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Abstract—Many mobile applications retrieve content from remote servers via user generated queries. Processing these queries is
often needed before the desired content can be identified. Processing the request on the mobile devices can quickly sap the limited
battery resources. Conversely, processing user-queries at remote servers can have slow response times due communication latency
incurred during transmission of the potentially large query. We evaluate a network-assisted mobile computing scenario where mid-
network nodes with “leasing” capabilities are deployed by a service provider. Leasing computation power can reduce battery usage on
the mobile devices and improve response times. However, borrowing processing power from mid-network nodes comes at a leasing
cost which must be accounted for when making the decision of where processing should occur. We study the tradeoff between battery
usage, processing and transmission latency, and mid-network leasing. We use the dynamic programming framework to solve for the
optimal processing policies that suggest the amount of processing to be done at each mid-network node in order to minimize the
processing and communication latency and processing costs. Through numerical studies, we examine the properties of the optimal
processing policy and the core tradeoffs in such systems.

Index Terms—Dynamic Programming (DP), Network-Assisted Mobile Computing, Network Optimization
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1 INTRODUCTION

The processing and storage capabilities of mobile consumer
devices are becoming increasingly powerful. A gamut of new
mobile applications has thus emerged for providing a better
quality of experience for the end users. A class of such appli-
cations commonly referred to as mobile augmented reality [1]–
[3] includes ones that enable delivery of content in response
to the user-generated queries for enhancing user’s experience
of the environment. Text to speech conversion and optical
character recognition (OCR) based applications for mobile
devices follow a similar paradigm. Several interesting usage
scenarios thus arise. A user clicks a picture or shoots a video
of a desired object–a building, painting in a museum, a CD
cover, or a movie poster–through a camera phone. The video
or image is then processed and sent over the network to an
application server hosting a database of images. The extracted
query image is then matched with a suitable entry and the
resulting content–object information, location, title song from
a CD, or movie trailer–is then streamed back to the user.
A number of existing commercial product provide this type
of service [4]–[6]. The processing of query image or video
on the phone often involves computationally demanding pro-
cesses like pattern recognition, background extraction, feature
extraction, and feature matching [7]–[10], which when done
often can diminish the battery lifetime of the mobile device.
Similarly running a text to speech conversion application or an
OCR engine for usage scenarios such as listening to a book on
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mobile device while driving or text extraction from pictures is
computationally and battery intensive.

Alternatively, the raw data could be transmitted to the ap-
plication server where the processing could be done. However
this would increase the bandwidth demand over the network
with several users using such an application and competing
for spectrum along with voice and data traffic generated by
users of the wireless network. The first-hop wireless link
between the mobile device and base station is often bandwidth
constrained and backhaul connections in mobile networks have
high capital and operation expenditures per bit. Several wire-
less carriers have also reported a staggering increase in data
traffic over mobile networks because of unprecedented use of
mobile data applications [11], [12]. Backhaul links that carry
the traffic from edges to the core using copper, fiber or wireless
links are associated with significant cost for the carriers [13],
[14]. Moreover, the transmission latency on the uplink willbe
higher as larger query data is transmitted through the network.
Thus there is an inherent tradeoff between battery usage and
latency. As mobile devices become more sophisticated with
higher resolution image and video capabilities, the query data
will continue to grow resulting in more demand for intelligent
navigation of this tradeoff.

Consider the scenario in Fig. 1. A user request originates at
the Mobile Station (MS). In order to be completed, the request
must be transmitted upstream to a remote Application Server
(AS) via a Base Station (BS) and a series of relay nodes.
We refer to the node at the first hop as the base station, but
emphasize that the links between the BS, relay nodes, and
AS may be wired or wireless. If the request processing is
entirely done at the MS, the limited battery power can be
drained. On the other hand, if the processing is done at the AS,
communication latency can be high due to limited bandwidth
of the wireless access link and large query size.
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There are a number of systems which enable distributed
processing across multiple nodes [15]–[24]. We consider sys-
tems with leasing servers which are deployed at mid-network
nodes to offer processing capability for the user queries before
they reach the AS. Deployment of servers by Akamai [25]
constitutes an instance of server leasing capabilities in the
network, where uplink queries requesting content are pro-
cessed without these uplink data having to travel all the way
to backend servers. Content Centric Networking (CCN) [26]
promulgates an architecture that optimizes uplink bandwidth
by aggregating data interest queries on the uplink via inter-
mediate CCN-compliant node processing using name-based
addressing internet data. An offshoot of the architecture is
deployment of intermediate node caches that process queries
for data and respond with content if they have it. Similar
methodologies like transparent caching where intermediate
nodes in the network respond to queries to data, fall in the
intermediate leasing paradigms.

We consider how to utilize network assisted computing to
alleviate the processing burden on the MS thereby reducing
its battery consumption and extending its operational lifetime.
Leasing processing power from mid-network nodes can help
lower communication latency because rather than transmitting
the entire, large request message over multiple congested links
to the AS, mid-network processing will reduce the message
size. Introducing the ability to lease processing power from
mid-network nodes brings in the tradeoff of leasing cost. As
discussed, battery consumption and latency can be reduced
by leasing processing power. However, if leasing is costly
because of scarce processing capability available at the mid-
network nodes or if the users are averse to their data being
accessed by the leasing servers, then battery usage and latency
will increase. Depending on the relative costs between battery
usage, latency, and leasing, it may or may not be beneficial
to lease. We examine these tradeoffs in this paper. Using the
dynamic programming framework, we solve for the optimal
processing policies that suggest amount of processing to be
done at a node in the network. The optimization objective is
to minimize the processing and communication latency and
processing costs. We consider cases where the processing
times and leasing costs have linear or concave variation with
the amount of processing and assess the properties of the
optimal processing policy and the core tradeoffs between
leasing cost, latency, batter power, and communication over
the wireless access link.

Relay Nodes

AS

BSMS

Fig. 1. System Model: Mobile Stations (MS) transmit data
to the Application Server (AS) via the Base Station (BS)
and relay nodes. The requested data is transmitted back
to the mobile device. Links may be wired or wireless.

1.1 Related Work

As mobile applications become more sophisticated and de-
manding, system operators are utilizing the network to im-
prove service. A substantial amount of work has examined
Network-Assisted Computing. However, the main distinction
between the previous works and ours is that we focus on
allowing processing power to be leased from mid-network
nodes and how to make this decision in an optimal manner.

In [27]–[29], Network-Assisted Computing has been exam-
ined in the case of cache management. The focus of these
works is to determine how to pre-fetch information from a
remote server in order to maximize quality of service. Due
to the varying quality of the wireless channel, data may not
be able to be retrieved at the precise instant it is needed. If
that data is not available to the wireless device when needed,
the processor will idle until it can be fetched. Pre-fetching is
done in a manner to minimize service latency. These works
focus on the downlink transmission to make data available and
minimize processing times. In contrast, there are applications
where the data necessary to complete a request is too large
to store at the mobile device. In Mobile Augmented Reality
applications, it is infeasible to store even part of the large
database required. In the applications we consider, we assume
that the requestmust be transmitted uplink to an Application
Server in order to be fully satisfied. We focus on the uplink
scheduling of how much processing to perform at each node
in order to minimize latency, battery usage, and leasing costs.

