
Chapter 3
Signal Detection Theory Analysis of Type
1 and Type 2 Data: Meta-d0, Response-
Specific Meta-d0, and the Unequal
Variance SDT Model

Brian Maniscalco and Hakwan Lau

Abstract Previously we have proposed a signal detection theory (SDT)
methodology for measuring metacognitive sensitivity (Maniscalco and Lau,
Conscious Cogn 21:422–430, 2012). Our SDT measure, meta-d0, provides a
response-bias free measure of how well confidence ratings track task accuracy. Here
we provide an overview of standard SDT and an extended formal treatment of meta-
d0. However, whereas meta-d0 characterizes an observer’s sensitivity in tracking
overall accuracy, it may sometimes be of interest to assess metacognition for a
particular kind of behavioral response. For instance, in a perceptual detection task,
we may wish to characterize metacognition separately for reports of stimulus
presence and absence. Here we discuss the methodology for computing such a
‘‘response-specific’’ meta-d0 and provide corresponding Matlab code. This approach
potentially offers an alternative explanation for data that are typically taken to
support the unequal variance SDT (UV-SDT) model. We demonstrate that simulated
data generated from UV-SDT can be well fit by an equal variance SDT model
positing different metacognitive ability for each kind of behavioral response, and
likewise that data generated by the latter model can be captured by UV-SDT. This
ambiguity entails that caution is needed in interpreting the processes underlying
relative operating characteristic (ROC) curve properties. Type 1 ROC curves
generated by combining type 1 and type 2 judgments, traditionally interpreted in
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terms of low-level processes (UV), can potentially be interpreted in terms of
high-level processes instead (response-specific metacognition). Similarly, differ-
ences in area under response-specific type 2 ROC curves may reflect the influence of
low-level processes (UV) rather than high-level metacognitive processes.

3.1 Introduction

Signal detection theory (SDT; [10, 12]) has provided a simple yet powerful
methodology for distinguishing between sensitivity (an observer’s ability to
discriminate stimuli) and response bias (an observer’s standards for producing
different behavioral responses) in stimulus discrimination tasks. In tasks where an
observer rates his confidence that his stimulus classification was correct, it may
also be of interest to characterize how well the observer performs in placing these
confidence ratings. For convenience, we can refer to the task of classifying stimuli
as the type 1 task, and the task of rating confidence in classification accuracy as the
type 2 task [2]. As with the type 1 task, SDT treatments of the type 2 task are
concerned with independently characterizing an observer’s type 2 sensitivity (how
well confidence ratings discriminate between an observer’s own correct and
incorrect stimulus classifications) and type 2 response bias (the observer’s
standards for reporting different levels of confidence).

Traditional analyses of type 2 performance investigate how well confidence
ratings discriminate between all correct trials versus all incorrect trials. In addition
to characterizing an observer’s overall type 2 performance in this way, it may also
be of interest to characterize how well confidence ratings discriminate between
correct and incorrect trials corresponding to a particular kind of type 1 response. For
instance, in a visual detection task, the observer may classify the stimulus as ‘‘signal
present’’ or ‘‘signal absent.’’ An overall type 2 analysis would investigate how well
confidence ratings discriminate between correct and incorrect trials, regardless of
whether those trials corresponded to classifications of ‘‘signal present’’ or ‘‘signal
absent.’’ However, it is possible that perceptual and/or metacognitive processing
qualitatively differs for ‘‘signal present’’ and ‘‘signal absent’’ trials. In light of this
possibility, we may be interested to know how well confidence characterizes correct
and incorrect trials only for ‘‘signal present’’ responses, or only for ‘‘signal absent’’
responses (e.g. [11]). Other factors, such as experimental manipulations that target
one response type or another (e.g. [7]) may also provide impetus for such an
analysis. We will refer to the analysis of type 2 performance for correct and
incorrect trials corresponding to a particular type 1 response as the analysis of
response-specific1 type 2 performance.

1 We have previously used the phrase ‘‘response-conditional’’ rather than ‘‘response-specific’’
[13]. However, [2] used the terms ‘‘stimulus-conditional’’ and ‘‘response-conditional’’ to refer to
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In this article, we present an overview of the SDT analysis of type 1 and type 2
performance and introduce a new SDT-based methodology for analyzing response-
specific type 2 performance, building on a previously introduced method for
analyzing overall type 2 performance [13]. We first provide a brief overview of
type 1 SDT. We then demonstrate how the analysis of type 1 data can be extended
to the type 2 task, with a discussion of how our approach compares to that of
Galvin et al. [9]. We provide a more comprehensive methodological treatment of
our SDT measure of type 2 sensitivity, meta-d0 [13], than has previously been
published. With this foundation in place, we show how the analysis can be
extended to characterize response-specific type 2 performance.

After discussing these methodological points, we provide a cautionary note on
the interpretation of type 1 and type 2 relative operating characteristic (ROC)
curves. We demonstrate that differences in type 2 performance for different
response types can generate patterns of data that have typically been taken to
support the unequal variance SDT (UV-SDT) model. Likewise, we show that the
UV-SDT model can generate patterns of data that have been taken to reflect
processes of a metacognitive origin. We provide a theoretical rationale for this in
terms of the mathematical relationship between type 2 ROC curves and type 1
ROC curves constructed from confidence ratings, and discuss possible solutions
for these difficulties in inferring psychological processes from patterns in the type
1 and type 2 ROC curves.

3.2 The SDT Model and Type 1 and Type 2 ROC Curves

3.2.1 Type 1 SDT

Suppose an observer is performing a task in which one of two possible stimulus
classes (S1 or S2)2 is presented on each trial, and that following each stimulus
presentation, the observer must classify that stimulus as ‘‘S1’’ or ‘‘S2.’’3 We may
define four possible outcomes for each trial depending on the stimulus and the
observer’s response: hits, misses, false alarms, and correct rejections (Table 3.1).

(Footnote 1 continued)
the type 1 and type 2 tasks. Thus, to avoid confusion, we now use ‘‘response-specific’’ to refer to
type 2 performance for a given response type. We will use the analogous phrase ‘‘stimulus-
specific’’ to refer to type 2 performance for correct and incorrect trials corresponding to a
particular stimulus.
2 Traditionally, S1 is taken to be the ‘‘signal absent’’ stimulus and S2 the ‘‘signal present’’
stimulus. Here we follow [12] in using the more neutral terms S1 and S2 for the sake of
generality.
3 We will adopt the convention of placing ‘‘S1’’ and ‘‘S2’’ in quotation marks whenever they
denote an observer’s classification of a stimulus, and omitting quotation marks when these denote
the objective stimulus identity.
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When an S2 stimulus is shown, the observer’s response can be either a hit (a
correct classification as ‘‘S2’’) or a miss (an incorrect classification as ‘‘S1’’).
Similarly, when S1 is shown, the observer’s response can be either a correct
rejection (correct classification as ‘‘S1’’) or a false alarm (incorrect classification as
‘‘S2’’).4

A summary of the observer’s performance is provided by hit rate and false
alarm rate5:

Hit Rate ¼ HR ¼ p resp ¼ “S2” j stim ¼ S2ð Þ ¼ n resp ¼ “S2”; stim ¼ S2ð Þ
n stim ¼ S2ð Þ

False Alarm Rate ¼ FAR ¼ p resp ¼ “S2” j stim ¼ S1ð Þ ¼ n resp ¼ “S2”; stim ¼ S1ð Þ
n stim ¼ S1ð Þ

where n(C) denotes a count of the total number of trials satisfying the condition C.
ROC curves define how changes in hit rate and false alarm rate are related. For

instance, an observer may become more reluctant to produce ‘‘S2’’ responses if he
is informed that S2 stimuli will rarely be presented, or if he is instructed that
incorrect ‘‘S2’’ responses will be penalized more heavily than incorrect ‘‘S1’’
responses (e.g. [12, 22]); such manipulations would tend to lower the observer’s
probability of responding ‘‘S2,’’ and thus reduce false alarm rate and hit rate. By
producing multiple such manipulations that alter the observer’s propensity to
respond ‘‘S2,’’ multiple (FAR, HR) pairs can be collected and used to construct the
ROC curve, which plots hit rate against false alarm rate (Fig. 3.1b6).

On the presumption that such manipulations affect only the observer’s stan-
dards for responding ‘‘S2,’’ and not his underlying ability to discriminate S1
stimuli from S2 stimuli, the properties of the ROC curve as a whole should be

Table 3.1 Possible outcomes for the type 1 task

Stimulus Response

‘‘S1’’ ‘‘S2’’

S1 Correct rejection (CR) False alarm (FA)
S2 Miss Hit

4 These category names are more intuitive when thinking of S1 and S2 as ‘‘signal absent’’ and
‘‘signal present.’’ Then a hit is a successful detection of the signal, a miss is a failure to detect the
signal, a correct rejection is an accurate assessment that no signal was presented, and a false
alarm is a detection of a signal where none existed.
5 Since hit rate and miss rate sum to 1, miss rate does not provide any extra information beyond
that provided by hit rate and can be ignored; similarly for false alarm rate and correct rejection
rate.
6 Note that the example ROC curve in Fig. 3.1b is depicted as having been constructed from
confidence data (Fig. 3.1a), rather than from direct experimental manipulations on the observer’s
criterion for responding ‘‘S2’’. See the section titled Constructing pseudo type 1 ROC curves from
type 2 data below.
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Fig. 3.1 Signal detection theory models of type 1 and type 2 ROC curves. a Type 1 SDT model.
On each trial, a stimulus generates an internal response x within an observer, who must use x to
decide whether the stimulus was S1 or S2. For each stimulus type, x is drawn from a normal
distribution. The distance between these distributions is d0, which measures the observer’s ability
to discriminate S1 from S2. The stimulus is classified as ‘‘S2’’ if x exceeds a decision criterion c,
and ‘‘S1’’ otherwise. In this example, the observer also rates decision confidence on a scale of 1–3
by comparing x to the additional response-specific type 2 criteria (dashed vertical lines). b Type 1
ROC curve. d0 and c determine false alarm rate (FAR) and hit rate (HR). By holding d0 constant
and changing c, a characteristic set of (FAR, HR) points—the ROC curve—can be generated. In
this example, shapes on the ROC curve mark the (FAR, HR) generated when using the
corresponding criterion in panel a to classify the stimulus. (Note that, because this type 1 ROC
curve is generated in part by the type 2 criteria in panel 1a, it is actually a pseudo type 1 ROC
curve, as discussed later in this paper.) c Type 2 task for ‘‘S2’’ responses. Consider only the trials
where the observer classifies the stimulus as ‘‘S2,’’ i.e. only the portion of the graph in panel a
exceeding c. Then the S2 stimulus distribution corresponds to correct trials, and the S1
distribution to incorrect trials. The placement of the type 2 criteria determines the probability of
high confidence for correct and incorrect trials—type 2 HR and type 2 FAR. d0 and c jointly
determine to what extent correct and incorrect trials for each response type are distinguishable.
d Type 2 ROC curve for ‘‘S2’’ responses. The distributions in panel c can be used to derive type 2
FAR and HR for ‘‘S2’’ responses. By holding d0 and c constant and changing c2,‘‘S2’’, a set of type
2 (FAR, HR) points for ‘‘S2’’ responses—a response-specific type 2 ROC curve—can be
generated. In this example, shapes on the ROC curve mark the (FAR2,‘‘S2’’, HR2,‘‘S2’’) generated
when using the corresponding criterion in panel c to rate confidence
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informative regarding the observer’s sensitivity in discriminating S1 from S2,
independent of the observer’s overall response bias for producing ‘‘S2’’ responses.
The observer’s sensitivity thus determines the set of possible (FAR, HR) pairs the
observer can produce (i.e. the ROC curve), whereas the observer’s response bias
determines which amongst those possible pairs is actually exhibited, depending on
whether the observer is conservative or liberal in responding ‘‘S2.’’ Higher
sensitivity is associated with greater area underneath the ROC curve, whereas
more conservative response bias is associated with (FAR, HR) points falling more
towards the lower-left portion of the ROC curve.

Measures of task performance have implied ROC curves [12, 19]. An implied
ROC curve for a given measure of performance is a set of (FAR, HR) pairs that
yield the same value for the measure. Thus, to the extent that empirical ROC
curves dissociate sensitivity from bias, they provide an empirical target for the-
oretical measures of performance to emulate. If a proposed measure of sensitivity
does not have implied ROC curves that match the properties of empirical ROC
curves, then this measure cannot be said to provide a bias-free measure of
sensitivity.

