
 
 
 
 

LOCAL INSTRUMENTS, GLOBAL EXTRAPOLATION: 
EXTERNAL VALIDITY OF THE LABOR SUPPLY-FERTILITY  

LOCAL AVERAGE TREATMENT EFFECT 
 

James Bisbee 
Rajeev Dehejia 

Cristian Pop-Eleches 
Cyrus Samii* 

 
June 30, 2015 

 
 

Abstract 
 
We investigate whether local average treatment effects (LATEs) can be extrapolated to 
new settings. We estimate Angrist and Evans's (1998) same-sex instrumental variable 
strategy in 139 country-year censuses. We compare each country-year's LATE, as a 
hypothetical target, to the LATE extrapolated from other country-years (using the 
approach suggested by Angrist and Fernandez-Val 2010). With a sufficiently large 
reference sample, we extrapolate the treatment effect reasonably well. The degree of 
accuracy depends on the extent of covariate similarity between the target and reference 
settings. Our results suggest that – at least for our application – there is hope for external 
validity. 
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1. Introduction 

Angrist and Evans (1998) use the sex composition of the first two children as an instrument for 

the effect of fertility on labor supply. In light of Imbens and Angrist (1994) and Angrist, Imbens, 

and Rubin (1996) and the subsequent local average treatment effect literature, the immediate 

empirical relevance of the Angrist-Evans finding is limited not just to the United States in 1980 

and 1990 but also to the subpopulation of compliers - i.e. those mothers whose fertility was 

increased as a result of having had two first children of the same sex.  

At the same time, it is natural as social scientists to view these results in a more general 

light: they hopefully reflect the underlying relationship between family size and a woman’s labor 

supply. As an economic issue, the connection between these two variables is of broad interest. 

Within the context of developed, low-fertility countries, increases in fertility could lead to 

reductions in female labor supply and labor force participation. In developing countries, where 

fertility rates are higher but declining, the reverse effect is relevant: reducing fertility could 

significantly increase female labor force participation and spur economic growth. 

In this paper we address the tension between these two perspectives. Using the Integrated 

Public Use Micro Sample International (IPUMS-I) data set, we implement the Angrist-Evans 

same-sex instrumental variable strategy in 139 country-year censuses. The censuses span the 

world geographically (as listed in Appendix Table A-1) and cover five decades from 1960 to 

2010. In particular, we use results from Abadie (2003) and Angrist-Fernadez-Val (2010) to 

characterize the complier population in each country-year sample in terms of covariates. We use 

these characteristics to extrapolate the treatment effect from a given country-year (the 

“reference” country) to a country-year of hypothetical interest (the “target” country). We 
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perform this exercise on each country-year pair and use the resulting 139 × 138 dyads to examine 

the extent to which the local average treatment effect (LATE) can be reliably extrapolated from 

reference to target. We also conduct the analysis cumulatively, using all available reference 

country-years prior to time t to extrapolate to a target country-year at time t.  

We think of the complier population in the target country as the population of 

hypothetical policy interest. In principle one could extrapolate a reference LATE to various 

subpopulations in the target country. But for the complier subpopulation in the target we can 

directly identify an internally valid benchmark (namely the target country-year LATE) against 

which to compare the extrapolation. Using our approach, we can also extrapolate both the target 

and reference LATEs to average treatment effects (ATEs), hence compare an extrapolated 

reference ATE to the target ATE; we consider this approach in Section 8.1 below. 

The exercise connects to two interrelated literatures within labor and development 

economics. First, it relates to Lalonde (1986) and the papers that followed from it (see Heckman 

et al. 1997, 1998, 1999 and Dehejia and Wahba 1998, 2002 inter alia). By using an external 

reference sample to estimate the treatment effect in a setting where we already possess a 

plausibly internally valid estimate of the treatment effect, we use Lalonde’s basic template. In 

addition, we are interested in characterizing when an externally extrapolated result is likely to 

provide a reliable estimate of the treatment effect (in the spirit of Heckman, Ichimura, Smith, and 

Todd 1998). Furthermore, our exercise represents the first step in an empirical induction in a 

setting where general theorems are not possible. For Lalonde, the question was the extent to 

which non-experimental estimators could replicate an experimental benchmark. As his paper 

showed, even in the context of a single data set, a thoughtful attack on this question could push 

the literature to replicate and extend his findings and eventually reach a broader understanding. 
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We hope that, in a modest way, our paper could provoke further investigation into the 

relationship between local average treatment effects and their potential to extrapolate treatment 

effects globally. 