Even without the ability to lease processing power from
mid-network nodes, limited battery resources present a sub-
stantial challenge. For a survey of energy efficient protocols for
wireless networks, see [30] and the references therein. While
batteries are becoming more efficient, the growing sophistica-
tion and abundance of applications makes power saving neces-
sary. There has been an extensive body of research on reducing
power usage via hardware (see [31]–[34]) and software (see
[35], [36]) design. These designs can significantly reduce the
amount of battery resources required to process a request.
However, a hardware design optimized for one application
may be highly inefficient for another. A single device may
have a Mobile Augmented Reality application which requires
speech processing, while another application requires video
processing. As the number of mobile applications increase,
all options to save battery resources will prove to be useful.

In most standard Mobile Augmented Reality systems, pro-
cessing is performed either entirely at the Mobile Station,
quickly draining its limited battery resource, or entirelyat the
Application Server, leading to large communication delays.
Most closely to our work is [31], [37]–[41]. These works ex-
amine load splitting where processing is split between Mobile
Station and Application Server. In [37], [38], the potential
battery savings by splitting processing between Mobile Station
and Application Server are examined experimentally. In [42],
the tradeoff between battery usage and latency is closely
examined. Girod et. al. provide an overview of these types of
challenges in mobile visual search [43]. Over a 3G network,
the transmission of a 50kB image would timeout more than
10% of the time while the transmission of a small 3-4kB query
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vector never timed-out. As the sophistication of mobile devices
increase, the tradeoff between latency and energy usage will
become more critical. A developer at oMoby stated that high
latency is the main reason for the use of 50kB queries, but
they hope to eventually include high definition images and
videos on the order to 1-2MB1. In these works, the decision
is between local and remote execution of processing tasks.
The networks considered are single-hop while we consider
multi-hop networks. The main distinction between our work
and these works is the idea of cooperating with the mid-
network nodes in order to improve the battery versus latency
tradeoff. Rather than relying solely on the Mobile Station and
Application Server to process a request, we allow for mid-
network processing. In this work, an extension to [44], we
introduce the idea of “leasing” processing power from mid-
network nodes in order to improve quality of service to users.

There has been a steady stream of work on developing
systems which allow leasing of processing power which we
require. These works focus on the software/OS implementa-
tion of an ”Active Network” where intermediary nodes can
be used to perform computations [15]–[19]. As applications
become more demanding and sophisticated, use of such Active
Networks will significantly improve system performance. In
contrast to this body of work which is primarily centered
around system design and deployment, our work focuses how
to use such system in an efficient manner. Our work aims to
develop a systematic framework to utilize the capabilitiesof
intermediary nodes in such systems.

There has also been some work considering energy and de-
lay sensitive scheduling and partitioning of tasks in collabora-
tive networks [20]–[24]. However, the tradeoffs considered in
these works is quite different from ours. The communications
saving due to reducing the number of nodes to communication
with comes at the cost of reducing the lifetime of the network
by draining battery power at each additional node required for
communication and processing. In contrast, we do not affect
the number of nodes to transmit to, but are able to vary the
amount of information that is required to be transmitted by
utilizing mid-network processing.

The rest of the paper proceeds as follows. In Section 2,
we formally introduce the system model and the idea of
Network-Assisted Mobile Computing via leasing. In Section
3, we formulated the optimal processing problem as a shortest
path problem and use Dynamic Programming to solve for the
optimal policy. While the optimal processing policy can be
difficult to solve in general, we identify a number of interesting
and useful properties of the optimal policy in Section 4. In
Section 5, we examine some of these properties via numerical
analysis. Finally, we conclude in Section 6.

2 PROBLEM FORMULATION

A typical application where Network-Assisted Mobile Com-
puting would be useful is in media applications such as Mobile
Augmented Reality. Many mobile devices are equipped with
a small camera. In Mobile Augmented Reality, a picture
captured by a mobile device corresponds to a request, such as

1. private communications with developers at oMoby [6]
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Fig. 2. System Diagram: A request originates at the
Mobile Station (MS) and it transmitted over a multihop
network to the Application Server (AS). Once the request
has reached the Application Server and has been fully
processed, it can be satisfied.

streaming a desired video or audio stream to the mobile device.
One of the main technical difficulties of MAR is matching
the original picture to the desired media content. A series of
image processing techniques are used to do this. The final step
requires matching the processed image to the requested content
in a large database. It is often the case that this database is
so large it cannot feasibly be stored on the limited memory
of the mobile device. Therefore, a request must be transmitted
uplink to the Application Server. Once the request has been
fully processed, the desired content can be streamed downlink
to the requesting handheld device. There has been an extensive
body of work focusing on the problem of downlink streaming
of media content (see [45] and references therein). In this
paper, we focus on the uplink transmission and processing
of a single original request.

The uplink pathway from Mobile Station (MS) to Appli-
cation Server (AS) is shown in Fig. 2. A request originates
at the Mobile Station. In order to locate and stream the
desired content, a request message must traverse multiple mid-
network hops before arriving at the Application Server. Due
to the large file sizes (video/audio streams) which the requests
correspond to, as well as the vast number of these files, it
is infeasible to store them all on a memory limited mobile
device. As such, they are stored in a large database at the
remote Application Server and the request must be transmitted
upstream in order to be satisfied. The request message must
be processed (i.e., speech processing or image processing,
feature extraction, feature matching, etc.) before the media
stream can be transmitted downstream. See Girod et. al. for
an overview of this process [43]. Some tasks are quite simple
while others are more complex. There are also a number of
scalable media standards which allow simple transcoding by
simply discarding bits [46], [47]. In current systems, all of
this processing is either done at the MS or the AS. The
original request message can be a very large image file and
transmitting it over multiple congested links to the AS will
result in large delays. If the request were processed prior to
transmission, the information needed to be transmitted may
be smaller, significantly reducing the communication delay.
However, limited computation power and battery resources
makes it undesirable to process the entire request at the MS.

The motivation of Network-Assisted Mobile Computing
is to improve the Quality of Service of clients subscribing
to mobile applications which are often computationally and
memory intensive. As the request message traverses network
hops, we propose to allow for some processing to be performed
at these mid-network nodes. This will mitigate the power drain
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at the Mobile Station by alleviating the amount of processing
required to be executed on the mobile device. Additionally,the
large communication delays may be reduced as processing can
reduce the message size. The use of Network-Assisted Mobile
Computing removes some of the processing burden off the
Mobile Station while reducing the size of the request message,
and in turn, reducing the communication delays. Certainly,
“leasing” the processing power at the mid-network nodes does
not come for free, and we examine how to balance the battery
life, latency, and leasing costs. In order to study these tradeoff,
we must begin by defining the system which we are studying.

