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Abstract—As the diversity in end-user devices and networks
grows, it becomes important to be able to efficiently and
adaptively serve media content to different types of users.A
key question surrounding adaptive media is how to do Rate-
Distortion optimized scheduling. Typically, distortion is measured
with a single distortion measure, such as the Mean-Squared Error
compared to the original high resolution image or video sequence.
Due to the growing diversity of users with varying capabilities
such as different display sizes and resolutions, we introduce
Multiple Distortion Measures to account for a diverse range of
users and target devices. Multiple Distortion Measures (MDM)
gives a clear framework with which to evaluate the performance
of media systems which serve a variety of users. Scalable coders,
such as JPEG2000 and H.264/MPEG-4 SVC, allow for adaptation
to be performed with relatively low computational cost. We
show that accounting for MDM can significantly improve system
performance; furthermore, by combining this with scalable
coding, this can be done efficiently. Given these Multiple Distor-
tion Measures, we propose an algorithm to generateembedded
schedules, which enables low-complexity, adaptive streaming of
scalable media packets to minimize distortion across multiple
users. We show that using MDM achieves up to4dB gains for
spatial scalability applied to images and12dB gains for temporal
scalability applied to video.

Index Terms—Multiple distortion measures, scalable stream-
ing, embedded packet schedules, rate-distortion optimization,
JPEG2000, H.264/MPEG-4 SVC

I. I NTRODUCTION

Multimedia delivery systems encode multimedia content
into packets that are sent over a network to one or more
receivers, and receivers receive some or all of these packets de-
pending on network congestion and packet loss. A critical part
of a multimedia delivery system is the scheduling algorithm
that the sender uses to determine which multimedia packets
to prioritize and send over the network. Much prior work has
been done to find scheduling algorithms that optimize the rate-
distortion performance of the delivery system. In much of this
work, each packet has an associated incremental rate (size)and
incremental distortion value (e.g., mean-squared error) that it
contributes to the reconstruction of the multimedia content.
The incremental rate and incremental distortion value of each
packet can be used to determine the relative importance of the
packets, and scheduling decisions can be made according to
this information.
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Traditionally, the incremental distortion value of each packet
is computed in relation to the original multimedia content,and
each multimedia packet has a single distortion value associ-
ated with it. Traditional scheduling algorithms use a single
distortion measure, such as mean-squared error in relation
to the original image. However, multimedia delivery systems
are increasingly serving many receivers with a diverse range
of characteristics. For example, display devices for images
and video range from cellphones to PDAs to PCs, each with
capabilities for different sizes, resolutions, and framerates.
Scalable media, such as JPEG2000 [1] and H.264/MPEG-4
SVC [2], has the capability to adapt to different user types
and helps address this issue. However, scalable media tendsto
give a coarse granularity for adaptation and, as we will later
show in Section III, it does not necessarily provide optimal
performance. In order to account for each user’s capabilities, it
may be appropriate to customize a different distortion measure
for each device, e.g., for a low-resolution display device the
mean-squared error should be computed in relation to a low-
resolution version of the original image.

In this paper, we propose usingMultiple Distortion Mea-
sures (MDM) to explicitly account for the diversity of re-
ceivers in today’s multimedia delivery systems. Within the
MDM framework, each multimedia packet has multiple distor-
tion values associated with it, one for each chosen distortion
measure. Scheduling algorithms can then be developed using
these multiple distortion measures, specifically, using the in-
cremental rate and the multiple incremental distortion values
of each packet. To our knowledge, this class of algorithms has
not yet been explored.

Two questions that arise are: 1) What is the difference in
the optimal schedule for different distortion measures, and
2) What is the benefit of using multiple distortion measures
in packet scheduling algorithms? While one might intuitively
expect some difference in the distortion values of multimedia
packets, one might expect the relative importance of packets
to be quite similar. A surprising result we found was that
the difference in the relative importance of packets can be
quite large for different distortion measures. We show these
results in Section III. Furthermore, by using multiple distortion
measures we were able to develop scheduling algorithms that
achieve significantly improved performance over those that
only consider a single distortion measure. We show results
for this in the context of images in Sections IV and in the
context of video in Section V.
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A. Related Work

With the growing diversity of mobile devices, a significant
body of work has been done to develop effective methods to
serve media content to multiple user types.

When the capabilities of all clients are known a priori, one
can encode a scalable stream to optimally serve them all. A
large body of work has looked at how to adapt frame rate and
modify encoding for different users (see [3]–[8] and related
work). In all of this work, the benchmark for performance (if
one exists) is the original sequence–an approach which may
neglect different user types. In [9], the authors look at how
to encode for multiple spatial resolutions. In this case, they
use CIF and QCIF benchmark video sequences to evaluate
performance of the scalability. There has been a substantial
amount of work focused on modifying frame rate, image
quality, and spatial resolution at the encoder in order to serve
different types of users. It is possible to encode the media
sequence to adhere to the specific needs of each user type, if
they are known. However, when the bitrate and user type of
a particular client is not known at the time of encoding, how
can a service provider adapt the media content to satisfy these
constraints in a visually pleasing manner?

If adaptation is necessary after encoding, it is possible to
decode and re-encode the media sequence in order to adhere to
the rate constraint and viewing needs of each particular user.
Unfortunately, this can be extremely expensive in terms of
computation time and power. Rather, transcoding can be done
to modify a (non-scalable) coded sequence into a different
coded sequence with different properties, such as bitrate,frame
rate, spatial resolution, etc. An overview of transcoding can
be found in [10]–[12]. In [13], [14], the authors look at
how to transcode pre-encoded video into video with lower
spatio-temporal resolution. While these works adapt to the
various display capabilities of different users, by upsampling
and interpolating, they also focus on the original high, rather
than low, resolution display as the benchmark for performance.
In this paper, we will show that modifying the benchmark
image/video leads to significant gains.

With the growth of scalable codecs such as JPEG2000 and
H.264/MPEG-4 SVC, transcoding operations can be simpli-
fied to truncations of bitstreams, and discard or truncation
operations of packets. This makes it possible to encode the
media once and adapt it to user demands without expensive re-
encodings or transcoding operations. We focus on this problem
of developing scheduling algorithms to jointly optimize trans-
mission of packetized scalable media, where the bitstream can
be altered by discarding packets. We assume that we are given
an encoded bitstream and we wish to transmit it to multiple
types of users. We look at how to evaluate performance as
well as how to generate embedded packet schedules given
the new framework. Embedded schedules are schedules which
build upon themselves. They are useful because they reduce
transcoding operations to simple truncations of the codestream,
and also allow for meaningful transcoding even when the
codestreams are encrypted [15]. Optimized packet scheduling
is an important problem and has garnered quite a lot of
attention. Some of the early work includes [16]–[19] and

[20], [21] for embedded scheduling. We refer the reader to
the preceding references and the references therein for more
background on packet scheduling.

Given this prior work, and using the conventional approach
of a single distortion measure, one possible approach is to
generate many schedules–one for each user type. However,
this could be costly for a number of reasons. First is the
memory required to store all the different schedules, rather
than just one which can serve many. Also, suppose a media
stream were transmitted to a relay node before adapting it
to specific users needs–it is unrealistic to require complex
transcoding operations on a per-user basis at the relay. Finally,
if the media stream is encrypted, using an embedded schedule
jointly optimized for multiple users, given MDMs, allows for
adaptation without requiring access to the unencrypted stream.
We will explore the scheduling dilemmas–specifically in the
case of embedded scheduling–that arise due to the conflicts in
prioritization of packets for each user.