A core empirical strength of SDT ([10, 12]; Fig. 3.1a) is that it provides a
simple computational model that provides close fits to empirical ROC curves [10,
20]. According to SDT, the observer performs the task of discriminating S1 from
S2 by evaluating internal responses along a decision axis. Every time an S1
stimulus is shown, it produces in the mind of the observer an internal response
drawn from a Gaussian probability density function. S2 stimulus presentations also
generate such normally distributed internal responses. For the sake of simplicity, in
the following we will assume that the probability density functions for S1 and S2
have an equal standard deviation r.

The observer is able to discriminate S1 from S2 just to the extent that the
internal responses produced by these stimuli are distinguishable, such that better
sensitivity for discriminating S1 from S2 is associated with larger separation
between the S1 and S2 internal response distributions. The SDT measure of sen-
sitivity, d0, is thus the distance between the means of the S1 and S2 distributions,
measured in units of their common standard deviation:

d0 ¼ lS2 � lS1

r

By convention, the internal response where the S1 and S2 distributions intersect
is defined to have the value of zero, so that lS2 = r d0/2 and lS1 = -r d0/2. For
simplicity, and without loss of generality, we can set r = 1.

In order to classify an internal response x on a given trial as originating from an
S1 or S2 stimulus, the observer compares the internal response to a decision
criterion, c, and only produces ‘‘S2’’ classifications for internal responses that
surpass the criterion.

response ¼ “S1”; x� c
“S2”; x [ c

�
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Since hit rate is the probability of responding ‘‘S2’’ when an S2 stimulus is
shown, it can be calculated on the SDT model as the area underneath the portion of
the S2 probability density function that exceeds c. Since the cumulative distri-
bution function for the normal distribution with mean l and standard deviation r
evaluated at x is

U x; l; rð Þ ¼ Zx

�1

1

r
ffiffiffiffiffiffi
2p
p e

�ðx�lÞ2

2r2

then hit rate can be derived from the parameters of the SDT model as

HR ¼ 1� U c; lS2ð Þ ¼ 1� U c;
d0

2

� �

And similarly,

FAR ¼ 1� U c; lS1ð Þ ¼ 1� U c;� d0

2

� �

where omitting the r parameter in / is understood to be equivalent to setting
r = 1.

By systematically altering the value of c while holding d0 constant, a set of
(FAR, HR) pairs ranging between (0, 0) and (1, 1) can be generated, tracing out the
shape of the ROC curve (Fig. 3.1b). The family of ROC curves predicted by SDT
matches well with empirical ROC curves across a range of experimental tasks and
conditions [10, 20].

The parameters of the SDT model can be recovered from a given (FAR, HR)
pair as

d0 ¼ z HRð Þ � z FARð Þ
c ¼ �0:5� z HRð Þ þ z FARð Þ½ �

where z is the inverse of the normal cumulative distribution function. Thus, SDT
analysis allows us to separately characterize an observer’s sensitivity (d0) and
response bias (c) on the basis of a single (FAR, HR) pair, obviating the need to
collect an entire empirical ROC curve in order to separately characterize sensi-
tivity and bias—provided that the assumptions of the SDT model hold.

3.2.2 Type 2 SDT

Suppose we extend the empirical task described above, such that after classifying
the stimulus as S1 or S2, the observer must provide a confidence rating that
characterizes the likelihood of the stimulus classification being correct. This
confidence rating task can be viewed as a secondary discrimination task. Just as the
observer first had to discriminate whether the stimulus was S1 or S2 by means of
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providing a stimulus classification response, the observer now must discriminate
whether that stimulus classification response itself was correct or incorrect by
means of providing a confidence rating.7 Following convention, we will refer to
the task of classifying the stimulus as the ‘‘type 1’’ task, and the task of classifying
the accuracy of the stimulus classification as the ‘‘type 2’’ task [2, 9].

3.2.2.1 Type 2 Hit Rates and False Alarm Rates

A similar set of principles for the analysis of the type 1 task may be applied to the
type 2 task. Consider the simple case where the observer rates confidence as either
‘‘high’’ or ‘‘low.’’ We can then distinguish 4 possible outcomes in the type 2 task:
high confidence correct trials, low confidence correct trials, low confidence
incorrect trials, and high confidence incorrect trials. By direct analogy with the
type 1 analysis, we may refer to these outcomes as type 2 hits, type 2 misses, type
2 correct rejections, and type 2 false alarms, respectively (Table 3.2).8

Type 2 hit rate and type 2 false alarm rate summarize an observer’s type 2
performance and may be calculated as

type 2 HR ¼ HR2 ¼ p high conf j stim ¼ respð Þ ¼ n high conf correctð Þ
n correctð Þ

type 2 FAR ¼ FAR2 ¼ p high conf j stim 6¼ respð Þ ¼ n high conf incorrectð Þ
n incorrectð Þ

Since the binary classification task we have been discussing has two kinds of
correct trials (hits and correct rejections) and two kinds of incorrect trials (misses
and false alarms), the classification of type 2 performance can be further subdi-
vided into a response-specific analysis, where we consider type 2 performance
only for trials where the type 1 stimulus classification response was ‘‘S1’’ or ‘‘S2’’
(Table 3.3).9

7 In principle, since the observer should always choose the stimulus classification response that
is deemed most likely to be correct, then in a two-alternative task he should always judge that the
chosen response is more likely to be correct than it is to be incorrect. Intuitively, then, the type 2
decision actually consists in deciding whether the type 1 response is likely to be correct or not,
where the standard for what level of confidence merits being labeled as ‘‘likely to be correct’’ is
determined by a subjective criterion than can be either conservative or liberal. Nonetheless,
viewing the type 2 task as a discrimination between correct and incorrect stimulus classifications
facilitates comparison with the type 1 task.
8 The analogy is more intuitive when thinking of S1 as ‘‘signal absent’’ and S2 as ‘‘signal
present’’. Then the type 2 analogue of ‘‘signal absent’’ is an incorrect stimulus classification,
whereas the analogue of ‘‘signal present’’ is a correct stimulus classification. The type 2 task can
then be thought of as involving the detection of this type 2 ‘‘signal.’’
9 It is also possible to conduct a stimulus-specific analysis and construct stimulus-specific type 2
ROC curves. For S1 stimuli, this would consist in a plot of p(high conf|correct rejection) vs
p(high conf|false alarm). Likewise for S2 stimuli—p(high conf|hit) vs p(high conf|miss).
However, as will be made clear later in the text, the present approach to analyzing type 2 ROC
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Thus, when considering type 2 performance only for ‘‘S1’’ responses,

HR2;“S1” ¼ p high conf j stim ¼ S1; resp ¼ “S1”ð Þ ¼ n high conf correct rejectionð Þ
n correct rejectionð Þ

FAR2;“S1” ¼ p high conf j stim ¼ S2; resp ¼ “S1”ð Þ ¼ n high conf missð Þ
n missð Þ

where the subscript ‘‘S1’’ indicates that these are type 2 data for type 1 ‘‘S1’’
responses.

Similarly for ‘‘S2’’ responses,

Table 3.2 Possible outcomes for the type 2 task

Accuracy Confidence

Low High

Incorrect Type 2 correct rejection Type 2 false alarm
Correct Type 2 miss Type 2 hit

Table 3.3 Possible outcomes for the type 2 task, contingent on type 1 response (i.e., response-
specific type 2 outcomes)

Response Confidence

Low High

‘‘S1’’ Accuracy Incorrect (Type 1 miss) CR2,‘‘S1’’ FA2,‘‘S1’’

Correct (Type 1 correct rejection) Miss2,‘‘S1’’ Hit2,‘‘S1’’

‘‘S2’’ Accuracy Incorrect (Type 1 false alarm) CR2,‘‘S2’’ FA2,‘‘S2’’

Correct (Type 1 hit) Miss2,‘‘S2’’ Hit2,‘‘S2’’

(Footnote 9 continued)
curves in terms of the type 1 SDT model requires each type 2 (FAR, HR) pair to be generated by
the application of a type 2 criterion to two overlapping distributions. For stimulus-specific type 2
data, the corresponding type 1 model consists of only one stimulus distribution, with separate
type 2 criteria for ‘‘S1’’ and ‘‘S2’’ responses generating the type 2 FAR and type 2 HR. (e.g. for
the S2 stimulus, a type 2 criterion for ‘‘S1’’ responses rates confidence for type 1 misses, and a
separate type 2 criterion for ‘‘S2’’ responses rates confidence for type 1 hits.) Thus there is no
analogue of meta-d0 for stimulus-specific type 2 data, since d0 is only defined with respect to the
relationship between two stimulus distributions, whereas stimulus-specific analysis is restricted to
only one stimulus distribution. It is possible that an analysis of stimulus-specific type 2 ROC
curves could be conducted by positing how the type 2 criteria on either side of the type 1 criterion
are coordinated, or similarly by supposing that the observer rates confidence according to an
overall type 2 decision variable. For more elaboration, see the section below titled ‘‘Comparison
of the current approach to that of [9].’’
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HR2;“S2” ¼ p high conf j stim ¼ S2; resp ¼ “S2”ð Þ ¼ nðhigh conf hitÞ
nðhitÞ

FAR2; “S2” ¼ p high conf j stim ¼ S1; resp ¼ “S2”ð Þ ¼ n high conf false alarmð Þ
n false alarmð Þ

From the above definitions, it follows that overall type 2 FAR and HR are
weighted averages of the response-specific type 2 FARs and HRs, where the
weights are determined by the proportion of correct and incorrect trials originating
from each response type:

HR2 ¼
n high conf correctð Þ

n correctð Þ ¼ n high conf hitð Þ þ n high conf CRð Þ
n hitð Þ þ n CRð Þ

¼ n hitð Þ � HR2; “S2” þ n CRð Þ � HR2; “S1”

n hitð Þ þ n CRð Þ
¼ p hit j correctð Þ � HR2;“S2” þ 1� p hit j correctð Þ½ � � HR2;“S1”

And similarly,

FAR2 ¼ p FA j incorrectð Þ � FAR2;“S2” þ 1� p FA j incorrectð Þ½ � � FAR2;“S1”

Confidence rating data may be richer than a mere binary classification. In the
general case, the observer may rate confidence on either a discrete or continuous
scale ranging from 1 to H. In this case, we can arbitrarily select a value h,
1 \ h B H, such that all confidence ratings greater than or equal to h are classified
as ‘‘high confidence’’ and all others, ‘‘low confidence.’’ We can denote this choice
of imposing a binary classification upon the confidence data by writing e.g.
Hconf¼h

2 , where the superscript conf = h indicates that this type 2 hit rate was
calculated using a classification scheme where h was the smallest confidence rating
considered to be ‘‘high.’’ Thus, for instance,

HRconf¼h
2; “S2” ¼ p high conf j stim ¼ S2; resp ¼ “S2”ð Þ ¼ p conf� h j hitð Þ

Each choice of h generates a type 2 (FAR, HR) pair, and so calculating these for
multiple values of h allows for the construction of a type 2 ROC curve with
multiple points. When using a discrete confidence rating scale ranging from 1 to H,
there are H - 1 ways of selecting h, allowing for the construction of a type 2 ROC
curve with H - 1 points.

3.2.2.2 Adding Response-Specific Type 2 Criteria to the Type 1 SDT
Model to Capture Type 2 Data

As with the type 1 task, type 2 ROC curves allow us to separately assess an
observer’s sensitivity (how well confidence ratings discriminate correct from
incorrect trials) and response bias (the overall propensity for reporting high
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confidence) in the type 2 task. However, fitting a computational model to type 2
ROC curves is somewhat more complicated than in the type 1 case. It is not
appropriate to assume that correct and incorrect trials are associated with normal
probability density functions in a direct analogy to the S1 and S2 distributions of
type 1 SDT. The reason for this is that specifying the parameters of the type 1 SDT
model—d0 and c—places strong constraints on the probability density functions for
correct and incorrect trials, and these derived distributions are not normally dis-
tributed [9]. In addition to this theoretical consideration, it has also been empirically
demonstrated that conducting a type 2 SDT analysis that assumes normal distri-
butions for correct and incorrect trials does not give a good fit to data [6].

Thus, the structure of the SDT model for type 2 performance must take into
account the structure of the SDT model for type 1 performance. Galvin et al. [9]
presented an approach for the SDT analysis of type 2 data based on analytically
deriving formulae for the type 2 probability density functions under a suitable
transformation of the type 1 decision axis. Here we present a simpler alternative
approach on the basis of which response-specific type 2 ROC curves can be
derived directly from the type 1 model.