Second, our work also connects to a small but growing literature in development 

economics that has begun to grapple with issues of external validity. In no small part spurred by 

Lalonde (1986) and the ensuing literature, development economics has made extensive, indeed 

global, use of randomized controlled trials (RCT’s) to estimate the causal impact of a broad 

range of development interventions. A tension similar to that of instrumental variables resonates 

in this exercise. Each RCT evaluation of a development intervention is also a local average 

treatment effect, perhaps in the Imbens-Angrist (1994) sense if issues of non-compliance arise, 

but also in the broader sense of evaluating an intervention in a specific time and place and on a 

specific and not always representative set of experimental subjects. At the same time, there is an 

intellectual agenda in which an accumulation of experimental evidence might allow one to reach 

more general conclusions regarding the efficacy of certain policies or the relevance and validity 

of specific economic models. 

In this paper we take up the challenge of examining the extent to which we can 

extrapolate from an experimental evidence base to new contexts of interest. Using the Angrist 

and Fernandez-Val (2010) framework, we assume that heterogeneity in the local average 

treatment effect is driven by differences in observable characteristics of the complier population. 

By characterizing the complier population in each country-year sample, we can calibrate the 

local average treatment effect from a reference country to match the complier population 

distribution of covariates in a target country of interest. Of course, such an exercise will succeed 

in reliably extrapolating the treatment effect only if the identifying assumptions are 
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approximately true in the application and data we are studying. It is precisely in this sense that 

our exercise uses Lalonde (1986) as a motivation. Our data provide internally valid estimates of 

the target LATEs.  Most immediately, this allows us to test the validity of the identifying 

assumption that LATE heterogeneity is driven by observable covariates. But more significantly, 

we are interested in characterizing which differences between an experimental reference and a 

target context are most likely to lead to failures in external validity. This latter goal represents a 

step toward systematizing the discussion of issues related to external validity. 

To preview our approach and findings, our exercise has five steps. First, using simulated 

data, which satisfies our identifying assumptions by construction, we confirm the basic insight 

that calibrating the treatment effect in a reference country does yield a reliable estimate of the 

treatment effect in a target country. Indeed, we show that if the identifying assumptions are true, 

not only is external validity possible but also “super-external validity”: if only a small sample 

size is available in the target, it can be preferable to use an externally extrapolated estimate from 

a reference country where the treatment effect is more precisely estimated (i.e., with a larger 

sample size).  

Second, we graphically document that there is considerable heterogeneity both in the 

first-stage and in the instrumental variable estimates across our sample.  We also find substantial 

variation in the characteristics of the complier populations.  

Third, we use the dyads described above to run regressions of external prediction error 

against differences between the target and reference countries and to characterize empirically 

which differences significantly drive prediction error. We show that prediction error increases 

considerably in covariate differences between the reference and target contexts of interest.  
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Fourth, we use the timeline of our country-year samples to examine how the 

accumulation of evidence from additional samples affects out-of-sample predictive accuracy. We 

find that, using all available evidence from reference country-years, extrapolation error is low in 

the sense of being statistically indistinguishable from zero while also being bounded quite 

tightly. 

Fifth, we compare the prediction error from our extrapolation technique to the prediction 

error from using OLS within the target site. Our interest here is to understand the extent to which 

non-experimental evidence, even if it recovers a treatment effect that is both potentially biased 

and different from the complier population, compares to externally extrapolated quasi-

experimental evidence from an instrumental variable estimate from another site or sites. In the 

development economics literature, Pritchett and Sandefur (2013) have speculated that bias from 

a non-experimental estimate within the target site might be smaller than bias due to failure in 

external validity. In our application we find the opposite: extrapolation error tends to be lower 

than endogeneity bias from within-target OLS estimation. 

The paper begins by outlining our identifying assumptions and empirical approach, and 

then examines each of these five questions in turn, followed by a series of extensions and 

robustness checks. 