2.1 Request Size and Processing Model

A request originates at the Mobile Station. Each request
consists ofM stages of processing before the desired content
can begin streaming to the MS. For instance,M can represent
the amount of time required to fully process the request at the
MS. Because the processing power at the MS may differ from
that at the AS due to different processor types and loads,M is
not the amount of time required to fully process the request at
the Application Server. Therefore,M is a normalized quantity
which represents the total amount of processing required to
satisfy the request. CertainlyM will depend on the particular
request and type of data that requires processing.

If z stages of processing have been performed,M−z stages
remain. At each node,n, in the network, some processing
0 ≤ δz ≤ M−z can be executed. The processing time required
to do this is given by:

τp(δz, n)

which is dependent on the amount of processing performed
as well at the node at which it is executed. In general,τp can
take on any functional form. However, we assume that for
fixed n, τp(δz, n) is increasing inδz, which corresponds to
larger processing times as more processing is done.

As more processing is completed, the request message/query
data will decrease in size. For instance, the original image
may be reduced to a compressed image or an image with the
background extracted after some processing is done. In both
cases, processing reduces the amount of information that must
be relayed to the Application Server to complete the request.
Given thatz stages of processing have been completed, the
size of the request message is given by

V (z)

which is decreasing inz and is strictly positive. The positivity
is required because, even if all processing is completed (z =
M ), a small message must be transmitted to the Application
Server so that it knows what content to begin streaming
downlink. Without the reception of a request message, the
Application Server cannot satisfy a request.

2.2 Networking Model

We now describe the network topology of the system we
consider. In order to emphasize the benefits of Network-
Assisted Mobile Computing, we assume a tandem network.

This allows us to utilize mid-network nodes without unnec-
essarily complicating the approach with routing decisions,
though our framework can be extended to incorporate them.
Therefore, our system may reside in a much more complex
network with arbitrary topology; however, we will assume that
the route from Mobile Station to Application Server is known
once the request is made. This is equivalent to assuming the
routes are fixed.

Because routes are fixed, we can model the network as an
upstream path ofN +1 network processing nodes in tandem.
The request originates at the wireless Mobile Station and must
traverseN links to reach the Application Server. The first few
hops may be wireless prior to reaching the Base Station/Access
Point that connects to the Internet and the next series of hops
are wired along the Internet path to the Application Server.
At minimum, there is one wireless link between the Mobile
Station and Base Station, but there may be others over wireless
relays/sensors/etc. Also, at minimum, there is no wireline
link; for instance, the Application Server is co-located atthe
Base Station. However, in general the wireline path to the
Application Server could be multihop.

Each link, n (connecting thenth and (n + 1)st nodes),
is characterized by the capacity of this link,cn, in bits
per second. Therefore, if a message with volumeV bits
is transmitted along thenth link, it requiresV/cn seconds.
Hence, the latency incurred on thenth link after z stages of
processing has been performed is:

τc(z, n) =
V (z)

cn

It is easy to see thatτc is decreasing incn as the link
becomes less congested. It is also decreasing inz sinceV (z)
is decreasing inz as mentioned in Section 2.1.

Due to varying path loss, interference, and fading, a wireless
channel may be highly varied and randomly varying over time.
A wired channel may also be varied due to random congestion
in the network. In order to account for this unavoidable
physical phenomenon, we assume that the capacity of link
n is a random variable with known distribution. We make
no assumptions on this distribution other than its expectation,
E[cn], exists and is finite. Therefore, the communication time
is a random variable with expectation:

E[τc(z, n)] =
V (z)

E[cn]

2.3 Leasing Model

Utilizing the processing power of intermediary nodes is
the main idea behind Network-Assisted Mobile Computing.
Leasing processing power from mid-network nodes can be
extremely beneficial to reduce latency and to extend the battery
life of a mobile device. However, it comes with a cost. These
costs can capture the fee required to lease CPU power from
the mid-network nodes. Additionally, these costs may capture
potential security risks by giving access of client data to these
nodes. Some operations, such as transcoding, can be done on
encrypted data, while other would require decrypting the data
[48], [49]. We represent these leasing costs by the following
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function which is dependent on the amount of processing done,
δz, and the node at which it is performed,n:

φ(δz, n)

On a given node,n, φ is increasing inδz, as it is more costly
to process more stages. More client data is available to the
processing node which could be undesirable. Also, processing
more stages requires more processing time so that more power
is expended and more congestion is clogging the processors
at the mid-network node. Ifn = 1, φ represents the cost of
processing on the Mobile Station. So rather than encompassing
leasing costs, which there are none, it represents the cost of
draining battery power as well as tying up the MS processor
and preventing the use of other applications. Similarly, ifn =
N + 1, φ represents the cost of processing at the Application
Server. These costs do not represent leasing costs, as leasing
cannot be done at the AS, but can represent the computation
power required to process the request which prevents requests
from other clients from being completed in a timely manner.

The control dilemma we examine is how much processing
should be done at each node given the processing latency,τp,
communication latency,τc, and leasing costs,φ. Note that we
make no restrictions on the relationships between delay and
costs. These relationships should be adjusted according tothe
types of customers of a particular application and network
system. For instance, for customers with strong aversion to
delay and are willing to pay extra for fast service, the leasing
costsφ will be small compared to any delay,τp andτc. The
goal is to determine a computing and transmission control to
minimize delay and costs.

3 OPTIMAL COMPUTING/TRANSMISSION
CONTROL

In order to determine the optimal computing and transmission
control, we cast this as a shortest path problem and use
Dynamic Programming to find the optimal control [50].

The optimization problem we are trying to solve is to find
δzn, the amount of processing to do at noden given zn
stages have already been processed in order to minimize the
total latency and processing costs. The total cost is given by
the processing latency, processing costs, and communication
latency. The goal is to minimize the expected costs to process
the entire request.

min
δzn

{

N+1
∑

n=1

[

τp(δzn, n) + αnφ(δzn, n)
]

+
N
∑

n=1

E[τc(V (zn + δzn))]
}

s.t.
N+1
∑

n=1

δzn = M

(1)

In order to study the core tradeoffs we introduce a scale factor,
αn, to weigh the processing costs at each node. For instance,
we can haveα1 = β, αN+1 = 1, andαn = α for n 6= 1, N+1.
For β = 0, there is no cost for draining battery at the MS
and for β → ∞ battery costs are extremely expensive and

subsequently little, if any, processing should be done at the
MS. If α = 0, leasing comes for free and we are mostly
concerned with latency. Conversely, ifα → ∞, then we are
not concerned with latency and processing should be done at
the node with the lowest leasing costs.

We can solve the constrained optimization in (1) problem
using Dynamic Programming. To begin, we define the state of
the system as:

(z, n)

where0 ≤ z ≤ M is the amount of processing that has already
been completed andn ∈ {1, 2, . . . , N+1} is the node at which
the request message is currently located.

At each state(z, n), the control that needs to be selected
is δz ∈ [0,M − z], the amount of processing to perform at
noden prior to transmitting the message uplink along thenth

link to the (n+1)st node. This decision results in processing
latency,τp, processing costs,φ, and communication latency,
τc. We can group these into latency (τp + τc) and processing
costsφ. Executing this control changes the system state to
(z + δz, n+ 1).