Most closely related to our work, [22] examines temporal
and spatial adaptation of scalable video and how to evaluate
performance of scalable media. Thus far, it has been difficult
to evaluate the relationship between scalable operations and
viewer utility of the resulting stream. In their work, the
authors propose using a user/classification-based performance
metric for quality assessment. Through subjective tests and
a machine-learning, predictive framework, they are able to
evaluate performance of scalable video systems. In our work,
an extension to [23], we propose a general framework in which
to evaluate the performance of scalable systems and how to
optimize embedded schedules of scalable media packets. Our
goal is to minimize the associated distortion for each user.
In the remainder of this paper, we discuss how to customize
new distortion measures which accurately capture the specific
needs of each user and how to schedule packets given these
measures. Our contribution is the introduction of a framework
which we call Multiple Distortion Measures (MDM). The main
distinction between our work and [22] is the generality of
our work–we can incorporate their utility functions determined
through subjective studies–as well as our study of how to do
multi-objective scheduling given these multiple user types. We
introduce a clear framework which is robust and independent
of highly variant user opinions and allows the use of the
standard measure of mean-squared error (MSE) distortion.
Customizing a distortion measure for each user type leads
to substantial gains, due to the surprising variance in media
packet importance depending on the user and device type.

The rest of the paper is organized as follows. In Section
II, we present the general framework in which Multiple
Distortion Measures is formally defined. In Section III, we
apply the MDM framework to a specific instance of images
where distortion measures are defined by spatial resolution.
We use this instance to gain insight about Multiple Distortion
Measures. In Section IV, we look at the scheduling problem of
generating embedded schedules involving media packets with
multiple distortion measures defined by resolution. We develop
a scheduling algorithm and use the framework from Section
II-B to evaluate performance via empirical experimentation.
In Section V, we discuss the generality of our framework



3

Application Types of MDM

Image
Resolution

PSNR fidelity
Color fidelity

Video

Resolution
PSNR fidelity
Color fidelity
Frame Rate

Audio
Bandwidth

# of channels (mono/stereo)

Graphics
Shape

Texture

Fig. 1. Summary of some potential applications of Multiple Distortion
Measures.

with an extension to temporal scalability of video. Finally,
we conclude in Section VI.

II. M ULTIPLE DISTORTION MEASURE FRAMEWORK

This section formally introduces the Multiple Distortion
Measures framework. Packetized scalable media allows for
adaption beyond the original high resolution image or original
high resolution, high frame rate video by simply discarding
select packets of the encoded bitstream. Typically, each user is
most concerned with metrics that impact his own performance.
For instance, a low resolution viewer cares about distortion
and PSNR compared to a low resolution image, rather than
the original high resolution image–a resolution he cannot view.
However, if a single metric is used based on the high resolution
image, then the needs of the low resolution viewer could
be ignored. For this reason, we introduceMultiple Distortion
Measuresto account for and measure performance relative to
multiple user types.

With the growing diversity in multimedia devices, it is
generally the case that users will view content on different
types of displays. Therefore, we generate multiple benchmark
images/videos which incorporate the various display capabil-
ities of each user type and which are used to measure the
distortion of a reconstructed image or video sequence. For
instance, a benchmark image/video could be a downsampled,
low resolution version of the original; a grayscale versionof
the original, 3 color component image/video; a temporally
downsampled version of the original video sequence; or a
highlighted Region-of-Interest (ROI). Table 1 summarizesa
few potential application areas and capabilities which Multiple
Distortion Measures could help account for multiple user
types.

A. Defining Multiple Distortion Measures

A key aspect of MDMs is calculating the different distortion
measures. This involves selecting a distortion metric, such
as mean-squared error or mean-absolute difference, and an
appropriate reference. The reference can be an appropriate
transformation of the original content. We define the trans-
formation and distortion metric in this section.

We define byTu(X) a transformationoperator of media
content,X , for user typeu. A transformation converts media
contentX into a modified, benchmark version which user
type u will view and consume the content. For example,
this transformation could be spatial downsampling to convert
our original benchmark image,X , into a low resolution
benchmark image,Tu(X), if user typeu wishes to view the
image on a low resolution display. The transformation could
also be a temporal downsampling or framerate conversion
operation, such as frame dropping, to reduce the frame rate
for video. Therefore,Tu(X) is the reference media against
which performance evaluation is measured for useri. Define
TI as the identity transformation such thatTI(X) = X . There
will be multiple transformation operators–one corresponding
to each user type.

These multiple benchmark images/videos (one for each
transformation) are now used to calculate distortion values of
the reconstructed media–hence, Multiple Distortion Measures
(MDM). Let’s defineDu(X̂) as the distortion of reconstructed
media X̂ compared to the benchmark mediaTu(X). Note
that this is a function ofX and X̂ as well as the transform
Tu, Du(X̂) = f(X̂, Tu(X)). When the received media,̂Y ,
is displayed and reconstructed differently, it may be difficult
to make a comparison to the original content,X , since the
reconstructed media and benchmark media have different
resolutions or frame rates. This is sometimes bypassed by
up-sampling a low resolution/low frame rate image/video.
Instead of calculating distortion of̂Y compared to the original
benchmarkX for all users, we propose to calculate distortion
compared to a transformed benchmark media,Tu(X), spe-
cialized for each user type. This provides a more applicable
performance evaluation across multiple users. In the scenario
of Fig. 2 with a low and high resolution user, there would be2
distortion measures defined by2 benchmark images: one high
resolution benchmark,TI(X) = X , and one low resolution
benchmark,TL(X) = Y .

These distortion measures may be applied at different levels
of granularity. For example, distortion values may be com-
puted for packets of packetized multimedia content such that
multiple distortion values are calculated for a single packet.
Furthermore, the distortion values may be calculated with
respect to different benchmarks, e.g., for image or video,
a packet’s value can be calculated in relation to the low
resolution and high resolution reconstructions.

B. Embedded Scheduling for Packetized Media with Multiple
Distortion Measures

A schedule is an ordering of packets that indicates how
they should be sent over a network. Embedded schedules
have the characteristic that all packets included at rateR1 are
also included at rateR2 > R1. That is, embedded schedules
incrementally add packets for increased rates.

Given a single distortion measure, an embedded schedule
can be determined in a rate-distortion optimized manner [20],
[21]. The extension of this algorithm to packetized scalable
media with Multiple Distortion Measures is not obvious. Our
scheduling goal is to generateembeddedschedules in the
context of Multiple Distortion Measures.
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Fig. 2. Diagram of Multiple Distortion Measures. Multiple benchmark images (or videos) are generated: the original,TI(X) = X, and atransformedone,
TL(X). Distortion of reconstructed images is compared to these multiple benchmarks which are able to accurately capture the display capabilities of the
particular user in question. In this case, the low resolution benchmark imageY = TL(X) is a downsampled version of the original benchmark image.

Embedded schedules allow for simple transcoding opera-
tions with a simple truncation of the bitstream. With a single
distortion measure, the optimal embedded schedule can be
found via the fused-greedy algorithm, described in Section
II-C. However, Multiple Distortion Measures introduces dif-
ferent quality measures for different devices and users. The
media packet importance varies depending on the distortion
measure used. This creates a conflict when simultaneously
serving multiple users with different distortion measures. The
fused-greedy algorithm is not applicable for multiple distortion
measures, thus alternative scheduling algorithms for multiple
distortion measures are presented in Section IV. This section
will discuss the framework for embedded scheduling with
multiple distortion measures.

