score seems to correspond to different changes in
actual performance level, depending on the magnitude of the values being compared. Thus, while this method allows us to
statistically assess the null hypothesis that observed and SDT-expected type 2 sensitivity are equal, it does not seem ideally
suited for making graded quantitative assessments of relative type 2 sensitivity.

Another complication is that the non-parametric measure of type 2 AUC, Ag, has some non-ideal properties. Ag essentially
takes the area under the ROC curve formed by drawing straight lines between observed (FAR, HR) pairs and the ROC end-
points (0,0) and (1,1). As a consequence, it potentially underestimates AUC, since (FAR, HR) pairs on an ROC curve tend
to be connected by concave down lines, not straight lines. The degree of this underestimation is potentially exacerbated
if strong response biases exist in the data, since such biases make (FAR, HR) pairs cluster near the endpoints (0,0) and/or
(1,1).

Unlike the observed type 2 ROC data, the SDT-expected type 2 ROC curves are fully continuous. We thus recommend sam-
pling points from the continuous SDT-expected curve (for instance, those (FAR, HR) pairs whose FAR values match the empir-
ically observed type 2 FAR values) and computing Ag from these pairs. The comparison of observed type 2 Ag with type 2 Ag

from the sampled points of the SDT-expected type 2 ROC curve mitigates the underestimation problem by making both Ag

quantities similarly underestimated.

4.3. Relevance to conscious awareness

How should we conceptualize the cognitive phenomenon that type 2 sensitivity measures? Some (e.g. Kunimoto et al.,
2001; Persaud et al., 2007) have argued that type 2 sensitivity provides an ‘‘objective’’ measure of subjective awareness. That
is, an observer can be said to be aware of a stimulus if his confidence ratings distinguish well between correct and incorrect
stimulus classifications. Likewise, if an observer’s confidence ratings are uninformative regarding the correctness of his clas-
sifications, then he can be said to be unaware of the stimuli, even if he can classify them at above chance levels.
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Although this interpretation may have some heuristic value, we do not endorse it as a rigid criterion for measuring aware-
ness. For instance, imagine that subjects perform a visual detection task and rate decision confidence. In condition A, subjects
use a confidence scale with two options; in condition B, they use a scale with 20 options. Even if type 1 task performance is
the same for both conditions, we will likely find that the subjects in condition B exhibit lower type 2 sensitivity than those in
condition A (Wickelgren, 1968). A natural explanation is that the cognitive demand of maintaining so many type 2 decision
criteria in condition B caused elevated variability in type 2 criterion setting. But if so, it seems counterintuitive to say that the
subjects in condition B were less aware of the visual stimuli. After all, their deficit in type 2 sensitivity was likely an artifact of
the task demands of judging and reporting confidence, rather than reflecting a deficit in the underlying information on which
those confidence reports were based.

Additionally, it has been shown that blindsight patient GY can place wagers on perceptual discriminations in his blind
visual field with an above chance level of type 2 sensitivity (Persaud, McLeod, et al., 2007; Persaud, Davidson, et al.,
2011). Thus, it seems that awareness is not necessary for above-chance levels of type 2 sensitivity. Even when an observer
reports no direct phenomenal representation of the stimulus he is judging, his confidence in decision accuracy may none-
theless be somewhat diagnostic of actual type 1 performance.

Consideration of these arguments suggests a double dissociation between type 2 sensitivity and the contents of aware-
ness. Reductions in type 2 sensitivity do not necessarily reflect reductions in phenomenological stimulus awareness, and
above-chance levels of type 2 sensitivity do not necessarily imply the presence of phenomenological stimulus awareness.
Thus it does not seem tenable to use type 2 sensitivity as a hard and fast measure of awareness.

Similar arguments have been put forth by Dienes and Perner (2004) and Dienes (2004), who highlight the importance of
placing type 2 sensitivity in the context of the actual content of the type 2 reports themselves when making inferences about
awareness. For instance, in the above example, GY’s direct denials of having any visual experience in his blind field (e.g.
Persaud & Lau, 2008) are what cause us to doubt that the above-chance type 2 sensitivity he can sometimes exhibit in
his blind field is indicative of visual awareness. Similarly, suppose an observer consistently endorses his decisions about a
stimulus with either ‘‘high’’ or ‘‘very high’’ confidence, but suppose also that the observer’s type 2 sensitivity is at chance.
It would seem odd to infer that the observer has no awareness of the stimulus, given his consistently high ratings of confi-
dence. A more careful interpretation is just that the observer’s distinction between ‘‘high’’ and ‘‘very high’’ confidence is not a
distinction that carries any useful information about task performance. The observer may be quite aware of the stimuli he is
observing in several meaningful respects, despite being undiscerning in his distinction between ‘‘high’’ and ‘‘very high’’
confidence (Dienes, 2004).

We advocate an interpretation of type 2 sensitivity more strictly in line with its operational definition. Absolute type 2
sensitivity tells us how well an observer can distinguish between his own correct and incorrect decisions. Relative type 2
sensitivity more specifically isolates the sensitivity with which metacognitive mechanisms operate. These measures do
not necessarily inform us about the source of an observer’s confidence ratings (e.g. about states of phenomenal awareness),
but rather they inform us about the informational relationship between confidence ratings and task performance. In partic-
ular, relative type 2 sensitivity measures how well an observer can evaluate his own first-order stimulus evaluations.
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