Define the total expected cost-to-go under policyπ starting
in state(z, n) by:

Jπ(z, n) = E
[

N
∑

l=n

{

τp(π(zl, l), l) + αnφ(π(zl, l), l)

+ τc(zl + π(zl, l), l)
}

+ τp(M − zN , N + 1)

+ αN+1φ(M − zN , N + 1)
]

=

N
∑

l=n

{

τp(π(zl, l), l) + αnφ(π(zl, l), l)

+ E
[

τc(zl + π(zl, l), l)
]

}

+ τp(M − zN , N + 1) + αN+1φ(M − zN , N + 1)
(2)

Then we can defineJ∗(z, n) as the minimum cost-to-go
given thatz stages of processing have already been completed
and the request resides at noden. J∗(z, n) is given by:

J∗(z, n) = min
0≤δz≤M−z

{

τp(δz, n) + E
[

τc(z + δz, n)
]

+

αnφ(δz, n) + J∗(z + δz, n+ 1)
}

(3)

Once the request reaches the Application Server, the remaining
processing stages must be completed. Therefore, it is easy to
see that

J∗(z,N + 1) = τp(M − z,N + 1) + αN+1φ(M − z,N + 1)
(4)

The optimal policy can be calculated via backward recursion
and using Eqn. 3 and 4.

The total cost for servicing a request is given byJ∗(0, 1)
as a request originates at the Mobile Station, node1, and no
processing has been performed on it yet. This can be broken
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into the different components of cost:

J∗(0, 1) = Cp
Latency+ Cc

Latency+ αCLeasing+ βCBattery

= CLatency+ αCLeasing+ βCBattery (5)

Where latency can be split into processing and communi-
cations latency. The tradeoff factors,α and β shown here
demonstrate the competing objectives. For largeβ, battery is
very limited at the Mobile Station, and little processing should
be executed there. Conversely, if largeα corresponds to large
leasing costs and little, if any, processing power should be
leased from mid-network nodes.

Define δz∗n as the amount of processing done at stagen
under the optimal policyπ∗. Define z∗n as the amount of
processing that has been completed prior to arrival at node
n. So,

J∗(0, 1) =

N+1
∑

n=1

[

τp(δz
∗
n, n) + αnφ(δz

∗
n, n)

]

+

N
∑

n=1

E

[

V (z∗n + δz∗n)

cn

]

(6)

In general, it is difficult to determine the optimal processing
policy in closed form. In Section 4, we discuss properties of
the optimal control under different scenarios. For any cost
functions, the optimal solution can be found using numerical
analysis. In Section 5, we study the core tradeoffs in Network-
Assisted Mobile Computing through numerical analysis.

4 PROPERTIES OF OPTIMAL CONTROL

The optimal solution of where to process the request, and
how much processing to do, is highly dependent on the
functional form of the processing times (τp), leasing costs (φ),
message volume (V ), as well as communication bandwidth
(cn). However, we can identify some key structural properties
of the optimal policy. These properties allow us to determine
the optimal processing policy under certain circumstances.

4.1 Monotonicity

We begin by shown some monotonicity results of the optimal
value function and optimal processing/transmission policy.

Intuitively, fewer processing stages that remain to be com-
pleted will correspond to lower costs. The following proposi-
tion formalizes this idea.

Proposition 1: (Monotonicity of J∗) For fixedn, J∗(z, n)
is decreasing inz.

Proof: Supposez < z′. Let π∗′

correspond to the optimal
policy starting in state(z′, n). Now suppose in state(z, n),
we use a policyπ̃ which mimics π∗′

as long asz < M .
While z < M , the processing time and costs for theπ̃
policy are equal to that of theπ∗′

policy and0 afterwards.
Likewise, the communication costs for thẽπ policy for z
system will be less than those under theπ∗

′

policy for the
z′ system. This is because at each node, the total amount of
processing completed for thez system is less than that of
the z′ system sincez < z′ and the additional amount of
processing at each node is equal in each system. Because

V (z) is decreasing inz, the communication latency is less.
Therefore,J π̃(z, n) ≤ J∗(z′, n). The result follows by the
optimality of J∗, J∗(z, n) ≤ J π̃(z, n).

While one may expect a similar monotonicity result to hold
for increasingn, in general it does not hold. It is easy to see
this if the processing time and costs at noden < n′ is very
small and at nodesm ≥ n′ it is very large. Then, not being
able to process any stages atn becomes very costly for the
system starting at(z, n′).

As the communication link between the Mobile Station and
the first network node degrades, communication latency will
increase. By processing more stages at the Mobile Station,
the request size will decrease, subsequently decreasing the
communication latency. Defineδz∗MS as the number of stages
completed at the Mobile Station.

Proposition 2: (Monotonicity in c1) For fixed costs,δz∗MS

is decreasing as the expected capacity of the first link,E[c1],
increases.

Proof: This is shown via a proof by contradiction.
Consider two systems with identical parameters and cost
structures, exceptc1 < c′1. Let J∗ andJ∗′

denote the optimal
value function for thec1 andc′1 systems, respectively. Define
δz∗MS and δz∗

′

MS as the number of stages processed at the
Mobile Station in each system. Assume thatδz∗MS < δz∗

′

MS .
By the optimality ofδz∗MS :

J∗(z, 1) = τp(δz
∗
MS , 1) + α1φ(δz

∗
MS , 1)

+E[τc(z + δ∗MS , 1)] + J∗(z + δ∗MS , 2)

≤ τp(δz
∗′

MS , 1) + α1φ(δz
∗′

MS , 1)

+E[τc(z + δ∗
′

MS , 1)] + J∗(z + δ∗
′

MS , 2)

which implies:

τp(δz
∗
MS , 1)− τp(δz

∗′

MS , 1) + α1φ(δz
∗
MS , 1)− α1φ(δz

∗′

MS , 1)

≤ E[τc(z + δ∗
′

MS , 1)]− E[τc(z + δ∗MS , 1)]

+J∗(z + δ∗
′

MS , 2)− J∗(z + δ∗MS , 2)

≤ 0
(7)

where the second inequality comes from the monotonicity of
V andJ∗ (Proposition 1) and recalling thatδz∗MS < δz∗

′

MS .
Now let π be the policy for thec′1 system that usesδ∗MS at

(z, 1) and the optimalπ∗′

after. Then:

J∗′

(z, 1)− Jπ(z, 1)

= τp(δz
∗′

MS , 1)− τp(δz
∗
MS , 1)

+α1φ(δz
∗′

MS , 1)− α1φ(δz
∗
MS , 1)

+E[τc(z + δz∗
′

MS , 1)]− E[τc(z + δz∗MS , 1)]

+J∗(z + δz∗
′

MS , 2)− J∗(z + δz∗MS , 1)

≥ E[τc(z + δz∗
′

MS , 1)]− E[τc(z + δz∗MS , 1)]

+J∗(z + δz∗
′

MS , 2)− J∗(z + δz∗MS , 1)

≥ 0
(8)

where the first inequality comes from (7) and the second
inequality comes for the monotonicity ofV and J∗. This
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implies that under thec′1 system, processingδz∗MS stages
results in lower costs than processingδz∗

′

MS , which contradicts
the optimality ofδz∗

′

MS . Therefore,δz∗
′

MS ≤ δz∗MS .