In order for the type 1 SDT model to characterize type 2 data, we first need an
added mechanism whereby confidence ratings can be generated. This can be
accomplished by supposing that the observer simply uses additional decision
criteria, analogous to the type 1 criterion c, to generate a confidence rating on the
basis of the internal response x on a given trial. In the simplest case, the observer
makes a binary confidence rating—high or low—and thus needs to use two
additional decision criteria to rate confidence for each kind of type 1 response. Call
these response-specific type 2 criteria c2,‘‘S1’’ and c2,‘‘S2’’, where c2, ‘‘S1’’ \ c and c2,

‘‘S2’’ [ c. Intuitively, confidence increases as the internal response x becomes more
distant from c, i.e. as the internal response becomes more likely to have been
generated by one of the two stimulus distributions.10 More formally,

confidenceresp¼“S1” ¼
low; x� c2;“S1”

high; x\c2;“S1”

�

confidenceresp¼“S2” ¼
low; x� c2; “S2”

high; x [ c2; “S2”

�

In the more general case of a discrete confidence scale ranging from 1 to H,
then H - 1 type 2 criteria are required to rate confidence for each response type.
(See e.g. Fig. 3.1a, where two type 2 criteria on left/right of the type 1 criterion
allow for confidence for ‘‘S1’’/‘‘S2’’ responses to be rated on a scale of 1–3.) We
may define

10 See ‘‘Comparison of the current approach to that of Galvin et al. [9]’’ and footnote 12 for a
more detailed consideration of the type 2 decision axis.
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c2;“S1” ¼ cconf¼2
2;“S1” ; c

conf¼3
2;“S1” ; . . .; cconf¼H

2;“S1”

� �

c2;“S2” ¼ cconf¼2
2; “S2” ; c

conf¼3
2;“S2” ; . . .; cconf¼H

2;“S2”

� �

where e.g. c2;“S1” is a tuple containing the H - 1 type 2 criteria for ‘‘S1’’

responses. Each cconf¼y
2;“S1” denotes the type 2 criterion such that internal responses

more extreme (i.e. more distant from the type 1 criterion) than cconf¼y
2;“S1” are asso-

ciated with confidence ratings of at least y. More specifically,

confidenceresp¼“S1” ¼
1; x� cconf¼2

2;“S1”

y; cconf¼yþ1
2; “S1” � x\cconf¼y

2;“S1” ; 1\y\H

H; x\cconf¼H
2;“S1”

8>><
>>:

confidenceresp¼“S2” ¼
1; x� cconf¼2

2;“S2”

y; cconf¼y
2;“S2” \x� cconf¼yþ1

2;“S2” ; 1\y\H

H; x [ cconf¼H
2;“S2”

8>><
>>:

The type 1 and type 2 decision criteria must have a certain ordering in order for
the SDT model to be meaningful. Response-specific type 2 criteria corresponding
to higher confidence ratings must be more distant from c than type 2 criteria
corresponding to lower confidence ratings. Additionally, c must be larger than all
type 2 criteria for ‘‘S1’’ responses but smaller than all type 2 criteria for ‘‘S2’’
responses. For convenience, we may define

cascending ¼ cconf¼H
2;“S1” ; c

conf¼H�1
2;“S1” ; . . .; cconf¼1

2;“S1” ; c; c
conf¼1
2;“S2” ; c

conf¼2
2;“S2” ; . . .; cconf¼H

2;“S2”

� �

The ordering of decision criteria in cascending from first to last is the same as the
ordering of the criteria from left to right when displayed on an SDT graph (e.g.
Fig. 3.1a). These decision criteria are properly ordered only if each element of
cascending is at least as large as the previous element, i.e. only if the Boolean

function c cascending

� �
defined below is true:

c cascending

� �
¼
\2H�2

i¼1

cascendingðiþ 1Þ� cascendingðiÞ

It will be necessary to use this function later on when discussing how to fit SDT
models to type 2 data.
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3.2.2.3 Calculating Response-Specific Type 2 (FAR, HR)
from the Type 1 SDT Model with Response-Specific
Type 2 Criteria

Now let us consider how to calculate response-specific type 2 HR and type 2 FAR
from the type 1 SDT model. Recall that

HRconf¼h
2;“S2” ¼ p conf� h j stim ¼ S2; resp ¼ “S2”ð Þ ¼ p conf� h; hitð Þ

p hitð Þ

As discussed above, p(hit), the hit rate, is the probability that an S2 stimulus
generates an internal response that exceeds the type 1 criterion c. Similarly,
p(conf C h, hit), the probability of a hit endorsed with high confidence, is just the
probability that an S2 stimulus generates an internal response that exceeds the
high-confidence type 2 criterion for ‘‘S2’’ responses,cconf¼h

2;“S2” . Thus, we can
straightforwardly characterize the probabilities in the numerator and denominator
of HRconf¼h

2;“S2” in terms of the type 1 SDT parameters, as follows:

HRconf¼h
2;“S2” ¼

p conf� h; hitð Þ
p hitð Þ ¼

1� U cconf¼h
2;“S2” ;

d0

2

� �
1� U c; d0

2

� 	
By similar reasoning,

FARconf¼h
2;“S2” ¼

1� U cconf¼h
2;“S2” ;� d0

2

� �
1� U c;� d0

2

� 	
And likewise for ‘‘S1’’ responses,

HRconf¼h
2;“S1” ¼

U cconf¼h
2;“S1” ;� d0

2

� �
U c;� d0

2

� 	

FARconf¼h
2;“S1” ¼

U cconf¼h
2;“S1” ;

d0

2

� �
U c; d0

2

� 	
Figure 3.1c illustrates how type 2 (FAR, HR) arise from type 1 d0 and c along

with a type 2 criterion. For instance, suppose h = 3. Then the type 2 hit rate for
‘‘S2’’ responses, HRconf¼3

2;“S2” , is the probability of a high confidence hit (the area in

the S2 distribution beyond cconf¼3
2;“S2” ) divided by the probability of a hit (the area in

the S2 distribution beyond c).
By systematically altering the value of the type 2 criteria while holding d0 and

c constant, a set of (FAR2, HR2) pairs ranging between (0, 0) and (1, 1) can be
generated, tracing out a curvilinear prediction for the shape of the type 2 ROC
curve (Fig. 3.1d). Thus, according to this SDT account, specifying type 1

3 Signal Detection Theory Analysis of Type 1 and Type 2 Data 37



sensitivity (d0) and response bias (c) is already sufficient to determine response-
specific type 2 sensitivity (i.e. the family of response-specific type 2 ROC curves).

3.2.3 Comparison of the Current Approach
to that of Galvin et al. [9]

Before continuing with our treatment of SDT analysis of type 2 data, we will make
some comparisons between this approach and the one described in Galvin et al. [9].

3.2.3.1 SDT Approaches to Type 2 Performance

Galvin et al. were concerned with characterizing the overall type 2 ROC curve,
rather than response-specific type 2 ROC curves. On their modeling approach, an
(FAR2, HR2) pair can be generated by setting a single type 2 criterion on a type 2
decision axis. All internal responses that exceed this type 2 criterion are labeled
‘‘high confidence,’’ and all others ‘‘low confidence.’’ By systematically changing
the location of this type 2 criterion on the decision axis, the entire overall type 2
ROC curve can be traced out.

However, if the internal response x is used to make the binary confidence
decision in this way, the ensuing type 2 ROC curve behaves oddly, typically
containing regions where it extends below the line of chance performance [9]. This
suboptimal behavior is not surprising, in that comparing the raw value of x to a
single criterion value essentially recapitulates the decision rule used in the type 1
task and does not take into account the relationship between x and the observer’s
type 1 criterion, which is crucial for evaluating type 1 performance. The solution is
that some transformation of x must be used as the type 2 decision variable, ideally
one that depends upon both x and c.

For instance, consider the transformation t(x) = |x - c|. This converts the
initial raw value of the internal response, x, into the distance of x from the type 1
criterion. This transformed value can then plausibly be compared to a single type 2
criterion to rate confidence, e.g. an observer might rate confidence as high
whenever t(x) [ 1. Other transformations for the type 2 decision variable are
possible, and the choice is not arbitrary, since different choices for type 2 decision
variables can lead to different predictions for the type 2 ROC curve [9]. The
optimal type 2 ROC curve (i.e. the one that maximizes area under the curve) is
derived by using the likelihood ratio of the type 2 probability density functions as
the type 2 decision variable [9, 10].

We have adopted a different approach thus far. Rather than characterizing an
overall (FAR2, HR2) pair as arising from the comparison of a single type 2
decision variable to a single type 2 criterion, we have focused on response-specific
(FAR2, HR2) data arising from comparisons of the type 1 internal response x to
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separate type 2 decision criteria for ‘‘S1’’ and ‘‘S2’’ responses (e.g. Fig. 3.1a).
Thus, our approach would characterize the overall (FAR2, HR2) as arising from a
pair of response-specific type 2 criteria set on either side of the type 1 criterion on
the type 1 decision axis, rather than from a single type 2 criterion set on a type 2
decision axis. We have posited no constraints on the setting of these type 2 criteria
other than that they stand in appropriate ordinal relationships to eachother. For the
sake of brevity in comparing these two approaches, in the following we will refer
to Galvin et al.’s approach as G and the current approach as C.

3.2.3.2 Type 2 Decision Rules and Response-Specific
Type 2 Criterion Setting

Notice that choosing a reasonable type 2 decision variable for G is equivalent to
setting constraints on the relationship between type 2 criteria for ‘‘S1’’ and ‘‘S2’’
responses on C. For instance, on G suppose that the type 2 decision variable is
defined as t(x) = |x - c| and confidence is high if t(x) [ 1. On C, this is equivalent
to setting response-specific type 2 criteria symmetrically about the type 1 criterion,
i.e. t(c2,‘‘S1’’) = t(c2,‘‘S2’’) = |c2,‘‘S1’’ - c| = |c2,‘‘S2’’ - c| = 1. In other words,
assuming (on G) the general rule that confidence is high whenever the distance
between x and c exceeds 1 requires (on C) that the type 2 criteria for each response
type both satisfy this property of being 1 unit away from c. Any other way of
setting the type 2 criteria for C would yield outcomes inconsistent with the
decision rule posited by G. Similarly, if the type 2 decision rule is that confidence
is high when type 2 likelihood ratio LR2(x) [ cLR2, this same rule on C would
require LR2(c2,‘‘S1’’) = LR2(c2,‘‘S2’’) = cLR2, i.e. that type 2 criteria for both
response types be set at the locations of x on either side of c corresponding to a
type 2 likelihood ratio of cLR2.

On G, choosing a suboptimal type 2 decision variable can lead to decreased
area under the overall type 2 ROC curve. This can be understood on C as being
related to the influence of response-specific type 2 criterion placement on the
response-specific type 2 (FAR, HR) points, which in turn affect the overall type 2
(FAR, HR) points. As shown above, overall type 2 FAR and HR are weighted
averages of the corresponding response-specific type 2 FARs and HRs. But
computing a weighted average for two (FAR, HR) pairs on a concave down ROC
curve will yield a new (FAR, HR) pair that lies below the original ROC curve. As
a consequence, more exaggerated differences in the response-specific type 2 FAR
and HR due to more exaggerated difference in response-specific type 2 criterion
placement will tend to drive down the area below the overall type 2 ROC curve.
Thus, the overall type 2 ROC curve may decrease even while the response-specific
curves stay constant, depending on how criterion setting for each response type is
coordinated. This reduced area under the overall type 2 ROC curve on C due to
response-specific type 2 criterion placement is closely related to reduced area
under the overall type 2 ROC curve on G due to choosing a suboptimal type 2
decision variable.

3 Signal Detection Theory Analysis of Type 1 and Type 2 Data 39



For example, consider the SDT model where d0 = 2, c = 0, c2,‘‘S1’’ = -1, and
c2,‘‘S2’’ = 1. This model yields FAR2,‘‘S1’’ = FAR2,‘‘S2’’ = FAR2 = 0.14 and
HR2,‘‘S1’’ = HR2,‘‘S2’’ = HR2 = 0.59. The type 1 criterion is optimally placed
and the type 2 criteria are symmetrically placed around it. This arrangement of
criteria on C turns out to be equivalent to using the type 2 likelihood ratio on G,
and thus yields an optimal type 2 performance. Now consider the SDT model
where d0 = 2, c = 0, c2,‘‘S1’’ = -1.5, and c2,‘‘S2’’ = 0.76. This model yields
FAR2,‘‘S1’’ = 0.04, HR2,‘‘S1’’ = 0.37, FAR2,‘‘S2’’ = 0.25, HR2,‘‘S2’’ = 0.71, and
overall FAR2 = 0.14, HR2 = 0.54. Although d0 and c are the same as in the
previous example, now the type 2 criteria are set asymmetrically about c, yielding
different outcomes for the type 2 FAR and HR for ‘‘S1’’ and ‘‘S2’’ responses.
This has the effect of yielding a lower overall HR2 (0.54 vs. 0.59) in spite of
happening to yield the same FAR2 (0.14). Thus, this asymmetric arrangement of
response-specific type 2 criteria yields worse performance on the overall type 2
ROC curve than the symmetric case for the same values of d0 and c. On G, this can
be understood as being the result of choosing a suboptimal type 2 decision variable
in the second example (i.e. a decision variable that is consistent with the way the
response-specific type 2 criteria have been defined on C). In this case, the
asymmetric placement of the response-specific type 2 criteria is inconsistent with a
type 2 decision variable based on the type 2 likelihood ratio.