The goal is to build the MDM-aware scheduler in the system
depicted in Fig. 3. We want to adapt a precoded scalable media
stream to serve multiple user types at various rate constraints.
Let U be the set of user types. In Fig. 3, we depict low and
high resolution user types–each withNu users. Each user type,
u, will consume the media at some rate0 ≤ Ru ≤ Rmax. In
this case,Tu(·) is the transformation benchmark for user type
u ∈ U . Let p be the probability distribution function for media
consumption, so thatp(u, R) is the probability that user type
u views the image/video at rateR. Our goal is to design the
MDM scheduler to schedule the packets of the scalable media
in order to minimize the distortion over the diverse set of
clients.

A natural performance metric to optimize over is expected
weighted distortion, or expected distortion where all the
weights are equal to1. These weights are useful to allow
varying prioritization of different user types. For instance, if
one user type is willing to pay more for better viewing quality,
it may be useful to weight his distortion contribution more
heavily in order to ensure it is small. A schedule defines,
for each rate, a subset of packets of the encoded bitstream
which adhere to the rate constraint. LetS denote a schedule
and S(R) is the reconstructed content of the schedule with

rate constraint,R. Then, given weightswu,R, the expected
weighted distortion for scheduleS is:

Ew[D|S] =
∑

u∈U

Rmax
∑

R=0

p(u, R)wu,RDu

(

S(R)
)

(1)

Given this performance metric, we have a framework in which
to compare schedules. IfEw[D|S1] < Ew[D|S2], then we can
say scheduleS1 is better than scheduleS2.

We focus on the scheduler part in Fig. 3, which we
examine more closely in Fig. 4. The scheduler is given
the distribution of user types and rate constraints,p(u, R),
as well as the transforms,Tu, which define the MDM to
make scheduling decisions. Conventional systems incorporate
only a single distortion measure,d1, to make scheduling
decisions. They assume that there is only one user type, so that
p(u, R) = p(R). By introducing multiple benchmarks defined
by transforms,T2, T3, . . . , Tu, we generate multiple lists of
distortions,d1,d2, . . . ,du, which define the importance of
each packet to each user type. The listdu, generated by
transformTu, consists of values,du,i, which is the amount of
distortion incurred by the loss of packeti when distortion is
measured against the benchmark image defined byTu. Now,
instead of each packet having a single distortion value,di,
each packet has multiple distortion values (d1,i, d2,i, . . . , du,i)
corresponding to each user type and associated transformation
operator,Tu. Note that these distortion lists can be generated
during or after encoding. Our goal is to design the scheduler
which incorporates the MDM information provided by the
analysis to generate an ordered set of packets from the original
set of packets provided by a scalable encoder.

Define SL as the schedule optimized for low resolution
viewing. Let Rmax be the highest possible viewing rate; for
instance, the size of the original coded image. In this case,
we assume only1 type of user,U = {L}, and a uniform
distribution of rates,p(L, R) = 1

Rmax
, i.e., the probability of

viewing the image at rater ∈ [1, Rmax] is uniform and all
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Fig. 3. System diagram for scheduling problem. We want to design the Multiple Distortion Measure (MDM) scheduler to order scalable media packets to
serve multiple types of users over multiple rate constraints. The rate constraints and user types can be known deterministically or probabilistically.
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Fig. 4. Our scheduling problem focuses on the MDM scheduler.The
scheduler is given multiple transforms to define benchmark images/videos
for each user type as well as the channel and user type distributions. Given
this information, it orders the packets into a MDM-aware schedule. Note that
the original sequence may not be available, so it may be estimated as the
decoded sequence at the highest possible quality.

users have low resolution displays. If we letS be the set of
all possible embedded schedules, thenSL can be defined as:

SL = arg min
S∈S

Ew[D|S]

= arg min
S∈S

Rmax
∑

R=0

1

Rmax
DL

(

S(R)
)

(2)

This optimal schedule can be determined using the fused-
greedy algorithm of [20]. Analogously, we can defineSH ,
the optimal schedule for high resolution viewing.

C. Fused-Greedy: Embedded Scheduling for a Single Distor-
tion Measure

We now briefly review the algorithm to generate embedded
schedules developed in [20]. This algorithm generates the
optimal embedded schedule for asingle distortion measure,
assuming a uniform distribution of weights. This algorithmis
similar to that in [21] which looks at different distributions of

rates.

This algorithm assumes distortions are additive across mul-
tiple dropped packets, but allows for simple precedence con-
straints that can be depicted as trees. A precedence constraint
of packetk to packetj means that packetk must precede
packetj in the schedule. That is, packetj cannot be decoded
correctly without the inclusion of packetk. Precedence con-
straints can be represented by a simple tree structure where
all parent nodes must precede their children. In JPEG2000,
we can assume that across different tiles, resolutions, color-
components, and precincts, packets are independent. However,
within the same tile, resolution, color-component, and precinct,
packets are dependent across quality layers. Distortion is
additive across quality layers only if the preceding layersare
also included. Fig. 5(a) shows the tree structure for the prece-
dence constraint for JPEG2000 packets within the same tile,
resolution, color-component, and precinct. In H.264/MPEG-4
SVC with hierarchial B frames, there is a clear dependency
between B frames. We can map these dependencies to a tree
structure where each frame’s parent is the most junior parent,
as in Fig. 5(b). The most junior parent is the lowest parent
in the precedence tree. For instance,B3 has 2 parents:B2

and B4. However,B4 is a parent toB2 so the precedence
constraint ofB4 on B3 is captured by a single precedence
constraint ofB2 on B3. We assume that all I and P frames
are successfully transmitted and received–I and P frames can
be scheduled first and transmission only occurs if there is
enough bandwidth to ensure successful reception of them
all. Therefore, the only relevant precedence constraints occur
between B frames. Finding the Rate-Distortion optimal subset
of packets with these precedence structures is an instance of
the Precedence Constraint Knapsack Problem [24], which can
be solved optimally using dynamic programming.

While dynamic programming will give the optimal subset
of packets given a rate constraint, the schedules are not
embedded. Therefore, we proposed a fused-greedy algorithm
to generate embedded schedules. This algorithm can be shown
to give the optimal embedded schedule [21]. The algorithm
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Fig. 5. Precedence constraints for JPEG2000 packets and SVChierarchical B frames. For JPEG2000, within the same Tile, Resolution, Color Component,
and Precinct, packets are dependent in a linear fashion. Packets corresponding to Layeri must be included prior to packetsj > i. For hierarchical B frames,
the hollow circles correspond to anchor I or P frames. The dependency structure can be mapped to a simple tree structure where each frame’s parent is the
most junior parent. We assume that all I/P frames are successfully transmitted and received, and therefore the dependencies on I/P frames are not listed.

takes in the distortion values,di, and sizes,si of each packet
and returns the embedded schedule. Letki = di

si
, be the

distortion-to-size ratio. LetP be a set of integer pairs which
represents the set of precedence constraints. If(i, j) ∈ P , then
packetj must precede packeti. The fused-greedy algorithm
is as follows:

FUSED-GREEDY(d, s)
1 ki = di

si
, ∀i

2 Check precedence constraints∀(i, j) ∈ P
3 if ki > kj : Violation between packeti andj

4 then Fuse packets:
5 ki =

di,j

si,j
=

di+dj

si+sj

6 kj = 0
7 Sort packets in descending order byki

Fusing packetsi andj corresponds to generating a virtual
packet consisting of packetsi and j. This packet has a new
distortion value and size equal to the sum of the2 packets
fused within it. By fusing packetsi and j, an empty virtual
packet is left behind. Note that fusing does not affect the
contents of the packets; rather it serves as a way to view
packets when making scheduling decisions. Certainly, fused
packets can be separated during truncation and viewed as
unique packets as long as the precedence constraints are
satisfied.