4.2 Linear Processing and Leasing Costs

Let’s consider that case of linear processing times and leasing
costs. Therefore, we can define:

τp(δz, n) = knδz

αnφ(δz, n) = gnδz

for somekn and gn Recall that the communication time is
already linear in the volume of data that must be transmitted.
However,V (z) is not necessarily linear.

For a general function forV (·), it is possible to determine
if the processing power at an upstream node will never be
leased. Letγn = kn + gn so that the total processing cost at
noden is:

Cp(δz, n) = τp(δz, n) + αnφ(δz, n)

= γnδz

= (kn + gn)δz

γn is the incremental cost of completing one processing stage
at noden. Because processing reduces the size of data that
must be transmitted (V (z) is decreasing inz), there is already
a propensity to process at earlier nodes. So if there is a node
m < n where the processing costs are cheaper,γm < γn, then
no processing will be done at noden.

Proposition 3: (Linear Costs) Suppose processing costs are
linear, such thatCp(δz, n) = γnδz. Let δz∗n denote the optimal
amount of processing done at stagen under the optimal policy
starting from state(0, 1). For alln, if there existsm < n such
that γm < γn, thenδz∗n = 0.

Proof: The proof is by contradiction. Suppose there exists
m < n such thatγm < γn andδz∗n > 0. Now consider a policy
π̃ that mimics theπ∗ policy, except at nodem andn. Instead
of processingδz∗n at noden andδz∗m at nodem, π̃ processes
δz∗n + δz∗m at nodem and 0 at noden. Becauseγm < γn,
the processing costs under theπ̃ policy are less than that of
theπ∗ policy. Note also that the communication latency under
the π̃ policy is lower than that of theπ∗ policy since more
processing is done earlier, making the size of the transmitted
message smaller. Therefore, the total cost under theπ̃ policy is
less than that of theπ∗ policy, which contradicts the optimality
of the π∗ policy. Hence,δz∗n = 0.
Even with the communication latency decreasing as more
processing is done, it isnot the case that all processing will
necessarily be done at the Mobile Station. This is because pro-
cessing costs may decrease as the message traverses network
hops and so the increase in communication latency is balanced
by the decrease in processing costs (both latency and leasing).

If the message volume is a linear function of the number of
processing stages completed, thenall processing will be done
at one node.

Proposition 4: (Linear Costs and Volume) Suppose pro-
cessing costs are linear, such thatCp(δz, n) = γnδz. Addi-
tionally, assume that the message size is linear in the number

of stages processed, such thatV (z) = V0−hz. Let δz∗n denote
the optimal amount of processing done at stagen under the
optimal policy starting from state(0, 1). Then, there exists one
nodem such thatδz∗m = M and for all other nodesn 6= m,
δz∗n = 0.

Proof: We begin by showing that at any state(z, n), J∗

is linear in the number of stages processed,z. That is, there
existsβn andλn, such that:

J∗(z, n) = βnz + λn (9)

We show this by induction onn. This is clearly true ifn = N
because costs are linear, so:

J∗(z,N) = τp(M − z,N) + αNφ(M − z,N)

= γN (M − z)

= βNz + λN (10)

whereβN = −γN andλn = γNM .
Now, we assume thatJ∗(z, n+ 1) is linear inz and show

that it holds forJ∗(z, n).

J∗(z, n) = min
δz

{

τp(δz, n) + E
[

τc(z + δz, n)
]

+

αnφ(δz, n) + J∗(z + δz, n+ 1)
}

= min
δz

{

γnδz +
V0 − h(z + δz)

E[cn]
+

βn+1(z + δz) + λn+1

}

= min
δz

{

a0nδz + a1nz + a2n

}

=

{

a1nz + a2n, a0n > 0;
a0n(M − z) + a1nz + a2n, a0n ≤ 0.

(11)

for some constantsa0n, a1n, anda2n. We can see thatJ∗(z, n)
is clearly linear inz. Due to the linear dependence onz and
δz, if a0n ≤ 0 then it is optimal to processall remaining
stages at noden; otherwise, it is optimal to process none.
This immediately yields the desired result. If there existsa
noden wherea0n ≤ 0, then all processing will be performed
at that node. If there are multiple nodes witha0n ≤ 0, then all
processing will be performed at the earliest one. Now, if there
are no nodes witha0n ≤ 0, then no processing will be done at
any noden < N +1. Since all processing must be completed
in order to process the request, all processing must be done
at nodeN + 1, the Application Server.

Linear costs are reasonable when processing is charged on
a per-stage basis. However, it is sometimes that case that
“processing in bulk” may reduce costs. We now turn our
attention to this scenario where costs are concave.

4.3 Concave Processing Times and Leasing Costs

Let us consider the case where processing times and leasing
costs are concave functions in the number of stages processed.
So that

∂2τp
∂δz2

< 0 and
∂2φ

∂δz2
< 0.

For notational simplicity, letfn(δz) = τp(δz, n)+αnφ(δz, n).
It is easy to see thatfn is also concave inδz.
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Now suppose that the benefit of processing in bulk is
diminishing inn. That is,

max
z′

∂2fn
∂δz2

∣

∣

∣

∣

∣

z=z′

≤ min
z′

∂2fn+1

∂δz2

∣

∣

∣

∣

∣

z=z′

and

∂fn
∂δz

∣

∣

∣

∣

∣

z=0

≤
∂fn+1

∂δz

∣

∣

∣

∣

∣

z=0

(12)

An example of these types of cost functions can be seen in Fig.
3 whereτ(δz, n) + αnφ(δz, n) are quadratic functions ofδz.
Each solid thick line corresponds to the cost of processing
on that node and the lighter lines correspond to the cost
of processing on earlier nodes. We can see that the cost
function for later node dominates that of the earlier nodes.
Under examination of these functions, the increasing costs
of processing suggest that most processing is performed at
the first node. In fact, under conditions (12), it is optimal to
process all stages at the Mobile Station.

Proposition 5: (Concave Costs) If the first and second
derivatives of concavefn satisfies (12), thenδz∗MS = M and
for all n > 1, δz∗n = 0.

Proof: The proof of this claim is via by contradiction.
Assume there exists some intermediary nodem 6= 1 such that
δz∗m > 0. Now consider a policỹπ such δ̃zn = δz∗n for all
n 6= 1,m, while δ̃z1 = δz∗1 + δz∗m, and δ̃zm = 0. That is
instead of following the optimal policy precisely,π̃ processes
the stages for nodem at the Mobile Station. let̃zn and z∗n
denote the number of stages processed prior to noden.