2. Methods 

We define the conditions and methods for extrapolating from an instrumental variables estimate 

to the causal effect in a target population.1 We focus on the case of using local average treatment 

effects estimated from a set of reference contexts to identify and estimate the LATE in a target 

                                                
1 This section and the analysis in this paper draw extensively on Dehejia, Pop-Eleches, and Samii 
(2014), where we discuss external validity issues in the context of experiments. 
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context, where the LATEs are the complier average causal effects in the respective populations 

(Angrist et al. 1996).  We focus on extrapolating to the LATE in a target context because of the 

nature of the data that we have for our benchmarking exercise.  The IPUMS-I data allow us to 

estimate LATEs in different populations defined by country and year.  As such, we can use these 

data to conduct benchmarked comparisons between actual, estimated LATEs in a given context 

and what we would obtain by extrapolation from other contexts.  Nonetheless, the methods that 

we apply here are straightforward to generalize for extrapolation to other types of populations. 

Angrist and Fernandez-Val (2010) and Hartman et al. (2015) provide useful discussions of 

defining targets for extrapolating causal effects. 

Following Angrist and Fernandez-Val (2010), our setup supposes that a randomly 

sampled unit i has two potential outcomes, Yi(1) and Yi(0), that would obtain under assignment of 

a treatment Di to the treated (=1) versus control (=0) condition, respectively. In our application, 

the treatment is an indicator for whether a mother has more than two children, restricting 

consideration to the subpopulation of women with at least two children.  Observed outcomes are 

given by, 

  (1) 

where α = E[Y(0)], ηi = Yi(0) – α, and γi = Yi(1) – Yi(0) is the unit-level causal effect of Di.  We 

also define an instrument, Zi = 0,1, that affects treatment assignment.  Thus, we have potential 

treatment assignments, Di(1) and Di(0), corresponding to the treatment values that would obtain 

for a unit under Zi = 1 versus Zi = 0, respectively. In our application, the instrument is an 

indicator for whether the sexes of the first two children are the same.  The observed treatment is 

given by, 

  (2) 
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where γ = E[D(0)], υi = Di(0)- γ , and pi = Di(1) – Di(0).  

Units are characterized by covariates, Xi, which include both unit- and population-level 

variables.  These covariates play a central role in extrapolation. We assume throughout that 

conditions required for identifying the conditional LATE hold (Angrist and Fernandez-Val 2010, 

p. 7).  These include:  

 

C1(a) Conditional independence and exclusion: (Y(1),Y(0),D(1),D(0)) ╨ Z|X. 

C1(b) Valid conditional first stage: E[p|X] ≠ 0 and 0 < P[Z=1|X] < 1. 

C1(c) Conditional monotonicity: P[D(1) ≥ D(0)|X] = 1 or P[D(1) ≤ D(0)|X] = 1. 

 

We also define an indicator, W, for whether a population is the target to which we want to 

extrapolate, W=1, or whether it is part of the reference set for which we have LATE estimates, 

W=0.  

The covariate-specific LATE in a target population is defined as 

  (3) 

and in a reference set population as 

  (4) 

Given covariate-specific LATEs for a target population (W = 1), the marginal LATE for the 

target context is given by (Froelich 2007): 

 

 
(5) 

We now state the assumptions needed to allow for a LATE from a reference population to be 

transported to the target population conditional on covariates, following Hotz et al. (2005). 
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Proposition 1 (Identification): Suppose C1 holds across all populations.  Furthermore, suppose 

C2 Unconfounded location: (Y(1),Y(0)) ╨ W|D(1) > D(0),X=x, and 

C3 Covariate overlap: 0 < P[W = 0|D(1) > D(0),X = x] <1.  

for all x in the support of X in the target population. Finally, suppose we have data to estimate 

 for all x in the support of X in the target population. Then,  is identified and can 

be estimated from the data.   

 

Proof: Under C1-C3, we have 

  (6) 

for all  in the support of  in the target population, in which case  

 

 
(7) 

! 

 

We adopt an estimation approach based on interacted regressions.  