3.2.3.3 A Method for Assessing Overall Type 2 Sensitivity Based
on the Approach of Galvin et al.

In the upcoming section, we will discuss our methodology for quantifying type 2
sensitivity with meta-d0. Meta-d0 essentially provides a single measure that jointly
characterizes the areas under the response-specific type 2 ROC curves for both
‘‘S1’’ and ‘‘S2’’ responses, and in this way provides a measure of overall type 2
sensitivity. However, in doing so, it treats the relationships of type 2 criteria across
response types as purely a matter of criterion setting. However, as we have dis-
cussed, coordination of type 2 criterion setting could also be seen as arising from
the construction of a type 2 decision variable, where the choice of decision variable
influences area under the overall type 2 ROC curve. We take it to be a substantive
conceptual, and perhaps empirical, question as to whether it is preferable to char-
acterize these effects as a matter of criterion setting (coordinating response-specific
type 2 criteria) or sensitivity (constructing a type 2 decision variable). However, if
one were to decide that for some purpose it were better to view this as a sensitivity
effect, then the characterization of type 2 performance provided by Galvin et al.
may be preferable to that of the current approach.

In the interest of recognizing this, we provide free Matlab code available online
(see note at the end of the manuscript) that implements one way of using Galvin
et al.’s approach to evaluate an observer’s overall type 2 performance. Given the
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parameters of an SDT model, this code outputs the theoretically optimal11 overall
type 2 ROC curve—i.e. the overall type 2 ROC curve based on type 2 likelihood
ratio, which has the maximum possible area under the curve. Maniscalco and Lau
[13], building on the suggestions of Galvin et al. [9], proposed that one way of
evaluating an observer’s type 2 performance is to compare her empirical type 2
ROC curve with the theoretical type 2 ROC curve, given her type 1 performance.
By comparing an observer’s empirical overall type 2 ROC curve with the theo-
retically optimal overall type 2 ROC curve based on type 2 likelihood ratios,
the observer’s overall type 2 sensitivity can be assessed with respect to the
SDT-optimal level. This approach will capture potential variation in area under
the overall type 2 ROC curve that is ignored (treated as a response-specific
criterion effect) by the meta-d0 approach.

3.2.3.4 Advantages of the Current Approach

Our SDT treatment of type 2 performance has certain advantages over that of
Galvin et al. One advantage is that it does not require making an explicit
assumption regarding what overall type 2 decision variable an observer uses, or
even that the observer constructs such an overall type 2 decision variable to begin
with.12 This is because our approach allows the type 2 criteria for each response to
vary independently, rather than positing a fixed relationship between their loca-
tions. Thus, if an observer does construct an overall type 2 decision variable, our
treatment will capture this implicitly by means of the relationship between the
response-specific type 2 criteria; and if an observer does not use an overall type 2
decision variable to begin with, our treatment can accommodate this behavior. The
question of what overall type 2 decision variables, if any, observers tend to use is a
substantive empirical question, and so it is preferable to avoid making assumptions
on this matter if possible.

A second, related advantage is that our approach is potentially more flexible
than Galvin et al.’s in capturing the behavior of response-specific type 2 ROC
curves, without loss of flexibility in capturing the overall type 2 ROC curve. (Since
overall type 2 ROC curves depend on the response-specific curves, as shown
above, our focus on characterizing the response-specific curves does not entail a
deficit in capturing the overall curve.) A third advantage is that our approach
provides a simple way to derive response-specific type 2 ROC curves from the

11 Provided the assumptions of the SDT model are correct.
12 Of course, our approach must at least implicitly assume a type 2 decision variable within each
response type. In our treatment, the implicit type 2 decision variable for each response type is just
the distance of x from c. However, for the analysis of response-specific type 2 performance for the
equal variance SDT model, distance from criterion and type 2 likelihood ratio are equivalent
decision variables. This is because they vary monotonically with each other [9], and so produce
the same type 2 ROC curve [5, 21].
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type 1 SDT model, whereas deriving the overall type 2 ROC curve is more
complex under Galvin et al.’s approach and depends upon the type 2 decision
variable being assumed.

3.3 Characterizing Type 2 Sensitivity in Terms
of Type 1 SDT: Meta-d0

Since response-specific type 2 ROC curves can be derived directly from d0 and c on
the SDT model, this entails a tight theoretical relationship between type 1 and type
2 performance. One practical consequence is that type 2 sensitivity—the empirical
type 2 ROC curves—can be quantified in terms of the type 1 SDT parameters d0 and
c [13]. However, it is necessary to explicitly differentiate instances when d0 is meant
to characterize type 1 performance from those instances when d0 (along with c) is
meant to characterize type 2 performance. Here we adopt the convention of using
the variable names meta-d0 and meta-c to refer to type 1 SDT parameters when used
to characterize type 2 performance. We will refer to the type 1 SDT model as a
whole, when used to characterize type 2 performance, as the meta-SDT model.
Essentially, d0 and c describe the type 1 SDT model fit to the type 1 ROC curve,13

whereas meta-d0 and meta-c—the meta-SDT model—quantify the type 1 SDT
model when used exclusively to fit type 2 ROC curves.

How do we go about using the type 1 SDT model to quantify type 2 performance?
There are several choices to make before a concrete method can be proposed. In the
course of discussing these issues, we will put forth the methodological approach
originally proposed by Maniscalco and Lau [13].

3.3.1 Which Type 2 ROC Curves?

As discussed in the preceding section ‘‘Comparison of the current approach to that
of Galvin et al. [9],’’ we find the meta-SDT fit that provides the best simultaneous fit
to the response-specific type 2 ROC curves for ‘‘S1’’ and ‘‘S2’’ responses, rather
than finding a model that directly fits the overall type 2 ROC curve. As explained in
more detail in that prior discussion, we make this selection primarily because (1) it
allows more flexibility and accuracy in fitting the overall data set, and (2) it does not
require making an explicit assumption regarding what type 2 decision variable the
observer might use for confidence rating.

13 When the multiple points on the type 1 ROC curve are obtained using confidence rating data,
it is arguably preferable to calculate d0 and c only from the (FAR, HR) pair generated purely by
the observer’s type 1 response. The remaining type 1 ROC points incorporate confidence rating
data and depend on type 2 sensitivity, and so estimating d0 on the basis of these ROC points may
confound type 1 and type 2 sensitivity. See the section below titled ‘‘Response-specific meta-d0

and the unequal variance SDT model’’.
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3.3.2 Which Way of Using Meta-d0 and Meta-c to Derive
Response-Specific Type 2 ROC Curves?

A second consideration is how to characterize the response-specific type 2 ROC
curves using meta-d0 and meta-c. For the sake of simplifying the analysis, and for
the sake of facilitating comparison between d0 and meta-d0, an appealing option is
to a priori fix the value of meta-c so as to be similar to the empirically observed
type 1 response bias c, thus effectively allowing meta-d0 to be the sole free
parameter that characterizes type 2 sensitivity. However, since there are multiple
ways of measuring type 1 response bias [12], there are also multiple ways of fixing
the value of meta-c on the basis of c. In addition to the already-introduced c, type 1
response bias can be measured with the relative criterion, c0:

c0 ¼ c=d0

This measure takes into account how extreme the criterion is, relative to the
stimulus distributions.

Bias can also be measured as b, the ratio of the probability density function for
S2 stimuli to that of S1 stimuli at the location of the decision criterion:

b ¼ ecd0

Figure 3.2 shows an example of how c, c0, and b relate to the stimulus distri-
butions when bias is fixed and d0 varies. Panel a shows an SDT diagram for d0 = 3
and c = 1. In panel b, d0 = 1 and the three decision criteria are generated by
setting c, c0, and b to the equivalent values of those exhibited by these measures in
panel a. Arguably, c0 performs best in terms of achieving a similar ‘‘cut’’ between
the stimulus distributions in panels a and b. This is an intuitive result given that c0

essentially adjusts the location of c according to d0. Thus, holding c0 constant
ensures that, as d0 changes, the location of the decision criterion remains in a
similar location with respect to the means of the two stimulus distributions.

By choosing c0 as the measure of response bias that will be held constant in the
estimation of meta-d0, we can say that when the SDT and meta-SDT models are fit
to the same data set, they will have similar type 1 response bias, in the sense that
they have the same c0 value. This in turn allows us to interpret a subject’s meta-d0

in the following way: ‘‘Suppose there is an ideal subject whose behavior is per-
fectly described by SDT, and who performs this task with a similar level of
response bias (i.e. same c0) as the actual subject. Then in order for our ideal subject
to produce the actual subject’s response-specific type 2 ROC curves, she would
need her d0 to be equal to meta-d0.’’

Thus, meta-d0 can be found by fitting the type 1 SDT model to response-specific
type 2 ROC curves, with the constraint that meta-c0 = c0. (Note that in the below
we list meta-c, rather than meta-c0, as a parameter of the meta-SDT model. The
constraint meta-c0 = c0 can thus be satisfied by ensuring meta-c = meta-d0 9 c0.)
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3.3.3 What Computational Method of Fitting?

If the response-specific type 2 ROC curves contain more than one empirical
(FAR2, HR2) pair, then in general an exact fit of the model to the data is not
possible. In this case, fitting the model to the data requires minimizing some loss
function, or maximizing some metric of goodness of fit.

Here we consider the procedure for finding the parameters of the type 1 SDT
model that maximize the likelihood of the response-specific type 2 data. Maximum
likelihood approaches for fitting SDT models to type 1 ROC curves with multiple
data points have been established [4, 16]. Here we adapt these existing type 1
approaches to the type 2 case. The likelihood of the type 2 data can be charac-
terized using the multinomial model as

Ltype 2 h j datað Þ /
Y
y;s;r

Probh conf ¼ y j stim ¼ s; resp ¼ rð Þndata conf¼y j stim¼s; resp¼rð Þ

Maximizing likelihood is equivalent to maximizing log-likelihood, and in
practice it is typically more convenient to work with log-likelihoods. The log-
likelihood for type 2 data is given by

log Ltype 2 h j datað Þ /
X
y;s;r

ndata log Probh

Fig. 3.2 Example behavior of holding response bias constant as d0 changes for c, c0, and b. a An
SDT graph where d0 = 3 and c = 1. The criterion location can also be quantified as c0 = c/d0 = 1/3
and log b = c 9 d0 = 3. b An SDT graph where d0 = 1. The three decision criteria plotted here
represent the locations of the criteria that preserve the value of the corresponding response bias
exhibited in panel a. So e.g. the criterion marked c0 in panel b has the same value of c0 as the criterion
in panel a (=1/3), and likewise for c (constant value of 1) and b (constant value of 3)
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h is the set of parameters for the meta-SDT model:

h ¼ meta-d0;meta-c;meta-c2;“S1”;meta-c2;“S2”

� 	

ndataðconf ¼ y j stim ¼ s; resp ¼ rÞ is a count of the number of times in the data a
confidence rating of y was provided when the stimulus was s and response was r.
y, s, and r are indices ranging over all possible confidence ratings, stimulus classes,
and stimulus classification responses, respectively.
probhðconf ¼ y j stim ¼ s; resp ¼ rÞ is the model-predicted probability of gen-
erating confidence rating y for trials where the stimulus and response were s and r,
given the parameter values specified in h.

Calculation of these type 2 probabilities from the type 1 SDT model is similar
to the procedure used to calculate the response-specific type 2 FAR and HR. For
notational convenience, below we express these probabilities in terms of the
standard SDT model parameters, omitting the ‘‘meta’’ prefix.