J π̃(0, 1) =

N+1
∑

n=1

[

τp(δ̃zn, n) + αnφ(δ̃zn, n)
]

+

N
∑

n=1

[

E[
V (z̃n + δ̃zn)

cn
]
]

=

N+1
∑

n=1

[

fn(δ̃zn)
]

+

N
∑

n=1

[

E[
V (z̃n + δ̃zn)

cn
]
]

=
{

N+1
∑

n=1

[

fn(δz
∗
n)
]

+

N
∑

n=1

[

E[
V (z̃n + ˜δzn)

cn
]
]}

+
∑

n=1,m

[

fn(δ̃zn)− fn(δz
∗
n, n)

]

≤ J∗(0, 1) +
∑

n=1,m

[

fn(δ̃zn)− fn(δz
∗
n)
]

≤ J∗(0, 1) (13)

The first inequality comes from the fact thatV is decreasing
in z and z̃n ≤ z∗n. The last inequality comes from the con-
cavity property, (12), which implies that

∑

n=1,m[fn(δ̃zn) −
fn(δz

∗
n)] ≤ 0. This contradicts the optimality ofJ∗, hence

δz∗m = 0.

Using a similar argument, if

max
z′

∂fn
∂δz

∣

∣

∣

∣

∣

z=z′

≤ min
z′

∂fn+1

∂δz

∣

∣

∣

∣

∣

z=z′

(14)
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Fig. 3. Cost functions which exhibit diminishing benefits
of processing in bulk. Each solid thick line corresponds
to the cost of processing on that node. The lighter lines
correspond to the cost of processing on prior nodes.

we can show the following proposition
Proposition 6: (Increasing Costs) If the first derivative of

concavefn satisfies (14), thenδz∗MS = M and for alln > 1,
δz∗n = 0.

Proof: The proof of this claim is via a proof by contra-
diction, similar to the proof of Proposition 5. Under condition
(14), Eqn. 13 still holds.

If all processing costs and times are equal and concave, then
fn = f, ∀n. In this case,fn clearly satisfies (12).

Proposition 7: (Identical Concave Costs) Ifτp(δz, n) =
τp(δz) and φ(δz, n) = φ(δz) for all n and τp(·) and φ(·)
are concave, thenδz∗MS = M and for alln > 1, δz∗n = 0.

Proof: This is a direct consequence of Proposition 5.
Now suppose that instead of all nodes satisfying (12), there

exists a series of nodesm,m+1, . . . ,mn which satisfy (12).
Then if any processing is done on these nodes, it isall done
at nodem.

Proposition 8: (Series of Concave Costs) If there exists
m,m + 1, . . . ,mn whosefm are concave and satisfy (12),
thenδz∗n = 0 and for alln ∈ {m+ 1,m+ 2, . . . ,mn}.

Proof: This can be shown via a proof similar to that of
Proposition 5. We omit the details to avoid repetition and for
the sake of space.
A scenario where this may apply is if all intermediate network
nodes are identical. If the processing times and leasing costs on
these nodes are concave and equal, thenm = 2 andmn = N .
If any processing is leased, all of it is leased from the first
intermediary node,m = 2. The remaining processing is done
at the Mobile Station and Application Server.

All of the preceding results corresponding to concave cost
functions are independent of the volume function,V (z). It
may very well be the case that processing times are concave
since processing multiple stages at once can eliminate some
file input/output overhead. It is also likely that the midnetwork
nodes will be identical, so that Proposition 8 will apply.

4.4 Constant Communication Times

In some cases, communication times may be independent of
the message size. This may occur if the original message size
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(before processing) fits into the size of a single network packet.
Often, a single packet is the finest granularity with which
information can be transmitted. So, while further processing
may reduce the message size, the amount of information
transmitted must be placed into a standard network packet
with padding if the message is very small. Hence, no matter
how much processing is done, the transmission times are given
by the size of a network packet. Therefore, communication
latency will be constant and independent of the policy and we
can ignore communication times in the optimization.

We can also ignore communication times if processing does
not affect the query data size. For instance, if processing
corresponds to linear transformations of the original image (ro-
tation, wavelet decomposition, etc.) so that processing requires
time and computation power, but does not modify the amount
of information that needs to be transmitted, then we can ignore
communication times. This is because the total communication
latency will be independent of how much processing is done
and at which node it is performed.

Here we will assume thatcn → ∞ so thatτc(z, n) → 0.
As we have mentioned, ifτc(z, n) = Kn is some constant
independent ofz, then we can ignore it in the optimization
problem, so it is similar to assumingτc(z, n) = 0 . We can
rewrite the optimization problem in (1) as:

min
δzn

{

N+1
∑

n=1

[

τp(δz, n) + αnφ(δz, n)
]

+

N
∑

n=1

Kn

}

s.t.
N+1
∑

n=0

δzn = M

(15)

which results in the sameδz∗n as the following constrained
minimization problem without communication costs:

min
δzn

N+1
∑

n=1

[

τp(δz , n) + αnφ(δz, n)
]

s.t.
N+1
∑

n=0

δzn = M

(16)

Bellman’s equations can be rewritten as:

J∗(z, n) = min
0≤δz≤M−z

{

τp(δz, n) + αnφ(δz, n) +

J∗(z + δz, n+ 1)
}

(17)

Again, once the request reaches the Application Server, the
remaining processing stages must be completed.

J∗(z,N + 1) = τp(M − z,N + 1) + αN+1φ(M − z,N + 1)
(18)

If δzn ∈ [0,M − z] can be fractional, the minimization
problem in (16) can be solved using Lagrangian techniques.

Proposition 9: (Constant Communication Costs) If for
some constantk > 0, τc(z, n) = k for all z and n, there
existsλ∗ such thatδz∗n satisfies for alln:

∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

n

= λ∗

Proof: This can be shown via a proof by contradiction.
Let’s suppose that the claim does not hold true. Then, there
existsm andm′ such that:

λ∗
m =

∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m

<
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m
′

= λ∗
m′

Define π̃ as the policy which mimics the optimal policy
π∗, except at nodesm andm′. Therefore,̃δzn = δ∗zn for all
n 6= m,m′ and δ̃zm = δ∗zm + ǫ and δ̃zm′ = δ∗zm′ − ǫ for
some smallǫ > 0. For notational simplicity letf(δz, n) =
τp(δz, n) + αnφ(δz, n).

J∗(0, 1) − J π̃(0, 1)

=

N+1
∑

n=0

[

f(δz∗n, n)− f(δ̃zn, n)
]

= −
[

f(δz∗m + ǫ,m)− f(δz∗m,m)
]

+
[

f(δz∗m′ ,m′)− f(δz∗m′ − ǫ,m′)
]

= −
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m

+
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m
′

= λ∗
m′ − λ∗

m

> 0 (19)

This contradicts the optimality ofJ∗. Therefore, there does
not existm,m′ such thatλ∗

m < λ∗
m′ .

The lack of affect on communication delays generates a very
interesting contrast to the optimal policies defined by concave
costs given in Section 4.3. Consider a system with3 nodes, a
Mobile Station, a Base Station, and an Application Server as
in Fig. 4.