 

Proposition 2 (Complier-centered interaction estimation): Suppose conditions C1-C3 hold 

and that 

 

 
(8) 

and 

 

 
(9) 
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with  being the value of the covariate  centered on the sample complier mean in the target 

context ( ), and  for . Let  be the residuals from a 

linear regression of the sample  values onto the matrix of sample  

values.   For a sample of  units with , 

 

 

(10) 

 

Proof: By standard results for centered regression with heterogeneous effects (e.g., Imbens and 

Wooldridge 2009, pp. 28-30), we have 

 

 
(11) 

for . The result then follows from the consistency of the IV estimator for the LATE 

(Imbens and Angrist 1994).  

! 

The key assumption for this estimation strategy is that we can define a linear series in 

covariates to account for unit-level heterogeneity in both outcomes and treatment take-up given 

variation in the instrument.  When the covariates consist of indicators for an exhaustive set of 

strata, estimation via a centered interaction regression is algebraically equivalent to the type of 

stratification reweighting used by Angrist and Fernandez-Val (2010) (see, e.g., Miratrix et al. 

2012).   

 Proposition 2 shows that we can use 2SLS with interactions centered on the target 

population complier means to extrapolate from reference data to the LATE in the target 
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population.  This requires that we can estimate the means of covariates among compliers 

( .  By Theorem 3.1 of Abadie (2003), one can accomplish this task via “kappa 

weighting.”  Specifically, for our target population with , we have 

 

 
(12) 

where 

 

 
(13) 

We use the sample analog of expression (12) to compute the  terms for the complier-centered 

interaction regression.  In our applications below, we take the  terms as fixed and therefore 

apply standard 2SLS inference. 

 

3. Illustrative simulation 

We use a simulation to demonstrate the properties of IV extrapolation under assumptions C1-C3.  

To construct a naturalistic simulation, we start with the covariate, instrument (that is, the “same 

sex of first two kids” indicator), and treatment data (that is, the “more than two kids” indicator) 

from one percent subsamples of the IPUMS census data for Cuba in 2002 (yielding 223 

observations) and the United States in 1990 (yielding 3,343 observations). The covariates that we 

use include the gender of the first and second born children, the woman’s age coarsened into 

three-year bins, the woman’s education level coarsened into four bins (less than primary, 

primary, secondary, and university completed), and her spouse’s education level coarsened into 

the same four bins.  We used these covariates to generate potential outcomes under treatment and 
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control for women in each simulation replicate sample.2  We generated observed treatments and 

outcomes on the basis of the actual instrument and treatment values in the data.  As such, we 

have realistic potential outcome distributions but we can also compute the actual LATE for each 

simulation replicate sample.  

Because potential outcomes are defined in terms of the micro-covariates only, C2 holds.  

We restrict attention to the portions of the Cuba and United States samples that overlap in their 

covariates such that C3 holds.  We determine that C1b holds by observation: for the US in 1990, 

the first stage coefficient in the sample is 0.060 (robust s.e.=0.015), while for Cuba in 2002, the 

first stage coefficient in the sample is 0.090 (robust s.e.=0.048). We then assume assumptions 

C1a and C1c based on arguments of Angrist and Evans (1998).  To generate the extrapolations, 

we use the complier-centered interactions 2SLS model defined above.  We conduct 1,000 

simulation runs. 

 Figures 1 and 2 display results from the simulation exercise.   Figure 1 shows results for 

simulations where Cuba was the target and the US was the reference sample.  We see in Figure 1 

that the distribution of extrapolations is centered on the true LATE. The extrapolation 

distribution (depicted with the dotted lines) is also more precise than the IV estimates fit on the 

target population data (depicted with the light gray shading).  This is because the reference 

sample (3,343 observations) is much larger than the target population sample (223 observations). 

 

[FIGURE 1 ABOUT HERE] 

 

                                                
2 The potential outcomes were agnostically generated by a vector of coefficients drawn from a normal distribution. 
For a detailed description of the simulation data-generating process, please see Appendix B. 
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Figure 2 focuses only on the extrapolated estimate distributions as we reduce the size of 

the reference population. Again, the target distribution is depicted in light gray in the 

background. As we reduce the size of the extrapolation population, we see the distribution widen 

until the smallest reference size of 167 observations is even less precise than the target 

distribution, simulated using 223 observations. This outcome illustrates the theoretical possibility 

of “super-external validity,” whereby extrapolations from an existing evidence base may provide 

more accurate estimates of the LATE in a target context than would be the case if one estimated 

the LATE using only data from that context.  