The fused-greedy algorithm we have briefly described gen-
erates optimal embedded schedules for a single distortion
measure; however, the extension to packets with multiple
distortion measures is not immediate. As we further the
discussion of Multiple Distortion Measures, we will continue
to reference this algorithm. Furthermore, in Sections IV and
V, we develop MDM-aware embedded scheduling algorithms
which stem from the fused-greedy algorithm.

III. SPATIAL RESOLUTIONS: AN INSIGHTFUL INSTANCE

OF MULTIPLE DISTORTION MEASURES

In this section, we demonstrate, through quantitative and
qualitative results, some of the gains that can be achieved by
accounting for Multiple Distortion Measures. Specifically, we
look at an insightful instance of Multiple Distortion measures
as applied to multiple–low and high–display resolutions for

images. By accounting for Multiple Distortion Measures when
making scheduling decisions, up to 4dB gains can be achieved,
as well as noticeable subjective improvements in image qual-
ity. In Section V, we show these gains in the case of temporal
scalability–low and high frame rates–for video.

We consider the case where we have low and high resolution
viewers. This would be the case if some users wish to view the
content on a cellphone or PDA and others wish to view it on a
laptop. We examine this scenario in the context of JPEG2000
encoded images and gain insight into the value of Multiple
Distortion Measures.

In our experiments, the high resolution benchmark is the
original image,TH(X) = X , and the low resolution bench-
mark,TL(X), is a4× 4 downsampled version of the original
high resolution image. In some cases, the original image may
not be available, so the benchmark imageTH(X) would be
the decoded image at the original high resolution. JPEG2000
is a packetized scalable image coding standard, where sub-
sets of packets are independently decodable. To calculate
the distortion values associated with each media packet, we
incrementally drop packets along the dependency structure,
decode, and calculate the resulting mean-squared error (MSE).
Instead of comparing the decoded image to just the original
high resolution image,X = TH(X), we also compare to
the low resolution benchmark image,TL(X). Therefore, each
packet has multiple (2) distortion values associated with it:
one for each resolution.

A. Transformation: Spatial Downsampling

The downsampling captured by transformation,Ti can be
done via one of the many different downsampling methods
which exist. It is important to note that the rest of our results
and analysis are independent of the downsampling method and
only utilize the fact that multiple distortion values exist. In
our experiments, we examine two linear methods for2 × 2
downsampling: a basic block filter to do2×2 pixel-averaging
as well as the13-tap downsampling filter developed by the
Scalable Video Coding effort, which we denote by ”SVC”.
We apply each2 × 2 downsampling filter twice in order to
achieve4× 4 downsampling.
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Image Rate LowRes PSNR opt PSNR
(bytes) Pix-Avg SVC Pix-Avg SVC

Actor 20386 30.52 36.43 32.72 36.70
Aerial 16344 32.22 37.97 34.46 38.74
Barboo 16119 28.85 34.23 29.81 34.28
Bike 17583 28.10 34.24 31.36 35.27
Cafe 17270 25.38 31.09 26.76 31.24
Woman 16983 36.21 41.10 38.71 41.47

Fig. 6. Spatial Scalability: Comparison of PSNR for 6 imageswhen including
all of the low resolution packets defined by the wavelet decomposition as
compared to selecting the optimal packets at the same rate. Downsampling is
done using pixel-averaging and the SVC downsampling filter.

Many scalable coders allow for images to be scaled down
by resolution. Suppose one wanted to reduce the rate of
the encoded bitstream with the goal of minimizing distortion
of the low resolution image. This would result in selecting
the JPEG2000 packets which minimize the resulting low
resolution distortion. Typically, as in the case of the JPEG2000
codec, the resolutions are determined by the wavelet decom-
position. It is therefore possible to reconstruct a low resolution
image (downsample by2k × 2k, k ∈ N) by extracting only
the packets which correspond to the low resolution wavelet
packets. This would be identical to downsampling via the
low resolution wavelet filter. However, while the wavelet
decomposition is very effective for compression, it does not
necessarily correspond to the most visually appealing low
resolution version of the image. Also, by allowing for other
downsampling methods, we generalize to user types where
downsampling does not correspond to projecting onto a sub-
space defined by the wavelet filter. Because we obtain the low
resolution image by downsampling the image via some method
other than by the wavelet decomposition, often times the high
resolution packets improve the low resolution image more
than the low resolution packets. It is particularly surprising to
see how much gain can be achieved by considering the high
resolution packets. Table 6 summarizes comparisons of PSNRs
evaluated for low resolution viewing for6 different standard
test images for JPEG2000. The benchmark images against
which distortion is calculated are the downsampled images via
pixel-averaging and using the H.264/MPEG-4 SVC filter. We
first examine the PSNR when the image is reconstructed using
all of the low resolution packets as defined by the wavelet
decomposition. We compare this to an image reconstructed
using packets optimally selected to minimize distortion given
the same rate constraint. By allowing the selection of non-low
resolution packets, we have1− 2dB gains when using pixel-
averaging, and0− 1dB gains when using the H.264/MPEG-4
SVC downsampling filter. Clearly, if downsampling were done
via the wavelet decomposition filter, there would be no gap.

B. Differences in Optimal RD Tradeoff

Scalable media allows for adaptation for various user types;
however, as shown in the previous section, this is not always
optimal. Another drawback to relying solely on the levels of
scalability defined by the scalable codec is that it only defines a

coarse granularity for scalability. For instance, a low resolution
user type may have a rate constraint that does not allow for all
low resolution packets to be transmitted. In this case, which
packets should be discarded to generate the optimal Rate-
Distortion tradeoff?

Again, define a schedule as the operator which, given a rate
constraint and a set of packets, generates a subset of packets
which adhere to the rate constraint. Theoptimal is then the
subset of packets which minimizes distortion while adhering to
the rate constraint. Typically, schedules are optimized for high
resolution viewing even when the viewer has a low resolution
display. We can see in Fig. 7 the PSNR versus Rate curves
for schedules optimized at low and high resolutions. The solid
lines correspond to the schedules optimized and evaluated at
the low and high resolution distortion measures. The dashed
curves correspond to the schedules optimized to minimize the
low resolution distortion measure, but measured at the high
resolution distortion measure, and optimized for high viewing,
but measured at low. There is up to a2dB gain in the low
resolution PSNR when the packet selection is optimized for
low resolution viewing rather than the original high resolution
viewing and downsampling is done via pixel-averaging. This
gain increases to4dB when using the H.264/MPEG-4 SVC
downsampling filter.
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Fig. 7. Spatial Scalability: PSNR vs Rate (in bytes) for schedules optimized
for low and high resolutions measured at both low and high resolution metrics.
Thicker lines correspond to the performance of the High-Optimal Schedule.
Downsampling by pixel-averaging (left) and SVC filter (right)

Fig. 8 provides a visual example of the benefits of Multiple
Distortion Measures. Here, images are decoded at one-fifth the
original bitrate. The image on the right is optimized for high
resolution viewing and the image on the left for low. There is
noticeable color degradation in the image on the right. Many
of the cafe patrons in the middle of the image as well as
detailing on the buildings have lost their color content. This
is because when the image is optimized for high resolution
viewing, edges become more important. So, edges are much
more well defined for full resolution viewing on the right.
However, once the image is reduced in size for low resolution
viewing, these edges cannot be displayed in such a pronounced
manner and are no longer as important. Therefore, bytes have
been wasted on edges that cannot be seen on a low resolution
display rather than on improving the color quality of the low
resolution image. This is a key factor about why accounting
for multiple distortion measures is important.
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Fig. 8. Spatial Scalability: Decoded images at one-fifth of the original bit-
rate. The image on the left is optimized for low resolution viewing and the
image on the right is optimized for high resolution viewing.Each image is
decoded to the high resolution size of512 × 640 pixels, then downsampled,
using pixel-averaging, for low resolution viewing at128 × 160 pixels. The
image on the right is missing color quality for some of the cafe patrons in
the middle of the image as well as on the building sides. This is due to
the inclusion of high resolution detail, such as sharp edges, which cannot be
displayed at low resolution viewing.