Suppose that costs are identical on each node so that for all
n, τp(δz, n) = τp(δz) andαnφ(δz, n) = αφ(δz). Therefore,
the cost function at each node isf(δz) = τp(δz) + αφ(δz).
Let’s consider the case where there are9 processing stages and
f(δz) is concave, as in Fig. 5. For this example, we consider
the case off(δz) = 20δz − δz2, for δz ∈ [0, 9].

Under variable communication costs,τc > 0, by Proposition
7, all processing is done at the Mobile Station, and no process-
ing is done on other stages. Conversely, when communication
costs are constant,τc = k, Proposition 9 implies that equal
processing is done at the MS, BS, and AS. This is because
the cost functions are identical, and so theδz∗n which achieves
derivative λ∗ are identical. The two policies are compared

BS
MS

AS
c1

c2

Fig. 4. Simple System Diagram: A request originates at
the Mobile Station (MS) and is transmitted over one hop to
the Base Station (BS) and finally to the Application Server
(AS). Once the request has reached the AS and has been
fully processed, it can be satisfied.
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Fig. 5. Cost Function: total processing latency and costs
as a function of amount of processing completed.

in Fig. 6. Because of latency due to communication of the
request message, there is a propensity to process stages at
earlier nodes. This will reduce the message size and, in turn,
the amount of latency. However, when communication latency
is not a factor, the location of each node is irrelevant–the
influencing factor is the difference in incremental cost of
processing at each node.
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Fig. 6. Optimal processing policy for τc > 0 varying (top)
and τc = k constant (bottom)

4.5 General Costs

In general, communication latency will depend on the request
message size which depends on the amount of processing com-
pleted. In this case, communication costs are not negligible and
optimality condition in Proposition 9 must be relaxed.

Proposition 10: (Non-Negligible Communication Costs) If
δ∗n 6= 0,M , thenλ∗

n is non-increasing inn whereλ∗
n is defined

as:
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

n

= λ∗
n

Proof: This can be shown via a proof by contradiction
similar to the proof for Proposition 9. Let’s suppose that the
claim does not hold true. Then, there existsm andm′ such
that,m < m′ and:

λ∗
m =

∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m

<
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m
′

= λ∗
m′

Again π̃ mimics the optimal policyπ∗, except at nodesm
andm′. Therefore,̃δn = δ∗n for all n 6= m,m′ andδ̃m = δ∗m+ǫ
and δ̃m′ = δ∗m′ − ǫ for some smallǫ > 0. Definez̃n andz∗n as
the amount of processing that has been completed up to and
including noden under policyπ̃ andπ∗, respectively. Note that
by the definition ofπ̃ andπ∗, z̃n ≤ z∗n because processing is
done earlier under thẽπ policy. Again, letf = τp + αφ.

J∗(0, 1) − J π̃(0, 1)

=
{

N+1
∑

n=0

f(δz∗n, n) +

N
∑

n=0

τc(z
∗
n, n)

}

−
{

N+1
∑

n=0

f(δ̃zn, n) +

N
∑

n=0

τc(z̃n, n)
}

= −
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m

+
∂(τp + αnφ)

∂δz

∣

∣

∣

δz∗

m
′

+

N
∑

n=0

[

τc(z
∗
n, n)− τc(z̃n, n)

]

= λ∗
m′ − λ∗

m

+
N
∑

n=0

[

τc(z
∗
n, n)− τc(z̃n, n)

]

> λ∗
m′ − λ∗

m

> 0 (20)

The first inequality comes becausez̃n ≤ z∗n and becauseτc is
decreasing inz as described in Section 2.2. This contradicts
the optimality ofJ∗. Therefore, there does not existm < m′

such thatλ∗
m < λ∗

m′ .
The communication latency has a significant affect on the

optimal processing policy which we saw in our example with
quadratic processing costs in Fig. 5. It is easy to see in Fig.
6 that with non-negligible communication times,τc > 0, λ∗

n

is non-decreasing inn, which seems to contradict Proposition
10. However, it does not becauseδ∗1 = 9 = M and δ∗2 =
δ∗3 = 0. These boundary cases make it impossible to use the
interchange to policỹπ because we cannot increaseδ∗1 nor can
we decreaseδ∗2 or δ∗3 .

5 NUMERICAL ANALYSIS

In the previous section we identified special properties of the
optimal processing policy under various scenarios. We now
examine some of these properties through numerical studies
with example cost functions and systems. Latency, battery
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usage, and leasing costs have a tightly woven relationship.In-
creasing battery usage will decrease latency and leasing costs,
but also limits the lifetime of the mobile device. Conversely,
the lifetime of the device can be extended by increasing leasing
costs which will decrease latency and battery usage.

For our studies, we assume a request requires10 stages of
processing. The size of the original request is500 kilobytes
(roughly the size of a JPEG image) and after completing all
stages of processing, it is1000 bytes, for a reduction in size by
a factor of500. Note that this query may be a JPEG image,
short video or audio clip, or some other type of data. The
decrease in request size is quadratic in the number of stages
that have been completed,z, so thatV (z) = 5(z − 10)2 + 1
kilobytes. The processing time is linear in the number of stages
completed and is dependent on the node it is being processed
on, so thatτp(δz, n) = knδz for some set ofkn.

We consider a network with10 nodes, including the Mo-
bile Station and Application Server. Therefore there are8
intermediary nodes where processing power can be leased.
Each mid-network is identical in that the processing time and
leasing costs are identical. We also assume they are linear in
the number of stages processed so that, forn 6= 1, N + 1,
τp(δz, n) = kδzn andφ(δz, n) = gδzn. In this case, Proposi-
tion 8 applies to the series of mid-network nodes. Therefore,
if any processing is leased, then it willall be leased from the
first intermediary node, noden = 2.

We examine the case where the leasing costsφ = 1 for all
n. Therefore, the resulting leasing cost is equal to the number
of processing stages leased. The processing time for one stage
at the Mobile Station is100 milliseconds, while it is a constant
ratio less,100

r
< 100ms, at the intermediary nodes, and100

r2
ms

at the Application Server. The bandwidth of the wireless links
is uniformly distributed between5− 10 Mbits/second.

In Fig. 7, we see the tradeoff between leasing, in terms of
the number of processing stages performed on mid-network
nodes, and latency, in terms of processing and communication
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Fig. 7. Leasing vs. Latency for different number of stages
(b) processed on the battery limited Mobile Station, i.e.
b = 0 means no stages are processed at the MS.
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Fig. 8. Battery Usage vs. c1, throughput of first network
hop. For various tradeoff levels between Leasing costs
and Latency.

time in seconds, for different amounts of battery usage, in
terms of number of stages processed on the Mobile Station.
As expected, as the battery usage increases, leasing and latency
both decrease. Despite the slow processing times at the Mobile
Station, processing stages at the MS can still reduce latency
because of the decrease in communication latency that comes
with reducing the message size. In this case, the reduction in
communication latency is larger than the increase in processing
latency. It’s interesting to note that for extremely delay sen-
sitive applications where response times must be around one
second, leasing should be done very aggressively. In fact, all
remaining processing should be leased from the intermediary
nodes in order to avoid high delays due to communication
over the potentially congested wireless links.