 

[FIGURE 2 ABOUT HERE] 

 

In summary, the simulation illustrates our extrapolation strategy, and confirms that when 

the identifying assumptions are satisfied, the method indeed works (in the sense that extrapolated 

LATEs on average replicate the target LATE). Note, however, that the quality of the 

extrapolation depends on the sample size of the reference context and also on the degree of 

reference-target covariate overlap. 

 

4. A world of LATE’s: same-sex, more kids, and mothers’ labor 

supply 

4.1 The same-sex instrumental variable and IPUMS-I data 

Angrist and Evans (1998) used two instrumental variables for a mother’s incremental fertility, 

the first two children having the same sex (i.e., boy-boy or girl-girl) and a twin birth. In this 
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paper we focus on the first. They examine the sample of married women between age 18 and 34, 

with two or more children from the 1980 and 1990 US IPUMS. A preference for a gender mix of 

children encourages mothers with the first two children of the same sex to have an incremental 

child. The IV strategy uses that variation to look at the effect of increased fertility on labor 

supply.  The identified local average treatment effect is the effect of fertility on labor supply for 

those women who have an extra child when their first two children are the same sex but would 

not otherwise. For the 1980 (1990) sample, same-sex leads to a 0.068 (0.070) increase the 

probability of the third child (relative to approximately 0.5 of the sample that has a third child). 

The reduced-form effect of same-sex on whether the mother worked for pay is -0.0080 (for 

1980) and -0.0053 (for 1990), with an IV estimate of -0.120 (for 1980) and -0.104 (for 1990), 

relative to 0.528 of the 1980 sample and 0.667 of the 1990 sample who work. 

 We use the IPUMS-I data to take the Angrist-Evans strategy to the world. The IPUMS-I 

data provided harmonized coding that in principle yields measures of the above variables that are 

comparable across countries and years. Data are available for a maximum of 139 country-years, 

although accounting for missing data our sample becomes smaller for some specifications. 

Individual covariates include the mother’s age, her age at birth of her first child, her education 

(coded as 1=illiterate, 2=primary, 3=secondary, and 4=college or higher), and her spouse’s 

education (coded similarly). Summary statistics are presented in Table 1. The average age of 

mothers at the time of the survey in the global sample is 30.05, and the average mother’s 

education is 1.92.  

 

[TABLE 1 ABOUT HERE] 
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 As discussed in the introduction, while extrapolating from reference to target country 

makes use only of micro covariates, in our investigation of external validity we explore country-

year level differences and whether they explain the pattern of extrapolation error. Our country-

year covariates included GDP per capita, women’s labor force participation, the sex ratio 

imbalance (the number of male children divided by the number of female children minus 0.5), 

the total fertility rate, and the pairwise geographical and temporal distances between country-

year samples. Summary statistics of these dyadic absolute differences are presented in column 2 

of Table 1. We will demonstrate that these differences strongly predict the magnitude of the 

extrapolation error. 

In our application we focus on the same-sex instrumental variable rather than a twin 

birth, because it is more likely that two non-twinned children can be born in the same calendar 

year in high-fertility countries than in the US. Same-sex has its own challenges when used as an 

instrument on a global scale.  The first concern is sex selection. While this is not believed to be 

an issue with US data, for some countries in our sample (such as China) it is clearly a concern. 

We address this by treating sex-selectivity as a country-year covariate and examining empirically 

whether it affects the IV extrapolation from reference to target. In Section 8.4, we also show that 

dropping potentially sex-selective countries does not significantly affect the results. A second 

concern is violation of the exclusion restriction, especially for low-income countries. Butikofer 

(2011) has presented suggestive evidence that the gender mix of the first two children in low-

income countries can directly influence a mother’s labor supply through the cost associated with 

having a third child (see also Huber (2015) for evidence of instrumental validity for US data). 

We address this in a similar fashion, namely by examining the extent to which GDP per capita 
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affects extrapolation error and in Section 8.5 using the Huber-Mellace (2015) test to detect and 

drop country-years unlikely to satisfy instrument validity. 