C. Correlation between Schedules

By examining some properties of schedules optimized for
different distortion measures, we can gain some important
insight into the causes for the drop in performance when
optimizing for the wrong measure. Define a scheduleSu(R)
as the optimal subset of packets which minimize distortion
according to distortion measure defined byTu(·) and given
rate constraintR.

Define the correlation between the low and high resolution
optimized schedules,SL and SH , as the fraction of packets
from the low resolution schedule that are also in the high
resolution schedule at the same rate constraint. Therefore
C(SL, SH) = |SL∩SH |

|SL| . Correlation is a good way to measure
the similarities between schedules. Fig. 9, shows the corre-
lation between schedules optimized for different resolutions
is fairly varied. At rates25 − 45 kbytes, the correlation is
very low, which means the optimal packet selection for low
and high resolution viewing is very disparate. This large
discrepancy between schedules is why there are the PSNR
gaps in Fig. 7 around the same rates. At very high and very
low rates, the schedules are quite correlated. Clearly, at high
rates, most packets are included in the schedule and the few
that are not are negligible for both types of users. Also, at low
rates, so few packets are selected that the same packets will
create the foundation for the image, regardless of the viewing
resolution.

It is quite surprising how different the low and high reso-
lution optimized schedules are from each other. Because the
two prioritizations of the packets differ so greatly, it is actually
impossiblefor a single embedded schedule to jointly minimize
distortion for the low and high resolution users. Therefore
optimized PSNR vs. Rate performance in the previous section
acts as an upperbound for any schedule.

In this section, we examined the use of Multiple Distortion
Measures in the context of multiple viewing resolutions. By
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Fig. 9. Spatial Scalability: Correlation vs Rate (in bytes)between schedules
optimized for low and high resolution viewing. Downsampling by pixel-
averaging (left) and SVC filter (right)

taking MDM into consideration, up to 4dB gains can be
achieved with spatial scalability. In Section V, we look at the
gains in the context of temporal scalability. Systems which
incorporate Multiple Distortion Measures need to determine
how to generate schedules given these multiple measures. We
examine this question in the rest of the paper.

IV. A N ALGORITHM FOR EMBEDDED SCHEDULING WITH

MULTIPLE DISTORTION MEASURES

To examine the benefits of considering Multiple Distortion
Measures when making scheduling decisions, we examine an
instance withU user types. We turn our focus to a special,
insightful case where rates are uniformly distributed along
the non-overlapping support for each user type. Therefore,at
each rate, the distortion is measured using only one distortion
measure. The goal is to generate an embedded schedule which
minimizes the expected distortion. In this case, there are only
U transformation operators andU associated distortion lists
in Fig. 4.

We consider the scenario where we switch between distor-
tion measures at distinct switching rateRs(u): i.e. for rates
0 ≤ R < Rs(1), all distortion is measured according toT1, for
ratesRs(1) ≤ R < Rs(2), all distortion is measured according
to T2, and for all ratesRs(u− 1) ≤ R < Rs(u), all distortion
is measured according toTu. We assume there is a uniform
distribution of rates, so that with probability1

Rmax
, a user will

view the content at rateR. This is a special case of a more
general distribution of user types and rate constraints.

Even with2 user types (a single switching rate,Rs), there
is a conflict between objectives: minimizingE[D1] versus
minimizing E[D2]. In fact, the vast discrepancies, even in this
simple scenario, are surprising and help validate the need to
incorporate Multiple Distortion Measures. One way to exam-
ine this conflict is to look at the similarities and disparities
between packet selection for each schedule. Suppose that the
low rate users wish to view an image at low resolution, so
T1(X) corresponds to downsampling. Also suppose that the
high rate users wish to view the image at the original high
resolution so thatT2(X) = TI(X) = X . For simplicity,
assume that the switching rate is half the bitrate of the entire
image,Rs = Rmax

2 . In order to understand the (dis)similarities
of packet rank/importance across the two distortion measures,
we examine the packets chosen before and afterRs to see how
many are similar. If the low and high resolution optimized
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Image Total # Frac. bytes Frac. bytes
of bytes beforeRs after Rs

Pix-Avg SVC Pix-Avg SVC

Actor 64046 0.3661 0.3615 0.3683 0.3569
Aerial 52514 0.3762 0.3706 0.3811 0.3777
Barboo 51567 0.3674 0.3607 0.3678 0.3627
Bike 65736 0.3937 0.3439 0.4010 0.3450
Cafe 66477 0.3544 0.3473 0.3513 0.3547
Woman 66216 0.3126 0.2989 0.3301 0.3227

Fig. 10. Spatial Scalability: Fraction of total packets, measured by their size
in bytes, that are common to both the low,SL, and high,SH , resolution
optimized schedules before and after the switching rate,Rs. If the schedules
were identical,SL = SH , then the fraction of bytes before and afterRs

would be.5 sinceRs = Rmax
2

.

Image Total # Frac. pkts Frac. pkts
of pkts beforeRs after Rs

Pix-Avg SVC Pix-Avg SVC

Actor 540 0.2426 0.2392 0.4574 0.4527
Aerial 432 0.1740 0.1717 0.5940 0.5777
Barboo 432 0.1921 0.1852 0.5417 0.5255
Bike 540 0.2338 0.2245 0.5436 0.4842
Cafe 540 0.2189 0.2134 0.4787 0.4378
Woman 540 0.2356 0.2352 0.4601 0.4426

Fig. 11. Spatial Scalability: Fraction of total packets that are common to
both the low,SL, and high,SH , resolution optimized schedules before and
after the switching rate,Rs.

schedules were equal,S1 = S2, then all the packets would be
identical. In this case, half of the total number of bytes in the
bitstream would be prior toRs and half would be after. Table
10 shows that approximately35% of the bytes are common
before and afterRs. It is the discrepancy of the remaining30%
of the bitstream which causes the significant drops in PSNR
when optimizing for the wrong distortion measure, as shown
in Fig. 7. Examining the discrepancies in terms of bitrate is
more intuitive than looking at the discrepancies in terms of
packets. However, scheduling is done on a packet-level basis,
rather than on a bit/byte-level basis. Table 11 summarizes the
fraction of total packets which are common between the low
and high resolution schedules before and after the switching
rate,Rs. A large percentage of packets are the same after the
switching rate; however, their contribution, in terms of bitrate,
is approximately35%. For both the high and low resolution
user, the least important packets tend to be small in size. While
it may seem insignificant that the low and high resolution
optimal schedules disagree on the importance of about30%
of the bitstream, it is these discrepancies which lead to loss
in performance when ignoring Multiple Distortion Measures.

Acknowledging these competing objectives, we aim to find
an embedded schedule to minimize the expected distortion. As
defined in Section II,Du(S(R)) is the distortion measured,
with benchmarkTu(X), for scheduleS evaluated at rateR.
Let du,i denote the distortion incurred by user typeu if he
does not receive packeti, excluding the additional distortion

incurred due to the inability to decode all packets which
packeti must precede. Equivalently,du,i denotes the amount
distortion is reduced if user typeu receives packeti, assuming
all packets preceding packeti have been received. A schedule,
S, can also be defined by{ri}, the rate at which packeti
is included in the schedule. Then, given a scheduleS, the
expected distortion (wu,R = 1) is given by:

E[D(S)] =
1

Rmax

[ Rmax
∑

R=0

U
∑

u=1

Du(S(R))1{Rs(u−1)≤R<Rs(u)}

]

=
1

Rmax

[ U
∑

u=1

Rs(u)−1
∑

R=Rs(u−1)

Du(S(R))

]

=
1

Rmax

[ U
∑

u=1

Rs(u)−1
∑

R=Rs(u−1)

(

∑

i

du,i1{R<ri}

)

]

(3)

where1{A} is an indicator such that1{A} = 1 if A is true
and0 otherwise.