For convenience, define

_c2;“S1” ¼ c; cconf¼2
2;“S1” ; c

conf¼3
2;“S1” ; . . .; cconf¼H

2;“S1” ;�1
� �

_c2;“S2” ¼ c; cconf¼2
2;“S2” ; c

conf¼3
2;“S2” ; . . .; cconf¼H

2;“S2” ;1
� �

Then

Prob conf ¼ y j stim ¼ S1; resp ¼ “S1”ð Þ

¼
U _c2;“S1”ðyÞ;� d0

2

� 	
� U _c2;“S1” yþ 1ð Þ;� d0

2

� 	
U c;� d0

2

� 	

Prob conf ¼ y j stim ¼ S1; resp ¼ “S2”ð Þ

¼
U _c2;“S2” yþ 1ð Þ;� d0

2

� 	
� U _c2;“S2” yð Þ;� d0

2

� 	
1� U c;� d0

2

� 	

Prob conf ¼ y j stim ¼ S2; resp ¼ “S2”ð Þ

¼
U _c2;“S2” yþ 1ð Þ; d0

2

� 	
� U _c2;“S2” yð Þ; d0

2

� 	
1� U c; d0

2

� 	
An illustration of how these type 2 probabilities are derived from the type 1

SDT model is provided in Fig. 3.3.
The multinomial model used as the basis for calculating likelihood treats each

discrete type 2 outcome (conf = y | stim = s, resp = r) as an event with a fixed
probability that occurred a certain number of times in the data set, where outcomes
across trials are assumed to be statistically independent. The probability of the
entire set of type 2 outcomes across all trials is then proportional to the product of
the probability of each individual type 2 outcome, just as e.g. the probability of
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Fig. 3.3 Type 2 response probabilities from the SDT model. a An SDT graph with d0 = 2 and
decision criteria c = 0.5, c2,‘‘S1’’ = (0, -0.5, -1), and c2,‘‘S2’’ = (1, 1.5, 2). The type 1 criterion
(solid vertical line) is set to the value of 0.5, corresponding to a conservative bias for providing
‘‘S2’’ responses, in order to create an asymmetry between ‘‘S1’’ and ‘‘S2’’ responses for the sake
of illustration. Seven decision criteria are used in all, segmenting the decision axis into 8 regions.
Each region corresponds to one of the possible permutations of type 1 and type 2 responses, as
there are two possible stimulus classifications and four possible confidence ratings. b–i Deriving
probability of confidence rating contingent on type 1 response and accuracy. How would the SDT
model depicted in panel (a) predict the probability of each confidence rating for correct ‘‘S1’’
responses? Since we wish to characterize ‘‘S1’’ responses, we need consider only the portion of
the SDT graph falling to the left of the type 1 criterion. Since ‘‘S1’’ responses are only correct
when the S1 stimulus was actually presented, we can further limit our consideration to internal
responses generated by S1 stimuli. This is depicted in panel (b). This distribution is further
subdivided into 4 levels of confidence by the 3 type 2 criteria (dashed vertical lines), where
darker regions correspond to higher confidence. The area under the S1 curve in each of these
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throwing 4 heads and 6 tails for a fair coin is proportional to 0.54 9 0.56.
(Calculation of the exact probability depends on a combinatorial term which is
invariant with respect to h and can therefore be ignored for the purposes of
maximum likelihood fitting.)

Likelihood, L(h), can be thought of as measuring how probable the empirical
data is, according to the model parameterized with h. A very low L(h) indicates
that the model with h would be very unlikely to generate a pattern like that
observed in the data. A higher L(h) indicates that the data are more in line with the
typical behavior of data produced by the model with h. Mathematical optimization
techniques can be used to find the values of h that maximize the likelihood, i.e. that
create maximal concordance between the empirical distribution of outcomes and
the model-expected distribution of outcomes.

The preceding approach for quantifying type 2 sensitivity with the type 1 SDT
model—i.e. for fitting the meta-SDT model—can be summarized as a mathe-
matical optimization problem:

h� ¼ arg max
h

Ltype 2 h j datað Þ; subject to: meta-c0 ¼ c0; c meta-cascending

� �

where type 2 sensitivity is quantified by meta-d0 2 h�.

c meta-cascending

� �
is the Boolean function described previously, which returns a

value of ‘‘true’’ only if the type 1 and type 2 criteria stand in appropriate ordinal
relationships.

We provide free Matlab code, available online, for implementing this maximum
likelihood procedure for fitting the meta-SDT model to a data set (see note at the
end of the manuscript).

3.3.4 Toy Example of Meta-d0 Fitting

An illustration of the meta-d0 fitting procedure is demonstrated in Fig. 3.4 using
simulated data. In this simulation, we make the usual SDT assumption that on each
trial, presentation of stimulus S generates an internal response x that is drawn from
the probability density function of S, and that a type 1 response is made by
comparing x to the decision criterion c. However, we now add an extra mechanism
to the model to allow for the possibility of added noise in the type 2 task. Let us
call the internal response used to rate confidence x2. The type 1 SDT model we

regions, divided by the total area under the S1 curve that falls below the type 1 criterion, yields
the probability of reporting each confidence level, given that the observer provided a correct ‘‘S1’’
response. Panel (d) shows these probabilities as derived from areas under the curve in panel (b).
The remaining panels display the analogous logic for deriving confidence probabilities for
incorrect ‘‘S1’’ responses (f, h), correct ‘‘S2’’ responses (c, e), and incorrect ‘‘S2’’ responses (g, i)

b
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have thus far considered assumes x2 = x. In this example, we suppose that x2 is a
noisier facsimile of x. Formally,

x2 ¼ xþ n; n	N 0; r2ð Þ

where N(0, r2) is the normal distribution with mean 0 and standard deviation r2.
The parameter r2 thus determines how much noisier x2 is than x. For r2 = 0 we
expect meta-d0 = d0, and for r2 [ 0 we expect meta-d0\ d0.

Fig. 3.4 Fitting meta-d0 to response-specific type 2 data. a Graph for the SDT model where
d0 = 2 and r2 = 0 (see text for details). b A model identical to that in panel a, with the exception
that r2 = 1, was used to create simulated data. This panel displays the SDT graph of the
parameters for the meta-d0 fit to the r2 = 1 data. c, d Response-specific type 2 probabilities. The
maximum likelihood method of fitting meta-d0 to type 2 data uses response-specific type 2
probabilities as the fundamental unit of analysis. The type 1 SDT parameters that maximize the
likelihood of the type 2 data yield distributions of response-specific type 2 probabilities closely
approximating the empirical (here, simulated) distributions. Here we only show the probabilities
for ‘‘S1’’ responses; because of the symmetry of the generating model, ‘‘S2’’ responses follow
identical distributions. e Response-specific type 2 ROC curves. ROC curves provide a more
informative visualization of the type 2 data than the raw probabilities. Here it is evident that there
is considerably less area under the type 2 ROC curve for the r2 = 1 simulation than is predicted
by the r2 = 0 model. The meta-d0 fit provides a close match to the simulated data
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The simulated observer rates confidence on a 4-point scale by comparing x2 to
response-specific type 2 criteria, using the previously defined decision rules for
confidence in the type 1 SDT model.14

We first considered the SDT model with d0 = 2, c = 0, c2,‘‘S1’’ = (-0.5, -1,
-1.5), c2,‘‘S2’’ = (0.5, 1, 1.5) and r2 = 0. Because r2 = 0, this is equivalent to the
standard type 1 SDT model. The SDT graph for these parameter values is plotted
in Fig. 3.4a. Using these parameter settings, we computed the theoretical proba-
bility of each confidence rating for each permutation of stimulus and response.
These probabilities for ‘‘S1’’ responses are shown in panels c and d, and the
corresponding type 2 ROC curve is shown in panel e. (Because the type 1 criterion
c is unbiased and the type 2 criteria are set symmetrically about c, confidence data
for ‘‘S2’’ responses follow an identical distribution to that of ‘‘S1’’ responses and
are not shown.)

Next we simulated 10,000,000 trials using the same parameter values as the
previously considered model, with the exception that r2 = 1. With this additional
noise in the type 2 task, type 2 sensitivity should decrease. This decrease in type 2
sensitivity can be seen in the type 2 ROC curve in panel e. There is more area
underneath the type 2 ROC curve when r2 = 0 than when r2 = 1.

We performed a maximum likelihood fit of meta-d0 to the simulated type 2 data
using the fmincon function in the optimization toolbox for Matlab (MathWorks,
Natick, MA), yielding a fit with parameter values meta-d0 = 1.07, meta-c = 0,
meta-c2,‘‘S1’’ = (-0.51, -0.77, -1.06), and meta-c2,‘‘S2’’ = (0.51, 0.77, 1.06). The
SDT graph for these parameter values is plotted in Fig. 3.4b.

Panels c and d demonstrate the component type 2 probabilities used for com-
puting the type 2 likelihood. The response-specific type 2 probabilities for r2 = 0
are not distributed the same way as those for r2 = 1, reflecting the influence of
adding noise to the internal response for the type 2 task. Computing meta-d0 for the
r2 = 1 data consists in finding the parameter values of the ordinary type 1 SDT
model that maximize the likelihood of the r2 = 1 response-specific type 2 data.
This results in a type 1 SDT model whose theoretical type 2 probabilities closely

14 Note that for this model, it is possible for x and x2 to be on opposite sides of the type 1
decision criterion c (see, e.g. Fig. 3.5a, b). This is not problematic, since only x is used to provide
the type 1 stimulus classification. It is also possible for x2 to surpass some of the type 2 criteria on
the opposite side of c. For instance, suppose that x = -0.5, x2 = +0.6, c = 0, and
cconf¼h

2;“S2” ¼ þ0:5. Then x is classified as an S1 stimulus, and yet x2 surpasses the criterion for
rating ‘‘S2’’ responses with a confidence of h. Thus, there is potential for the paradoxical result
whereby the type 1 response is ‘‘S1’’ and yet the type 2 confidence rating is rated highly due to
the relatively strong ‘‘S2’’-ness of x2. In this example, the paradox is resolved by the definition
of the type 2 decision rules stated above, which stipulate that internal responses are only
evaluated with respect to the response-specific type 2 criteria that are congruent with the type 1
response. Thus, in this case, the decision rule would not compare x2 with the type 2 criteria for
‘‘S2’’ responses to begin with. Instead, it would find that x2 does not surpass the minimal
confidence criterion for ‘‘S1’’ responses (i.e., x2 [ c [ cconf¼2

2; “S1” ) and would therefore assign x2 a
confidence of 1. Thus, in this case, the paradoxical outcome is averted. But such potentially
paradoxical results need to be taken into account for any SDT model that posits a potential
dissociation between x and x2.
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match the empirical type 2 probabilities for the simulated r2 = 1 data (Fig. 3.4c, d).
Because type 2 ROC curves are closely related to these type 2 probabilities, the
meta-d0 fit also produces a type 2 ROC curve closely resembling the simulated
curve, as shown in panel e.

3.3.5 Interpretation of Meta-d0

Notice that because meta-d0 characterizes type 2 sensitivity purely in terms of the
type 1 SDT model, it does not explicitly posit any mechanisms by means of which
type 2 sensitivity varies. Although the meta-d0 fitting procedure gave a good fit to
data simulated by the toy r2 model discussed above, it could also produce simi-
larly good fits to data generated by different models that posit completely different
mechanisms for variation in type 2 performance. In this sense, meta-d0 is
descriptive but not explanatory. It describes how an ideal SDT observer with
similar type 1 response bias as the actual subject would have achieved the
observed type 2 performance, rather than explain how the actual subject achieved
their type 2 performance.

The primary virtue of using meta-d0 is that it allows us to quantify type 2 sen-
sitivity in a principled SDT framework, and compare this against SDT expectations
of what type 2 performance should have been, given performance on the type 1 task,
all while remaining agnostic about the underlying processes. For instance, if we find
that a subject has d0 = 2 and meta-d0 = 1, then (1) we have taken appropriate
SDT-inspired measures to factor out the influence of response bias in our measure of
type 2 sensitivity; (2) we have discovered a violation of the SDT expectation that
meta-d0 = d0 = 2, giving us a point of reference in interpreting the subject’s
metacognitive performance in relation to their primary task performance and
suggesting that the subject’s metacognition is suboptimal (provided the assumptions
of the SDT model hold); and (3) we have done so while making minimal assump-
tions and commitments regarding the underlying processes.

Another important point for interpretation concerns the raw meta-d0 value, as
opposed to its value in relation to d0. Suppose observers A and B both have meta-
d0 = 1, but d0A = 1 and d0B = 2. Then there is a sense in which they have
equivalent metacognition, as their confidence ratings are equally sensitive in
discerning correct from incorrect trials. But there is also a sense in which A has
superior metacognition, since A was able to achieve the same level of meta-d0 as B
in spite of a lower d0. In a sense, A is more metacognitively ideal, according to
SDT. We can refer to the first kind of metacognition, which depends only on meta-
d0, as ‘‘absolute type 2 sensitivity,’’ and the second kind, which depends on the
relationship between meta-d0 and d0, as ‘‘relative type 2 sensitivity.’’ Absolute and
relative type 2 sensitivity are distinct constructs that inform us about distinct
aspects of metacognitive performance.

For more on the interpretation of meta-d0, see Maniscalco and Lau [13].
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3.4 Response-Specific Meta-d0

Thus far we have considered how to characterize an observer’s overall type 2
sensitivity using meta-d0, expounding upon the method originally introduced in
Maniscalco and Lau [13]. Here we show how to extend this analysis and char-
acterize response-specific type 2 sensitivity in terms of the type 1 SDT model.