In some instances, the first link may be highly congested
and processing at the Mobile Station becomes imperative
otherwise large delays will ensue. This particularly may occur
if the Base Station is also the Access Point to the wired
network. Therefore, the connection between MS and first node
is wireless, while the rest of the links are wired with much
larger capacity. In Fig. 8, we see how the amount of processing
done on the MS varies with the average throughput of the
first hop between MS and intermediary nodes. As given by
Proposition 2, the number of stages processed on the Mobile
Station, and subsequently the amount of battery energy that
is drained, decreases as the quality of the first communication
link improves. As the channel improves, even large messages
can be transmitted without incurring large communication de-
lays. Therefore, in order to save battery power, less processing
is done at the MS while communication latency is not vastly
affected. When the channel quality is very high, no processing
will be performed at the MS. Each line corresponds to different
α values to weight the importance between leasing costs and
latency. For largerα, leasing becomes more expensive and
less desirable. Therefore, to avoid lengthy delays due to the
transmission of such a large file, more processing must be
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Fig. 9. Leasing vs. Latency for different files sizes (V ).

done at the MS to reduce the size of the request message.

Query sizes may vary due to the diversity in mobile devices
and applications. We explore how the tradeoff between leasing
and latency and the battery usage versus throughput of the
first network hop changes with the size of the original query
request. We consider the same scenario as before; however, we
vary the size of the original request varies from 500 kilobytes
to 50 kilobytes. There are still 10 stages of processing and
after completing all stages, the request is reduced to 1000
bytes. Hence, afterz stages have been completed:V (z) =
V (z−10)2+1 for V = 500, 250, 100, 50. Fig. 9 is analogous to
Fig. 7 with battery usageb = 2 and varying file sizes. We can
see that even with smaller initial file sizes, leasing is still used
sometimes, though much less frequently than when the file size
is large. Fig. 10 is analogous to Fig. 8 with tradeoff factorα =
.25 and varying file sizes. As expected, with smaller file sizes,
there is less battery usage for the same throughput of the first
hop link. We see that even for the smallest original file size,
50 kilobytes, some processing may be done at the base station
when the throughput is very low and communication latency
is high. Despite the quantitative differences which arise for
varying query sizes, we can see that the fundamental tradeoffs
which we have discussed in this paper are irrespective of the
specific file size. For all subsequent numerical experiments,
we assume thatV = 500 so that the original query size is 500
kilobytes, recognizing that the qualitative results will hold for
other query sizes.

Processing times on the nodes vary due to the different types
of processors they may have. For instance, the processor in
the Mobile Station may be very limited compared to that of
the remote Application Server which may have access to a
high powered rack of CPUs. Becauseτp(δz, 1) = 100δzms,
τp(δz, n) = 100

r
δzms (n 6= 1, N + 1) and τp(δz,N + 1) =

100

r2
δzms, r captures the variance between these processing

times. The larger the value ofr, the more disparate the
processing times on each node. Because the processing times
per stage improve from the MS to the intermediary nodes to
the AS, one suspects that asr increases, latency will decrease
significantly. Fig. 11 shows this trend when no processing is

done at the MS. It is interesting to note that when jumping
from r = 1 to r = 2 the decrease in latency is much more
significant than the jump fromr = 4 to r = 20. Despite the
fact that the increase inr corresponds to a decrease in delay,
for very larger, the delay is mostly due to communication of
the request message rather than processing times.

We now consider nonlinear processing costs in the case
of 4 network nodes,2 from which processing power can
be leased. The following experimental setup is identical as
before; however, nowφ(δz, n) = ξn(20δz − δz2) where
ξ1 = 1, ξ2 = 1

3
, ξ3 = 1

4
, and ξ4 = 1

10
. Fig. 12 and 13

shows the optimal leasing versus latency tradeoff for various
battery usages for the first and second mid-network nodes,
respectively. Becauseξ3 < ξ2, the leasing costs on the second
mid-network node is less than that for the first mid-network
node. However, due to communications latency, the first mid-
network may still be used. We can see that in order to
decrease latency, more processing should be performed at the
first mid-network node. Conversely, if leasing costs are more
important than latency, it is beneficial to incur an increasein
communication latency in order to process at the second mid-
network node for lower costs.

We have seen that battery usage, latency (both due to
processing and communication), and leasing costs are highly
intertwined. These costs are also highly dependent on sys-
tem parameters such as communication bandwidth; processor
speeds at the MS, AS, and intermediary nodes; as well as
request message size as a function of the number of stages
processed. By studying these tradeoffs, we can gain a better
understanding of the relationships between each cost. This
knowledge will help future system design. From a user’s
perspective, one must determine how much processing power
to lease from mid-network nodes in order to satisfy delay
constraints and extend battery life. From a network adminis-
trator’s perspective, one must determine how much to charge
for leasing processing power in order to encourage users to
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hop. For various tradeoff levels between Leasing costs
and Latency.
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Fig. 12. Concave costs: Leasing of 1st mid-network node
vs. Latency for different number of stages (b) processed
on the battery limited Mobile Station, i.e. b = 0 means no
stages are processed at the MS.

use the new feature while generating revenue.

6 CONCLUSION

The popularity of mobile applications is steadily increasing.
Many of these applications require significant computation
power, especially in the case of multimedia applications.
As the demand, as well as the sophistication and required
computation power, for these types of applications increases,
battery and communication bandwidth limitations may prevent
the use of many of these applications. By “leasing” processing
power from mid-network nodes, the battery drain and commu-
nication latency may be diminished. Network-Assisted Mobile
Computing can help alleviate the processing burden off the
Mobile Station without increasing the service latency. Using
Dynamic Programming, we identified the optimal processing
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Fig. 13. Concave costs: Leasing of 2nd mid-network node
vs. Latency for different number of stages (b) processed
on the battery limited Mobile Station, i.e. b = 0 means no
stages are processed at the MS.

policy. We identified some important properties of the optimal
policy which can be used to guide future system design.
Through numerical studies we examine the core tradeoffs and
relationships between battery usage, latency, and leasingcosts.

A number of factors must be considered for deployment of
such a network-assisted mobile computing system. While there
exist technology for collaborative networks, one must consider
the amount of processing and data that will be permitted to
be shared at mid-network nodes. If high security is required,
there may be additional costs required to handle mid-network
processing. The design challenges will be application and
system dependent. For instance, if the processing only requires
transcoding, this can be done on fully encrypted data by simply
dropping packets, making mid-network processing simple and
secure [48], [49]. However, it is certainly the case that query
partitioning will be limited if the data must remain encrypted
during the whole query processing. Much as transcoding
encrypted media has been an interesting area of research, one
may want to consider developing processes which allow for
other query processing on encrypted data.
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