Definesi as the size in bytes of packeti. As defined in Sec-
tion II-C, P is the set of packets with precedence constraints
between them. For instance, if packeti andj corresponded to
B1 and B2, respectively, of the same GOP, then(i, j) ∈ P ,
since B2 precedesB1, as seen in Fig. 5(b). AndRs is the
switching rate at which we switch from distortion measure
defined byTL, to distortion measure defined byTH . The
optimization problem is to find scheduleS∗ over all possible
schedules that satisfies:

min
S∈S

1

Rmax

[ U
∑

u=1

Rs(u)−1
∑

R=Rs(u−1)

(

∑

i

du,i1{R<ri}

)

]

s.t. ri ≥ rj , (i, j) ∈ P
∑

i

si1{ri≤R} ≤ R, ∀R (4)

whereRmax is the total number of bytes in the image. The
first constraint corresponds to the precedence constraint.The
second constraint is the rate capacity constraint.

The objective and last constraint of the optimization prob-
lem are nonlinear, which makes this problem hard. There
aren! possible permutations ofn packets; hencen! possible
schedules. An exhaustive search of all possible schedules to
find the minimum expected distortion would be computa-
tionally infeasible. We want to find a less computationally
expensive algorithm that achieves high performance.

A. MDM-fused Scheduling Algorithm

We present an algorithm which runs inΘ(UnU ) by using
what we call a changing-rate. The basis of this algorithm is
the fused-greedy algorithm of Section II-C, which we unite
with Multiple Distortion Measures. We refer to this algorithm
as the ”MDM-fused” algorithm.

We relay the key idea behind this algorithm by focusing on
the case ofU = 2 users types:L andH . Intuitively, for small
Rs all packets should be prioritized based on their low rate
distortion measure,dL,i. Likewise, for highRs, all packets
scheduled are prioritized based on their high rate distortion
measures,dH,i. For intermediate values ofRs, there should be
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Packets
FG

FG

Schedules
Combine

Ordered
Packets

SH

p(u,R)

S

SL

dL dH

Fig. 12. Block diagram of our MDM-aware schedule. The fused-greedy
algorithm is performed on the low and high distortion metricto generate low
and high optimal schedules,SL andSH . The combining of schedules can be
done in multiple ways. We propose to fix a changing rate to change between
the optimal low schedules,SL, to the optimal high schedules,SH . One can
also iterate over changing rates to find the optimal one,R∗

c .

a balance between the high,SH , and low,SL, schedules. Fig.
12 is a block diagram of an algorithm of this nature where the
”Combine Schedule” block specifies how to balance these two
schedules. We propose an algorithm which utilizes a changing-
rate, Rc, to define this block.Rc is the rate at which we
change from low to high rate scheduling, i.e., forR ≤ Rc

packets are scheduled according to its low rate distortion
measure,dL,i, and for R > Rc the remaining packets are
scheduled according to its high rate distortion measure,dH,i.
The changing rate allows the schedule to switch from focusing
on low to high rate users. Given a switching rateRc, packet
distortion informationdL,i anddH,i, and packet sizessi, the
changing-rate scheduling algorithm is (Note that steps 3 and
4 make up the ”Combine Schedule” block in Fig. 12):

CHANGING-RATE-SCHEDULING(d
L
,dH , s, Rc)

1 SL = FUSED-GREEDY(dL, s)
2 SH = FUSED-GREEDY(dH , s)
3 Fill S according toSL until S hasRc bytes
4 Fill remaining packets intoS according toSH

5 return S

In Fig. 13, the PSNR versus Rate curves for variousRc

values are plotted whereTL corresponds to downsampling to
a low resolution benchmark image andTH corresponds to
the original high resolution image. There is clearly a trade-
off between the competing objectives of optimizing for low
versus high resolution viewing. The curves vary significantly
as the changing rate,Rc, varies for a fixed switching rate,
Rs = 33 kbytes. For low values ofRc, packets are scheduled
according to high resolution distortion measures startingat
low rates. Therefore, the performance of the high resolution
users improves significantly, while the performance of the low
resolution users degrades significantly. Likewise, for largeRc,
the low resolution performance is very high while the high
resolution performance takes a hit.

Every value ofRc corresponds to a schedule whose ex-
pected distortion,E[D] can be evaluated. Fig. 14 shows the
expected distortion as a function of the changing rate,Rc,
with a fixed switching rate,Rs. Empirically, there is a unique
Rc that corresponds to the minimum expected distortion. This
optimal changing rate,R∗

c , depends on the switching rate,Rs,
as well as the packet distortion values and sizes,dL, dH ,
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Fig. 13. Spatial Scalability: PSNR vs. Rate for varying values of the changing
rate, Rc. Rs = 33 kbytes. Downsampling using pixel-averaging (left) and
SVC filter (right).

ands. Note also that these results are for uniform probability
distributions and uniform weights and the actual value forR∗

c

will differ as these change. Given a coded sequence of media
packets and a fixed switching rate, we can search overRc to
find R∗

c which minimizes the expected distortion.
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Fig. 14. Spatial Scalability: Expected distortion vs. changing rate with
Rs = 30 kbytes (left) andRs = 40 kbytes(right). Downsampling by pixel-
averaging.

We can modify the changing-rate scheduling algorithm to
incorporate the search to find the optimalR∗

c . We call this
algorithm the ”MDM-fused” algorithm as it is based on the
fused-greedy algorithm, but it is MDM-aware by searching
for R∗

c to optimize the tradeoff between users. Without loss
of generality, index packets by the optimal low resolution
schedule,SL. Let Ri correspond to the rate at which packeti

is included inSL. Therefore,R1 = 0, R2 = s1, R3 = s1 +s2,
etc. wheresi corresponds to the size of theith packet ofSL.
We have just modified the ”Combine Schedule” block in Fig.
12 to incorporate the search for the optimalR∗

c in steps4
through9 of the new scheduling algorithm:

MDM- FUSED(dL,dH , s)
1 SL = FUSED-GREEDY(dL, s). SetS∗ = SL

2 SH = FUSED-GREEDY(dH , s)
3 for i← 1 to n

4 do Rc ← Ri

5 Fill S according toSL until S hasRc bytes
6 Fill remaining packets intoS according toSH

7 if E[D|S] < E[D|S∗]
8 then S∗ ← S

9 return S∗

Thus far, this algorithm has focused on2 user types, but the
extension to more user types is trivial. Instead of employing a
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single changing rate between users1 and2, we requireU − 1
changing rates–one (Rc(1)) between users1 and 2, (Rc(2))
users2 and3, etc.

1) Complexity Analysis:Here we analyze the run-time of
the changing-rate algorithm with search forR∗

c . The search
space has been reduced from an exhaustive search over all
n! possible schedules to a special subset ofnU−1 schedules.
Each schedule takesΘ(n) time to evaluate, which gives a total
run-time ofΘ(UnU ).