In the below we focus on ‘‘S1’’ responses, but similar considerations apply for
‘‘S2’’ responses.

We wish to find the type 1 SDT parameters h that provide the best fit to the type

2 ROC curve for ‘‘S1’’ responses, i.e. the set of empirical FARconf¼h
2;“S1” ;HRconf¼h

2; “S1”

� �
for all h satisfying 2 B h B H. Thus, we wish to find the h that maximizes the
likelihood of the type 2 probabilities for ‘‘S1’’ responses, using the usual meta-d0

fitting approach. This is essentially equivalent to applying the original meta-d0

procedure described above to the subset of the model and data pertaining to ‘‘S1’’
responses.

Thus, we wish to solve the optimization problem

h�“S1” ¼ arg max
h“S1”

L2;“S1” h“S1” j datað Þ;

subject to: meta-c0“S1” ¼ c0; c meta-cascending

� �

where

h“S1” ¼ meta-d0“S1”;meta-c“S1”;meta-c2;“S1”

� 	

L2;“S1” h“S1” j datað Þ /
Y
y;s

Probh conf ¼ y j stim ¼ s; resp ¼ “S1”ð Þndataðconf¼y j stim¼s; resp¼“S1”Þ

meta-d0“S1” 2 h�“S1” measures type 2 sensitivity for ‘‘S1’’ responses.
The differences between this approach and the ‘‘overall’’ meta-d0 fit are

straightforward. The same likelihood function is used, but with the index r fixed to
the value ‘‘S1’’. h“S1” is equivalent to h except for its omission of metac2;“S2”, since
type 2 criteria for ‘‘S2’’ responses are irrelevant for fitting ‘‘S1’’ type 2 ROC
curves. The type 1 criterion meta-c‘‘S1’’ is listed with a ‘‘S1’’ subscript to distin-
guish it from meta-c‘‘S2’’, the type 1 criterion value from the maximum likelihood
fit to ‘‘S2’’ type 2 data. Since the maximum likelihood fitting procedure enforces
the constraint meta-c0‘‘S1’’ = c0, it follows that meta-c‘‘S1’’ = meta-d0‘‘S1’’ 9 c0.
Thus, in the general case where meta-d0‘‘S1’’ = meta-d0‘‘S2’’ and c0 = 0, it is also
true that meta-c‘‘S1’’ = meta-c‘‘S2’’.

We provide free Matlab code, available online, for implementing this maximum
likelihood procedure for fitting the response-specific meta-SDT model to a data set
(see note at the end of the manuscript).
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3.4.1 Toy Example of Response-Specific Meta-d0 Fitting

An illustration of the response-specific meta-d0 fitting procedure is demonstrated in
Fig. 3.5 using simulated data. We use a similar model as that used in the previous
toy example of meta-d0 fitting. That is, we use the usual type 1 SDT model, except
we suppose that the internal response used to produce the type 2 judgment, x2, may
be a noisier version of its type 1 counterpart, x. This time, we additionally allow the
degree of added noisiness in x2 to differ for ‘‘S1’’ and ‘‘S2’’ responses. Formally,

x2 ¼
xþ n“S1”; n“S1”	N 0; r2 “S1”ð Þ if x� c

xþ n“S2”; n“S2”	N 0; r2;“S2”

� 	
if x [ c

�

Different levels of type 2 noisiness for each response type allows for the
possibility that response-specific type 2 sensitivity can differ for ‘‘S1’’ and ‘‘S2’’
responses.

We first considered the SDT model with d0 = 2, c = 0, c2,‘‘S1’’ = (-0.5, -1, -1.5),
c2,‘‘S2’’ = (0.5, 1, 1.5) and r2,‘‘S1’’ = r2,‘‘S2’’ = 0. Because r2,‘‘S1’’ = r2,‘‘S2’’ = 0, this
is equivalent to the standard type 1 SDT model. The SDT graph for these parameter
values were used in the previous example, as illustrated in Fig. 3.4a. Using these
parameter settings, we constructed theoretical response-specific type 2 ROC curves, as
shown in Fig. 3.5c, d.

Next we simulated 10,000,000 trials using the same parameter values as the
previously considered model, with the exception that r2,‘‘S1’’ = 2/3 and r2,‘‘S2’’ = 1/3.
Since r2,‘‘S2’’ \r2,‘‘S1’’, for these simulated data there is more area underneath the
type 2 ROC curve for ‘‘S2’’ than for ‘‘S1’’ responses (Fig. 3.5c, d). The simulated
distributions of x2 values for correct and incorrect ‘‘S1’’ and ‘‘S2’’ responses is shown
in the top halves of Fig. 3.5a, b. Note that this model generates some x2 values that lie
on the opposite side of the type 1 criterion as the corresponding x value (which
determines the type 1 response). For all such trials, the type 1 response was deter-
mined only by x and confidence was set to 1. See footnote 14 above for more details.

We first performed a maximum likelihood fit of overall meta-d0 to the simulated
data, yielding a fit with parameter values meta-d0 = 1.17, meta-c = 0, meta-
c2,‘‘S1’’ = (-0.59, -0.79, -1.01), and meta-c2,‘‘S2’’ = (0.43, 0.80, 1.2).The theo-
retical type 2 ROC curves predicted by the SDT model with these parameter
values is displayed in Fig. 3.5c, d alongside the simulated data. Inspection of these
graphs suggests that the meta-d0 fit was able to account for differences in overall
levels of confidence for ‘‘S1’’ and ‘‘S2’’ responses, as reflected by the fact that
the response-specific curves are scaled in such a way as to mirror the scaling of the
empirical type 2 ROC curves. However, the meta-d0 fit cannot account for
the difference in type 2 sensitivity for ‘‘S1’’ and ‘‘S2’’ responses. Instead, the fit
produces overlapping type 2 ROC curves located midway between the empirical
‘‘S1’’ and ‘‘S2’’ curves, as if capturing something analogous to the average type 2
sensitivity for each response type. (See the inset of Fig. 3.5d for a plot of the meta-
d0 type 2 ROC curves for both response types.)
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Fig. 3.5 Response-specific meta-d0 fitting. a Simulated data and meta-d0 fit for ‘‘S1’’ responses.
Top Simulated distribution of x2 values for correct and incorrect ‘‘S1’’ responses for simulated
data with r2,‘‘S1’’ = 2/3. (See main text for details.) Note that many x2 values initially labeled
‘‘S1’’ cross over to the other side of the type 1 criterion after having type 2 noise added. These are
considered to be ‘‘S1’’ responses with confidence =1. See footnote 14 in main text for further
discussion. Bottom SDT parameters of meta-d0‘‘S1’’ fit. b Same as A, but for ‘‘S2’’ responses.
c Type 2 ROC curves for ‘‘S1’’ responses. Setting r2,‘‘S1’’ = 2/3 substantially reduces type 2
sensitivity, as revealed by the comparison of area under the ROC curves for r2,‘‘S1’’ = 2/3 and
r2,‘‘S1’’ = 0. Response-specific meta-d0 fits the data well, but meta-d0 provides an overestimate.
d Type 2 ROC curves for ‘‘S2’’ responses. Response-specific meta-d0 fits the ‘‘S2’’ data well, but
meta-d0 provides an underestimate. Inset Type 2 ROC curves for both ‘‘S1’’ and ‘‘S2’’ responses,
shown for the simulated data (black) and the meta-d0 fit (gray). The meta-d0 fit generates type 2
ROC curves intermediate between the empirical (simulated) ‘‘S1’’ and ‘‘S2’’ curves
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Next we performed a maximum likelihood fit for response-specific meta-d0 to
the simulated data. This yielded a fit with parameter values meta-d0‘‘S1’’ = 0.77,
meta-c‘‘S1’’ = 0, meta-c2,‘‘S1’’ = (-0.54, -0.73, -0.94) for ‘‘S1’’ responses, and
meta-d0‘‘S2’’ = 1.56, meta-c‘‘S2’’ = 0, meta-c2,‘‘S2’’ = (0.48, 0.87, 1.30) for ‘‘S2’’
responses. The SDT graph for these parameter values is plotted in the bottom
halves of Fig. 3.5a, b. The theoretical type 2 ROC curves corresponding to these
fits are displayed in Fig. 3.5c, d alongside the simulated data. It is evident that the
response-specific meta-d0 approach provides a close fit to the simulated data.

3.5 Response-Specific Meta-d0 and the Unequal
Variance SDT Model

3.5.1 Inferring Unequal Variance from the z-ROC
Curve Slope

Thus far we have discussed SDT models assuming that the variance of the internal
response distributions for S1 and S2 stimuli have equal variance. However, it is also
possible to relax this assumption and allow the variances to differ. In conventional
notation, we can define an additional parameter to the type 1 SDT model, s:

s ¼ rS1

rS2

We may refer to the SDT model parameterized with s as the unequal variance
SDT model, or UV-SDT. We may similarly refer to the more basic SDT model we
have discussed thus far as the equal variance SDT model or EV-SDT.

UV-SDT has been shown to have advantages over EV-SDT in capturing certain
data sets. The primary motivation for UV-SDT arises from the analysis of type
1 z-ROC curves. Given a set of type 1 (FAR, HR) points, a z-ROC curve may be
constructed by plotting z(HR) against z(FAR), where z denotes the inverse of the
cumulative distribution function for the normal distribution. That is,

z pð Þ ¼ x; such that U x; 0; 1ð Þ ¼ p

According to SDT, since FAR and HR are generated by the normal cumulative
distribution function evaluated at some location on the decision axis X, it should
follow that z(FAR) and z(HR) correspond to locations on X. More specifically, it
can be shown that z(FAR) quantifies the distance between the mean of the S1
distribution and the criterion used to generate that FAR, as measured in units of the
standard deviation of the S1 distribution [and similarly for z(HR)]. That is,
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z FARcð Þ ¼ lS1 � c

rS1
; FARc ¼ 1� U c; lS1; rS1ð Þ

z HRcð Þ ¼ lS2 � c

rS2
; HRc ¼ 1� U c; lS2; rS2ð Þ

The slope of the z-ROC curve for a set of (FARc, HRc) represents how changes
in z(HRc) relate to changes in z(FARc). According to SDT, this is equivalent to
how changes in the criterion c, as measured in rS2 units, are related to changes in
the same quantity c as measured in rS1 units, since

z-ROC slope ¼ DzðHRÞ
DzðFARÞ ¼

Dc=rS2

Dc=rS1
¼ rS1

rS2
¼ s

3.5.2 Constructing Pseudo Type 1 ROC Curves
from Type 2 Data

Under EV-SDT, where rS1 = rS2, the z-ROC curve should therefore be linear with
a slope of 1, since changing c by d units of rS2 is equivalent to changing c by d
units of rS1. Under UV-SDT, the z-ROC curve should be linear with a slope of s,
since changing c by d units of rS1 is equivalent to changing c by s 9 d units of rS2.
Thus, empirical instances of linear z-ROC curves with non-unit slope have been
taken to constitute empirical support for the UV-SDT model (e.g. [20]).

Constructing empirical type 1 ROC curves requires manipulating response bias
in order to collect multiple type 1 (FAR, HR) points at the same level of sensi-
tivity. One method of accomplishing this is to place the subject in multiple
experimental conditions that tend to induce different response biases, e.g. due to
different base rates of stimulus presentation or payoff structures [12, 22]. However,
this method is somewhat resource intensive.

A popular alternative strategy for constructing empirical type 1 ROC curves is
to use the conjunction of type 1 and type 2 judgments in order to emulate distinct
type 1 judgments. For instance, suppose the observer classifies a stimulus as S1 or
S2 and then rates confidence as high or low. FAR and HR are determined by how
often the observer responds ‘‘S2.’’ But we can also imagine that, had the subject
been very conservative in responding ‘‘S2,’’ he might have only done so for those
trials in which he endorsed the ‘‘S2’’ response with high confidence. Thus, we can
compute a second (FAR, HR) pair by provisionally treating only ‘‘high confidence
S2’’ trials as ‘‘S2’’ responses. Similarly, we can emulate a liberal type 1 response
bias by provisionally treating anything other than a ‘‘high confidence S1’’ response
as an ‘‘S2’’ response. This procedure would thus allow us to derive 3 points on the
type 1 ROC curve from a single experimental session.

Following the naming convention introduced by Galvin et al. [9], we will refer
to the type 1 ROC curve constructed in this way as the pseudo type 1 ROC curve,
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and the extra (FAR, HR) points generated from confidence ratings as pseudo type 1
(FAR, HR). For a discrete H-point rating scale, we can derive 2H - 1 points on
the pseudo type 1 ROC curve. In addition to the usual (FAR, HR) pair as deter-
mined by the observer’s stimulus classification, we can compute new pseudo
(FAR, HR) pairs from ‘‘S1’’ and ‘‘S2’’ responses at each level of confidence h [ 1,
as

HRconf¼h
1	 2;“S1” ¼ 1� p resp ¼ “S1”; conf� h j stim ¼ S2ð Þ

FARconf¼h
1	 2;“S1” ¼ 1� p resp ¼ “S1”; conf� h j stim ¼ S1ð Þ

HRconf¼h
1	 2;“S2” ¼ p resp ¼ “S2”; conf� h j stim ¼ S2ð Þ

FARconf¼h
1	 2;“S2” ¼ p resp ¼ “S2”; conf� h j stim ¼ S1ð Þ

The subscript ‘‘1*2’’ denotes that these pseudo type 1 (FAR, HR) pairs are
being treated as type 1 data in spite of having been partially constructed from type
2 decisions.

The pseudo type 1 ROC curve has a straightforward interpretation on the SDT
graph. Each pseudo type 1 (FAR, HR) pair can be computed from the SDT model
by using the corresponding response-specific type 2 criterion in place of the type 1
criterion in the formula for FAR and HR:

HRconf¼h
1	 2;“SX” ¼ 1� U cconf¼h

2;“SX” ; lS2; rS2

� �

FARconf¼h
1	 2;“SX” ¼ 1� U cconf¼h

2;“SX” ; lS1; rS1

� �

where ‘‘SX’’ denotes either ‘‘S1’’ or ‘‘S2.’’ Figure 3.1a, b illustrates this principle.

3.5.3 Dependence of Pseudo Type 1 ROC Curves
on Response-Specific Type 2 ROC Curves

However, because the pseudo type 1 (FAR, HR) points depend on both type 1 and
type 2 judgments, they risk confounding type 1 and type 2 sensitivity. Indeed, we
will now demonstrate that pseudo type 1 (FAR, HR) points directly depend upon
type 1 and type 2 ROC data. For instance, consider the pseudo type 1 (FAR, HR)
for ‘‘S2’’ responses. It follows from the definition of these that

HRconf¼h
1	 2;“S2” ¼ p resp ¼ “S2”; conf� h j stim ¼ S2ð Þ

¼ p conf� h j resp ¼ “S2”; stim ¼ S2ð Þ � p resp ¼ “S2” j stim ¼ S2ð Þ
¼ HRconf¼h

2; “S2” � HR1
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FARconf¼h
1	 2;“S2” ¼ p resp ¼ “S2”; conf� h j stim ¼ S1ð Þ

¼ p conf� h j resp ¼ “S2”; stim ¼ S1ð Þ � p resp ¼ “S2” j stim ¼ S1ð Þ
¼ FARconf¼h

2; “S2” � FAR1

Similarly for ‘‘S1’’ responses,

HRconf¼h
1	 2;“S1” ¼ 1� p resp ¼ “S1”; conf� h j stim ¼ S2ð Þ

¼ 1� p conf� h j resp ¼ “S1”; stim ¼ S2ð Þ � p resp ¼ “S1” j stim ¼ S2ð Þ½ �

¼ 1� FARconf¼h
2; “S1” � 1� HR1ð Þ

h i

FARconf¼h
1	 2;“S1” ¼ 1� p resp ¼ “S1”; conf� h j stim ¼ S1ð Þ

¼ 1� p conf� h j resp ¼ “S1”; stim ¼ S1ð Þ � p resp ¼ “S1” j stim ¼ S1ð Þ½ �

¼ 1� HRconf¼h
2; “S1” � 1� FAR1ð Þ

h i

Thus, if separate cognitive mechanisms govern type 1 and type 2 judgments,
then it is possible that patterns in the pseudo type 1 ROC curve reflect aspects of
cognitive processing pertaining to type 2, rather than type 1, judgments. One such
theoretical pattern is revealed in the case of chance type 2 responding, as discussed
in Clifford et al. [3]. If an observer has chance levels of type 2 sensitivity, then
confidence ratings do not differentiate between correct and incorrect trials, and so
HR2 = FAR2. The pseudo type 1 ROC points constructed from such data would
consist in a linear scaling of the ‘‘true’’ (FAR1, HR1) pair by some constant
k = HR2 = FAR2. Thus, the pseudo type 1 ROC curve would consist of two line
segments, one connecting (0, 0) to (FAR1, HR1) (corresponding to chance type 2
performance for ‘‘S2’’ responses), the other connecting (FAR1, HR1) to (1, 1)
(corresponding to chance type 2 performance for ‘‘S1’’ responses); see Clifford
et al.’s Fig. 3.2c.

Here we make the observation that pseudo type 1 z-ROC curves with non-unit
slope can be generated by an EV-SDT model with differences in response-specific
meta-d0 (hereafter, RSM-SDT). By the same token, we observe that differences in
the area under response-specific type 2 ROC curves can be generated purely as a
consequence of the type 1 properties of the UV-SDT model. Thus, considerable
caution is warranted in making inferences about the cognitive processes that
underlie patterns in type 1 and type 2 ROC curves because of the possibility of
confusing the effects of different variance for type 1 distributions and different
suboptimalities for response-specific metacognitive sensitivity.
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Fig. 3.6 Response-specific meta-d0 model can fit patterns generated by the unequal variance SDT
model. a UV-SDT model and response-specific meta-d0 fit using EV-SDT. We used simulated trials
from a UV-SDT model with s = 0.7 to generate type 1 and type 2 ROC curves. The response-
specific meta-d0 fit was able to emulate the differences in the degree of distribution overlap for ‘‘S1’’
and ‘‘S2’’ responses exhibited by the UV-SDT model (compare distribution overlaps on either side
of the type 1 criterion in the top and bottom panels). b Type 1 ROC curve. We constructed pseudo
type 1 ROC curves from the type 2 (FAR, HR) data produced by the meta-d0 fits and the type 1 (FAR,
HR) computed from the simulated data according to EV-SDT. Differences between UV-SDT and
the meta-d0 fits are difficult to discern on the pseudo type 1 ROC. c Type 1 z-ROC curve. On the
pseudo type 1 z-ROC curve it is apparent that UV-SDT produces a curve with a non-unit slope, and
that the curve based on response-specific meta-d0 under EV-SDT produced a close match. By
contrast, the curve based on the meta-d0 fit under EV-SDT produced a unit slope. d Response-
specific type 2 ROC curves. Under the UV-SDT model, there is more area under the type 2 ROC
curve for ‘‘S2’’ responses than there is for ‘‘S1’’ responses. This pattern is closely connected to the
non-unit slope on the type 1 z-ROC curve. As expected, response-specific meta-d0 but not overall
meta-d0 produced a good fit to this type 2 data
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3.5.4 RSM-SDT Fit to Data Generated by UV-SDT

We will illustrate the ability of differences in response-specific meta-d0 to produce
a non-unit slope on the pseudo type 1 z-ROC curve by simulating data from the
UV-SDT model and fitting it with RSM-SDT. We used the UV-SDT model with
d01 = 2, c1 = 0, c2,‘‘S1’’ = (-0.5, -1, -1.5), c2,‘‘S2’’ = (0.5, 1, 1.5), and s = 0.7,
where the ‘‘1’’ subscript for d0 and c denotes that these are measured in rS1 units.
The SDT graph for these parameter values is plotted in Fig. 3.6a. We simulated
10,000,000 trials and constructed the pseudo type 1 ROC curve, pseudo type 1
z-ROC curve, and response-specific type 2 ROC curves, as plotted in Fig. 3.6b–d.

Next, we performed both an overall meta-d0 fit and a response-specific meta-d0

fit to the data, both times using the EV-SDT model as a basis. Performing the
meta-d0 fit requires first calculating d0 and c for the simulated data. Performing the
calculations for d0 and c under the EV-SDT model yielded d0 = 1.7 and
c = 0.15.15 The overall meta-d0 fit resulted in parameter values of meta-d0 = 1.47,
meta-c = 0.13, c2,‘‘S1’’ = (-0.29, -0.74, -1.20), and c2,‘‘S2’’ = (0.51, 0.86, 1.20).
The response-specific meta-d0 fit resulted in parameter values of meta-
d0‘‘S1’’ = 1.05, meta-c‘‘S1’’ = 0.09, meta-c2,‘‘S1’’ = (-0.28, -0.69, -1.13) for ‘‘S1’’
responses, and meta-d0‘‘S2’’ = 2.40,16 meta-c‘‘S2’’ = 0.21, meta-c2,‘‘S1’’ = (0.65,
1.06, 1.45) for ‘‘S2’’ responses. From these parameter values, we computed the
theoretical response-specific type 2 ROC curves (Fig. 3.6d). We also constructed
the theoretical pseudo type 1 ROC curves (Fig. 3.6b, c) for the meta-d0 fits. It was
not possible to do this directly, since the meta-d0 fits are meant to describe type 2
performance rather than type 1 outcomes. Thus, we performed the following
procedure. From the meta-d0 fits, we obtained a set of response-specific (FAR2,
HR2) pairs. From the simulated data, we computed the ‘‘true’’ (FAR1, HR1) pair.
Then we computed a set of pseudo type 1 ROC points, (FAR1*2, HR1*2), using
the equations above that describe how to derive pseudo type 1 ROC points from
(FAR1, HR1) and a set of response-specific (FAR2, HR2).

Figure 3.6c shows that the UV-SDT model produced a linear z-ROC curve with
a slope lower than 1. It also demonstrates that the RSM-SDT fit produced a close
approximation to the UV-SDT data, whereas the overall meta-d0 fit did not. To
quantify these observations, we performed maximum likelihood fits of the
UV-SDT model onto (1) the simulated data originally generated by the UV-SDT
model, and (2) a new set of 10,000,000 simulated trials that followed a distribution

15 Note that the values for d0 and c recovered by EV-SDT analysis are slightly different from
those used in the generating UV-SDT model due to their differing assumptions about the
distribution variances.
16 The value of meta-d0‘‘S2’’ at 2.4 was substantially larger than the value of d0 at 1.7, an unusual
result as we would typically expect meta-d0 B d0 [13]. However, constraining the RSM-SDT fit
such that meta-d0‘‘S2’’ B d0 still produced data that gave a reasonable approximation to the z-ROC
curve. Fitting the UV-SDT model to the data distributed according to this RSM-SDT fit yielded
s = 0.83, demonstrating that even with the constraint that meta-d0‘‘S2’’ B d0, RSM-SDT still
produced a z-ROC curve with non-unit slope.
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of outcomes following the theoretical pseudo type 1 ROC curve generated by the
RSM-SDT fit, and (3) similarly for the overall meta-d0 fit. The UV-SDT fit to the
UV-SDT generated data yielded s = 0.7, successfully recovering the true value of
s in the generating model. The UV-SDT fit to the data distributed according to
RSM-SDT yielded a closely matching s = 0.72. The UV-SDT fit to the data
distributed according to the overall meta-d0 fit yielded s = 0.98 since this model
has no mechanism with which to produce non-unit slopes on the z-ROC curve.

The relationship between the slope of the pseudo type 1 z-ROC curve and area
under the response-specific type 2 ROC curves is made evident in Fig. 3.6d. The
data generated by the UV-SDT model produced a type 2 ROC curve for ‘‘S2’’
responses that has substantially more area underneath it than does the type 2 ROC
curve for ‘‘S1’’ responses. Intuitively, this is due to the fact that when s \ 1, the S1
and S2 distributions overlap less for ‘‘S2’’ responses than they do for ‘‘S1’’
responses (see Fig. 3.6a). As expected, the response-specific meta-d0 fit is able to
accommodate this pattern in the response-specific type 2 ROC curves, whereas the
overall meta-d0 fit is not.

3.5.5 UV-SDT Fit to Data Generated by RSM-SDT

Just as RSM-SDT can closely fit data generated by UV-SDT, here we show that
UV-SDT can produce patterns of data similar to those generated by an RSM-SDT
model. For this example, we once again use the model described in the section
‘‘Toy example of response-specific meta-d0 fitting.’’ This model has two param-
eters, r2,‘‘S1’’ and r2,‘‘S2’’, that control the level of noisiness in type 2 sensitivity for
‘‘S1’’ and ‘‘S2’’ responses. We simulated 10,000,000 trials using parameter values
d0 = 2, c = 0, c2,‘‘S1’’ = (-0.5, -1, -1.5), c2,‘‘S1’’ = (0.5, 1, 1.5), r2,‘‘S1’’ = 1.5,
and r2,‘‘S2’’ = 0.