There aren total media packets. The fused-greedy algorithm
takesΘ(n log n) to find the optimal schedules for each user
type,Su. To generate the schedule for a given set of changing
rates, we incrementally add packets fromSu until rateRc(u).
Then we scan throughSu+1 and add remaining packets that
have not yet been added until rateRc(u + 1). This process
takesΘ(Un) to generate the resulting schedule as we step
through Su packet by packet. The expected distortion is a
summation ofn terms corresponding to the expected distortion
contribution of each of then packets. Therefore, it takesΘ(n)
to calculate the expected distortion. For each switching rate,
there aren distinct changing rates which will give different
schedules: one after the first packet inSu, after the second
packet inSu, after the third packet inSu and so on. Therefore,
to evaluate the expected distortion for allnU−1 changing rates
takesΘ((U + 1)nU ). We can find the best changing rate in
linear time while we evaluate the expected distortion. This
gives a total run time ofΘ((U+1)nU +Un logn) = Θ(UnU ).
This can be costly for a large number of user types, but is very
manageable for3 or less types. Even considering just2 user
types will prove to have large gains.

B. MDM-switch Heuristic

For a very large number of user types, MDM-fused can
be quite computationally intensive. Rather than searchingfor
the optimalR∗

c , another option is to setRc = Rs. This is
a natural heuristic with complexityΘ(Un logn) since there
is only one changing rate per switching rate. We call this
scheduling algorithm the ”MDM-switch” algorithm since the
changing rate is equal to the switching rate. This policy is
MDM-aware in the sense that it tries to balance between the
optimal schedules, given by the fused-greedy algorithm, for
each of theU user types. However, it is easy to see that MDM-
fused will perform better than MDM-switch asRc = Rs is
a possible solution toR∗

c . As we will see in the following
discussion, in some cases the gap in performance will be
significant, whereas in others, it is minimal.

C. Results

In this section we present results for the performance of
MDM-fused and the MDM-switch heuristic in the context of
U = 2 user types. We compare the performance of this algo-
rithm to the conventional approach which generates schedules
using the fused-greedy algorithm of Section II-C assuming a
single distortion measure of the high resolution measure. For
completeness, we also compare to the fused-greedy algorithm
performed on just the low resolution distortion measure.
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Fig. 15. Spatial Scalability: Expected distortion vs. switching rate for various
algorithms. Downsampling by pixel-averaging (left) and SVC filter (right).

In each algorithm, schedules are determined based on em-
pirically calculated distortion values which can be storedin the
packet headers as in [25]. Distortion is assumed to be additive
across multiple packet drops. If a precedence constraint is
violated, i.e., a packet is included but a packet corresponding
to its lower quality layer is not, the packet’s inclusion does not
reduce distortion. While all schedules are generated according
to this model, their performance is evaluated via decoded
images. We present the results for the Cafe image, although the
trends and performance gains are similar for the other images.

Fig. 15 shows the expected distortion,E[D], versus the
switching rate,Rs. For low switching rates, the high resolution
optimal schedule,SH , performs very well. This is because the
high and low schedules are nearly identical at low rates, which
results in little loss in performance for the low resolution
viewers, and optimal performance to the majority of users who
are high resolution viewers. However, asRs increases, the
performance of the high resolution schedule drops because it
ignores the low resolution users and their different distortion
metric. Likewise, the low resolution schedule performs well
for high Rs, but very poorly for lowRs. SettingRc = Rs can
outperform the low and high resolution schedules because it
tries to account for multiple distortion measures by switching
between the low and high distortion metrics. However, we can
see that if we optimizeRc, we can achieve even higher perfor-
mance. MDM-switch may be more favorable in situations with
many user types as the complexity of MDM-fused may limit
is practicality. However, MDM-switch is easy and quick to
implement, while out performing scheduling algorithms based
on one distortion measure.
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various algorithms. Downsampling by pixel-averaging (left) and SVC filter
(right).
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Fig. 16 shows the PSNR versus Rate curves for the different
scheduling algorithms given switching rate,Rs = 35 kbytes.
The MDM-switch policy ignores the high resolution schedule
for too long, and switches toSH much too late. Therefore, its
performance is quite similar to the low optimized schedule.
However, because it does account for the high resolution user
for rates aboveRs, it outperforms the optimal low resolution
schedule,SL, which completely ignores all high resolution
users. The proposed MDM-fused policy clearly outperforms
the others. There is a very slight drop in PSNR, at most
.1dB, from the high optimal schedule just after the switching
rate. However, at ratesR < Rs, MDM-fused performs nearly
2dB better than the standard approach of the high optimized
schedule, and nearly as well as the low optimized schedule.
When downsampling using the H.264/MPEG-4 SVC filter,
over 3dB gains are achieved.

Intuitively, as the switching rate increases, so will the
changing rate. It is interesting to note thatR∗

c ≤ Rs, since
once the user type switches, there is no benefit to scheduling
according to the incorrect distortion measure. Thus far, we
have assumed a uniform distribution of rates at which users
will consume the media. As we increase the weight for the low
resolution user (wL,R), or equivalently, increase the probability
of a low resolution user (p(L, R)), the optimal changing rate,
R∗

c will increase. By increasing the weight or probability of
the low resolution users, the performance of the low resolution
users contributes more to the expected weighted distortion.
Hence, the performance of the low resolution user is more
important, and that of the high resolution user is sacrificed
by changing to high resolution scheduling at a later rate.
Conversely, if the weight, or probability of the high resolution
users were increased,R∗

c would decrease. Certainly,R∗
c de-

pends on the distribution of user types as will the performance
of the different scheduling algorithms. The question of howto
schedule with arbitrary distributions of user types remains an
interesting research problem which we are currently exploring.

V. TEMPORAL SCALABILITY

Multiple Distortion Measures can be applied in a number of
settings. Thus far, we have presented experimental resultsfor
the case of still images and spatial scalability. To emphasize
the generality of the Multiple Distortion Measures framework,
we now present experimental results of MDM for temporal
scalability in the case of video encoded using H.264/MPEG-4
SVC1. An example of such a scenario is two mobile devices,
where one is very power constrained and thus chooses to
consume the video at a lower frame rate, while the other
prefers the highest quality and chooses to consume the video
at the original high frame rate. SVC has spatial, temporal,
and quality scalability. We focus on temporal scalability to
highlight the gains that can be achieved when accounting for
users with different frame rates; however, we stress that MDM
can be used in conjunction with multiple forms of scalability,
including a combination of spatial and temporal scalability.

1Because we are only using the temporal scalability of SVC, this video is
also compatible with H.264/MPEG-4 AVC.

In this scenario, we wish to transmit240 frames of the
Soccer sequence in CIF format with an original frame rate
of 30 frames per second. This sequence has periods of low
background motion and minor foreground motion as well as
periods with large background and foreground motion. We
encode using a GOP structure of8 frames and an intra-refresh
every 16 frames. In Fig. 5(b), we map the dependencies of
the hierarchical B frames into a tree capturing the precedence
constraints. We only allow rate reduction and scalability by
discarding B frames, so we assume all I and P frames are
successfully transmitted and received. If a frame is dropped,
we use frame copy error concealment to reconstruct the
missing frame.

Suppose there are3 users types. One type of user wishes
to view the video at the original high frame rate of30 frames
per second, another type wishes to view the video at a lower
frame rate of15 frames per second, and the final type wishes
to view the video at the lowest frame rate of7.5 frames
per second. In this scenario, the transformation operationis
a straightforward frame dropping operation. The distortion
measure for the30Hz user is the standard average MSE
per frame compared to the original sequence. The distortion
measure for the15Hz user is the average MSE per frame
compared to every other frame in the original sequence–the
original sequence temporally downsampled by a factor of2.
Likewise, the distortion measure for the7.5Hz user is the
average MSE per frame compared to every forth frame of the
original sequence–a temporal downsampling by a factor of4.
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Fig. 17. Temporal Scalability: PSNR vs Rate (in bytes) for schedules
optimized for viewing at15 frames per second and30 frames per second
measured at both frame rate metrics. Thicker lines correspond to performance
of the schedule optimized for30 frames per second.