We fit the RSM-SDT model to this data set, yielding a fit with meta-
d0‘‘S1’’ = 0.78, meta-c‘‘S1’’ = 0, meta-c2,‘‘S1’’ = (-0.54, -0.73, -0.94) for ‘‘S1’’
responses, and meta-d0‘‘S2’’ = 2.00, meta-c‘‘S2’’ = 0, and meta-c2,‘‘S2’’ = (0.50,
1.00, 1.50) for ‘‘S2’’ responses. The SDT graphs for these fits are plotted in the top
half of Fig. 3.7a.

17 Note that the nature of the UV-SDT model inherently places constraints upon the set of type 1
and type 2 ROC curves that can be exhibited at the same time, whereas the method for fitting
meta-d0 minimizes constraints of type 1 performance upon the type 2 fit. Additionally, the
likelihood function for the UV-SDT model is built from pseudo type 1 probabilities of the form
p(resp = r, conf = y|stim = s). This is different from the likelihood function for fitting meta-d0,
which is built from type 2 probabilities of the form p(conf = y|stim = s, resp = r). Thus,
whereas the meta-d0 algorithm is specialized for fitting type 2 data, the fit for the UV-SDT model
must account for variance in both type 1 and type 2 responses, entailing potential tradeoffs in the
fit. Fitting UV-SDT to the data with a type 2 likelihood function achieves a near perfect fit to the
type 2 ROC curves, albeit with a very poor fit to the type 1 ROC curve (data not shown).
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Fig. 3.7 The unequal variance SDT model can fit patterns generated by asymmetries in response-
specific metacognitive sensitivity. a Response-specific meta-d0 and UV-SDT fits to simulated data.
We returned to the model depicted in Fig. 3.5, simulating trials with r2,‘‘S1’’ = 1.5 and r2,‘‘S2’’ = 0.
The top half of this panel depicts the response-specific meta-d0 fit for the simulated data. The
bottom half depicts the UV-SDT fit. b Type 1 ROC curves. c Type 1 z-ROC curves. We produced
type 1 ROC curves from the meta-d0 fits using the same procedure as in Fig. 3.6. Both the
response-specific meta-d0 fit and the UV-SDT fit provided a close match to the type 1 ROC curves
of the generating model. d Response-specific type 2 ROC curves. The UV-SDT model slightly
overestimated area under the response-specific type 2 ROC curves, but still captured the fact that
there is more area under the curve for ‘‘S2’’ responses than for ‘‘S1’’ responses
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Next, we found the maximum likelihood fit of the UV-SDT model to this data
set. This yielded a fit with d01 = 2.14, c1 = -0.15, c2,‘‘S1’’ = (-0.89, -1.12,
-1.37), c2,‘‘S2’’ = (0.43, 1.06, 1.72), and s = 0.75. The SDT graph for this fit is
plotted in the bottom half of Fig. 3.7a.

As shown in Fig. 3.7c, the simulated data and meta-d0 fit produce a pseudo type
1 z-ROC curve with a small deviation from linearity due to an upward-going kink
in the curve corresponding to the ‘‘true’’ (FAR, HR) point. Nonetheless, this curve
is closely approximated by the linear z-ROC curve with slope = 0.75 produced by
the UV-SDT model fit. The deviation between the UV-SDT fit and the generating
model is more clearly pronounced on the response-specific type 2 ROC curves.
Although the UV-SDT model overestimates the area under both curves, it none-
theless captures the qualitative pattern that there is more area under the curve for
‘‘S2’’ responses than for ‘‘S1.’’17

3.6 Discussion

3.6.1 Implications for Interpretation and Methodology
of SDT Analysis of Type 1 and Type 2 Processes

The foregoing analyses suggest that extra caution should be exercised when
interpreting ROC curves. Constructing z-ROC curves using confidence rating data
risks conflating the contributions of type 1 and type 2 performance. Non-unit slopes
on these pseudo type 1 z-ROC curves can occur due to response-specific differences
in type 2 processing even when the underlying type 1 stimulus distributions have
equal variance. Thus, inferences about the nature of type 1 processing based on the
pseudo type 1 z-ROC curve slope may not always be justified.

This is especially a concern in light of empirical demonstrations that type 1 and
type 2 performance can dissociate; e.g., Rounis et al. [17] found that applying
transcranial magnetic stimulation to dorsolateral prefrontal cortex selectively
diminishes type 2, but not type 1, sensitivity, and Fleming et al. [8] found that
between-subject anatomical variation in frontal cortex correlates with variability in
type 2 sensitivity even when type 1 sensitivity is held constant across subjects. This
suggests that type 2 sensitivity is subject to sources of variation that do not affect
type 1 processing. In turn, this suggests that estimates of the relative variances in
type 1 stimulus distributions based on the pseudo type 1 ROC curve may be unduly
affected by factors that cause variation in type 2, but not type 1, processing.

By the same token, however, differences in response-specific type 2 ROC
curves do not necessarily entail differences specifically at the level of type 2 or
‘‘metacognitive’’ processing. Instead, such differences are potentially attributable
to differences in basic attributes of type 1 processing, such as type 1 sensitivity,
criterion placement, and/or the variability of the type 1 stimulus distributions. For
instance, Kanai et al. [11] observed that area under the type 2 ROC curve for
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‘‘signal absent’’ responses were poorer for manipulations that target perceptual,
rather than attentional, processes. They inferred that perceptual, but not atten-
tional, manipulations disrupted processing at early levels of processing, such that
subjects lacked introspective awareness regarding the source of their failure to
detect the target. However, an alternative explanation might be that the type 2
ROC curves differed purely as a consequence of differences in d0, c, and
s. Reducing the values of d0, c, and s can all potentially lead to reductions in area
under the type 2 ROC curve for ‘‘S1’’ responses. Thus, it is possible that the
differences in the type 2 ROC curves for the perceptual and attentional manipu-
lations might be explicable purely in terms of differences in low-level processing,
rather than in terms of differences across levels of processing. This is an example
of the more general principle upon which our whole approach to type 2 analysis is
founded, the principle which necessitates the need for a measure like meta-d0:
Since type 2 ROC curves depend on the parameters of the type 1 SDT model, it is
crucial to interpret type 2 data in the context of the empirical type 1 data, and to
consider the extent to which the relationship between the type 1 and type 2 data
conforms to or violates SDT expectation [9, 13].

Galvin et al. [9] similarly cautioned against the use of pseudo type 1 ROC
curves to make inferences about type 1 processes. They suggested that so-called
type 1 ratings (e.g. ‘‘rate your confidence that the stimulus was S2 on a scale of
1–8’’) may offer a window into type 1 processing that type 2 ratings (e.g. ‘‘rate
your confidence that your ‘‘S1’’ or ‘‘S2’’ response was correct on a scale of 1–4’’)
do not. However, it is not clear that the cognitive mechanisms required to generate
such type 1 ratings would differ substantively from those needed for the type 2
ratings, and the informational content of type 1 and type 2 ratings may turn out to
be identical, differing only in superficial aspects. In their discussion, Galvin et al.
point out that it may be difficult to create a type 2 decision rule that captures the
behavior of type 1 ratings. (Per our discussion in the section titled ‘‘Comparison of
the current approach to that of Galvin et al. [9]’’, we might say that this is
analogous to the problem regarding how to create a type 2 decision rule that
adequately captures the empirically observed relationships between the placement
of response-specific type 2 criteria.) However, we note that the potential difficulty
of such a mapping may simply reflect the possibility that observers do not, in fact,
explicitly compute an overall type 2 decision variable as such, or perhaps only do
so in a heuristic or variable way.

It may be possible to use z-ROC data to estimate distribution variances without
the confounding influence of response-specific type 2 processing by avoiding the
use of pseudo type 1 z-ROC curves. Instead, type 1 ROC curves can be constructed
by using experimental interventions that directly target type 1 decision processes,
such as direct instruction, changes in stimulus base rates, or changes in the payoff
matrix. On the presumption that such manipulations are not themselves targeting
processes that depend on metacognitive or type 2 kind of processing, ROC curves
constructed in this way might offer purer windows into the nature of type 1
processing, relatively uncontaminated by the influence of type 2 processing.
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This suggestion is consistent with the observation that pseudo type 1 ROC
curves do not always behave the same as ‘‘true’’ type 1 ROC curves generated by
direct manipulation of the type 1 criterion. For instance, Markowitz and Swets [14]
found that estimates of s in auditory detection tasks depend on signal strength for
pseudo, but not true, type 1 ROC curves; Van Zandt [23] found that estimates of
s based on pseudo type 1 ROC curves varied depending on the degree of bias in the
true type 1 criterion (thus implying that not all pseudo type 1 ROC curves yield
the same estimate of s as the ‘‘true’’ type 1 ROC curve); and Balakrishnan [1],
replicated in Mueller and Weidemann [15], found that pseudo type 1 ROC points
can fall below the true type 1 ROC curve constructed under the same experimental
conditions. Empirical results like these suggest that pseudo and true-type 1 ROC
curves may indeed tap into distinct cognitive processes, which is consistent with
our observations that (1) the pseudo type 1 ROC curve has a direct mathematical
relationship with response-specific type 2 ROC curves, and (2) type 2 ROC
curves are subject to sources of variation that do not affect type 1 performance
(e.g. [8, 17]).

These considerations also have implications for the methodology of estimating
meta-d0. In the current work, and previously, we have considered estimation of
meta-d0 in the context of equal variance SDT. Only a simple extension of the
methodology is needed to perform meta-d0 analysis based on the UV-SDT model.
Presumably the value of s would be set to a fixed value in the meta-SDT model
based on the characteristics of the empirical data being characterized, analogous to
the treatment of meta-c0. Then the interpretation of meta-d0 based upon the
UV-SDT model could be expanded to say e.g. ‘‘suppose there is an ideal SDT
observer O who exhibits a response bias (c0) and unequal type 1 variance
(s) similar to those of subject X. In order for O to produce response-specific type 2
ROC curves like those of X, O would need a d0 equal to so-and-so.’’

However, it is unclear how we could or should arrive at the value of s to be used
for such an UV meta-SDT model. As we have seen, the pseudo type 1 ROC curve
has a direct mathematical relationship with response-specific type 2 ROC curves,
opening up the possibility that measures of s based on the pseudo type 1 ROC
curve are confounded by independent sources of variation in type 2 sensitivity. It is
not clear that deriving a value for s from pseudo type 1 data, and then using that
value of s in a characterization of the type 2 sensitivity exhibited by the very same
confidence ratings used to estimate the value of s in the previous step, would be
desirable. One potential workaround, as discussed above, might be to indepen-
dently estimate the type 1 ROC curve based upon direct manipulations of type 1
response bias across experimental conditions. The estimate of s derived from the
‘‘true’’ type 1 ROC curve could then be used to fit an UV meta-SDT model to
the type 2 data.

Another option is to gracefully sidestep the problem of UV by utilizing
experimental designs that tend to produce data that is adequately characterized by
EV-SDT. For example, in 2-interval forced choice designs, the S1 stimulus may
appear in one of two spatial or temporal intervals, while the S2 stimulus appears in
the other. The observer must report whether the stimulus sequence on the current
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trial was\S1, S2[or\S2, S1[ (e.g. spatially, ‘‘S1 was on the left and S2 was on
the right’’ or temporally, ‘‘S2 came first and S1 came second’’). Intuitively, internal
responses should be equally variable for\S1, S2[and\S2, S1[sequences, even
if internal responses to S1 and S2 themselves are not equally variable. This result
can be more formally derived from the SDT model [12] and has been observed in
empirical data (e.g. [18]). Thus, the 2-inveral forced choice design may provide an
experimental paradigm that circumvents concerns related to the UV-SDT model
and facilitates usage of EV-SDT.

Another possibility is to create a variation of the SDT model that includes
structures to account both for UV and variation in type 2 sensitivity (a simple
example of the latter being the r2 model used earlier). It is possible that finding the
best fit of such a model to a data set could arbitrate to some extent on the relative
contributions of UV and response-specific metacognition to patterns in the data.
Such an approach would constitute something of a departure from the meta-d0

methodology discussed here. However, it seems likely that such a model-based
approach would still need to be supplemented by experimental designs intended to
produce data that specifically arbitrate between the mechanisms in question, and it
is not clear that the standard form of the two-choice task with confidence ratings
provides such a design. Ultimately, analysis of how computational models fit the
data needs to be supplemented with other empirical and conceptual considerations
in order to make strong inferences about the underlying cognitive processes.

3.7 Code for Implementing Overall and Response-Specific
Meta-d0 Analysis

We provide free Matlab scripts for conducting type 1 and type 2 SDT analysis,
including functions to find the maximum likelihood fits of overall and response-
specific meta-d0 to a data set, at http://www.columbia.edu/*bsm2105/type2sdt
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