Fig. 17 shows the PSNR versus Rate curves for embedded
schedules optimized for frame rates of30Hz and15Hz. This
is the analogous figure to Fig. 7 for temporal scalability. The
two solid lines correspond to the schedules which are both
optimized and evaluated at the same frame rate distortion
measures, e.g., optimized at15Hz and evaluated at15Hz.
The dotted curves correspond to the schedules optimized to
minimize the15Hz distortion measure, but measured at the
30Hz distortion measure, and optimized for30Hz viewing,
but measured at15Hz. There is a12dB improvement in the
15Hz frame rate PSNR when the frame selection is optimized
for 15Hz viewing rather than the original30Hz viewing. All
of the odd numbered B frames in the original30Hz frame
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Fig. 18. Temporal Scalability: Motion between subsequent frames, measured by mean-squared error between adjacent frames. Motion= E[|Fi − Fi−1|
2]

(top). Frame inclusion for a given bit-rate constraint optimized for15 frames per second (left) and30 frames per second (right) viewing. The bit-rate constraint
is constant for each horizontal plot (between15Hz and30Hz) and increases vertically. When the bit-rate constraintdoes not allow all packets to be transmitted,
the frames corresponding to low motion in the video sequenceare the first to be dropped.

rate sequence are dropped during the temporal downsampling
to generate the15Hz frame rate sequence. As a result, these
frames have zero associated distortion to a15Hz user and the
transmission of these frames cannot improve the PSNR of the
15Hz video sequence. However, if these frames correspond to
a section of the video with very high motion, they may be
very important (large associated distortion) to a user viewing
the content at30Hz. This vast discrepancy in distortion values
of the same frames across multiple users results in the multiple
dB gains in PSNR when optimizing transmission specifically
for the correct user type. Analogous results hold for embedded
schedules optimized for7.5Hz frame rates.

Frame selection is directly correlated with the amount and
temporal location of motion in the video sequence. Fig. 18
shows just how dependent the frame selection is on motion. We
express the amount of motion by the per-pixel mean-squared
error between adjacent frames. Therefore, the motion at frame
i is Motion(i) = E[|Fi − Fi−1|

2], whereFi corresponds to
frame i. The top plot corresponds to the amount of motion
in the original sequence at15Hz and 30Hz as a function
of the original frame number. Because the15Hz video is an
integer downsample of the original, every other frame has0
motion. The3 other plots correspond to the frame selection
given increasing bitrate constraints which are identical for each
user type. For low bitrates, not all frames can be transmitted.
The ones that are transmitted correspond to sections of large
motion in the video sequence. As the rate constraint increases,
more frames can be added. For the bottom plot, the15Hz user
receivesall packets which benefit him. However, his packet
selection is quite different from that of the30Hz user. Instead
of receiving frames at a periodic rate, it is optimal for the30Hz
user to lose some frames which correspond to low motion
areas in order to transmit at a higher frame rate in high motion
areas.

Clearly, the optimal frame selection for users with different
frame rates conflicts with each other. We apply the changing-
rate scheduling algorithm to the case of temporal scalability.
In [22], the authors found that there exists distinct switching
rates at which the preferred frame rate changes, which bolsters
the validity of this type of scheduling scenario. In this case, we

assumeT3 andT2 correspond to the temporally downsampled
benchmark video to be viewed at7.5 and 15 frames per
second, respectively, andT1 is the original video sequence
to be viewed at30 frames per second. Now that there are3
levels of scalability, we have2 switching rates–one between
7.5Hz and15Hz viewers and another between15Hz and7.5Hz
users. So for rates,R < Rs(1) all users view the video at
7.5 frames per second; forRs(1) ≤ R < Rs(2), all users
view at 15 frames per second; and forRs(2) ≤ R, all user
view at 30 frames per second. Fig. 19 shows the expected
distortion as a function ofRs(2), the switching rate from15
to 30Hz viewing, for2 different values ofRs(1), the switching
rate from7.5 to 15Hz viewing. Again varying the switching
rates modifies the relative performances of the single distortion
measure schedules (30Hz opt, 15Hz opt, and7.5Hz opt).
In some cases, MDM-switch performs identically to MDM-
fused (as whenRs(1) = 1200kbytes). As more user types are
considered, this may prove to be a very effective and efficient
scheduling algorithm. However, we can see that optimizing
for the best changing rate can vastly improve performance
(as whenRs(2) = 1600kbytes). In the case of temporal
scalability, we see that accounting for Multiple Distortion
Measures has a significant impact.
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Fig. 19. Temporal Scalability: Expected distortion vs. switching rateRs(2)
(15Hz to 30Hz) for various algorithms. For switching rateRs(1) (7.5Hz to
15Hz) of 1200 (left) and1600 (right) Kbytes.

In Fig. 20, we plot the PSNR versus Rate curves for
fixed switching rates ofRs(1) = 1260kbytes andRs(2) =
1600kbytes as well as the Distortion versus Rate curves.
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We can see that with little loss in performance prior to
the switching rates, our scheduling algorithm, MDM-fused,
is more than10dB better than the conventional approach
of optimizing for 30Hz viewing. Note that the optimization
goal is to minimize the expected distortion. PSNR is the
standard objective metric for evaluating the performance of
video systems, so we also present the results in terms of PSNR.
However, because we are minimizing the expected distortion,
and because of the nonlinear mapping to PSNR, the PSNR can
be somewhat misleading. By looking at the results in terms
of distortion, one can see our policy successfully balancesthe
tradeoff between30Hz, 15Hz, and7.5Hz viewing and nearly
achieves the optimal distortion for all rates.
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Fig. 20. Temporal Scalability: PSNR (top) and Distortion (bottom) versus
Rate with Rs(1) = 1260kbytes andRs(2) = 1600kbytes for various
algorithms.

VI. CONCLUSIONS

In this paper, we presented a new framework to evaluate
the performance of multimedia systems which serve multiple
types of users. With the growing diversity in multimedia users,

Multiple Distortion Measures will allow service providersto
efficiently serve multimedia streams in a manner that accounts
for the various needs of each user. We showed that quality
measures used for streaming media are highly dependent
on user types. In fact, in the case of packetized media,
a packet’s importance can be quite different depending on
which user consumes it. These differences cause conflicts
when simultaneously scheduling media packets to multiple
user types. We also presented a framework in which to
evaluate embedded scheduling algorithms for systems with
Multiple Distortion Measures. We developed an MDM-aware
embedded scheduling algorithm based on our prior work
which assumed only a single distortion measure. We applied
our framework and scheduling algorithm to2 cases where
MDM is relevant: spatial scalability for various resolutions
and temporal scalability for various frame rates. These exam-
ples are illustrative of the gains which can be achieved by
accounting for MDM, but are by no means exhaustive. MDM
is a general framework which can be applied to any type of
benchmark images or videos. Spatial scalability was explored
in the case of still images through the JPEG2000 standard.
Temporal scalability was studied in the case of video streaming
with H.264/MPEG-4 SVC. In our experiments, for spatial
scalability with JPEG2000, accounting for Multiple Distortion
Measures resulted in up to4dB gains and for temporal
scalability with H.264/MPEG-4 SVC, gains of up to12dB. By
accounting for the diverse needs of its clients, a multimedia
server can significantly improve the provided service by using
and accounting for Multiple Distortion Measures.
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