 

4.2 IPUMS-I data: first stage, compliers, and IV estimates 

In this section we provide a graphical summary of the variation in the first stage and IV estimates 

from IPUMS-I data. Figure 3, panel a, plots the first-stage effect of same-sex on an incremental 

child against the standard error of the estimate. Each point represents a country-year IPUMS-I 

sample, and different markers are indicators for geographic regions. Figure 3, panel b, plots the 

density of first-stage effects. We note that all but a handful of first stages are positive: the 

preference for a gender mix of children seems to be global. From panel b, we note that the 

average first-stage effect is approximately 0.04 across countries and years. Both panels highlight 

the heterogeneity of the first-stage strength, an issue we return to in the cumulative analysis. 

 

[FIGURE 3 ABOUT HERE] 

 

 Figure 4 recreates the analysis of Figure 3 but replaces the first-stage results with the IV 

estimates of the effect of an additional child on the mother’s work status. The striking difference 

between Figures 3 and 4 is that the IV estimates are both negative and positive. While we can see 

in Figure 4, panel b, that the average affect across countries and years is negative (-0.129, 

compared to -0.120 and -0.104 for the US in 1980 and 1990), there is a genuine mix of positive 

and negative coefficients. In panel a, estimates from high labor force participation economies 

such as North America, Western Europe, and Eastern Europe tend to be negative, while 

estimates from less developed regions are more positive.  
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[FIGURE 4 ABOUT HERE] 

 

In Figure 5, we examine how the population of individuals who comply with the 

instrument differs from the overall population. In the top two panels, we look at mother’s age at 

the time of the survey and at the time of the first birth. The top-left panel indicates that, on 

average, the complier population is younger than the overall population for most country-years at 

the time of the survey. At the same time, there are regions (notably North America and Western 

Europe) where these two distributions are similar. This pattern is reversed in the top-right panel, 

which charts the comparison for mother’s age at first birth. Here we note that compliers are 

consistently older than the overall population across all country-years in our data set. In the 

bottom two figures, we find that complier mothers and their spouses are more likely to have 

secondary or tertiary education than the overall population although these differences are far less 

pronounced.  

 

[FIGURE 5 ABOUT HERE] 

 

The above analysis highlights a key aspect of our approach: heterogeneity in differences 

between complier and raw populations is the dimension along which we calibrate the IV 

treatment effects in the reference country to extrapolate to the target of interest. While discussed 

formally in the methodology section above, it bears emphasis that this heterogeneity lies at the 

heart of what external validity means in an IV context. If differences in complier populations 

affect the relationship of interest, external validity may be compromised. By calibrating our 
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reference estimates to approximate the target complier population, we remove this threat to 

external validity. The efficacy of this technique hinges crucially on whether the observable 

covariates that we can measure fully capture the latent characteristics that would otherwise 

reduce external validity.  

 

5. Dyadic regressions 

In this section, we examine the extent to which extrapolation error from reference to target 

country-year can be explained by covariate differences between the two contexts. As noted in the 

introduction, our strategy is to create all possible pairwise combinations of the country-year 

samples, with one country serving as the target and the other as the reference. We use the 

complier characteristics in the target country to calibrate the conditional-on-X LATE’s in the 

reference country. Since, as in our US-Cuba example, for any two country-years the 

extrapolation differs depending on which is the target country and which the reference country, 

our dyads consist of all n×(n-1) pairwise permutations. For each dyad, we record the 

extrapolation error, Eij (the target country-year i LATE estimate minus the extrapolated treatment 

effect from the reference country-year j), its standard error, and covariate differences between 

reference and target (which for simplicity we assume these can be summarized simply as 

). 

As in Dehejia, Pop-Eleches, and Samii (2014) we use this setup to estimate the external 

validity (or X) function:  

, 
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where we weight the regression by the inverse of the variance of the extrapolation error. In the 

spirit of the Heckman, Ichimura, Smith, and Todd (1998) bias function, which characterizes 

selection bias as a function of covariates, our interest is to characterize reference-to-target 

country-year extrapolation error, while maintaining the assumption of a valid instrumental 

variables strategy (hence an internally valid target country-year LATE). Note that in addition to 

within country-year micro covariates, Dij includes country-year level macro covariates as well, 

including GDP per capita, labor force participation, and total fertility rate. 

 Results are presented in Tables 2 and 3. We begin in Table 2 by examining the univariate 

relationship between covariate differences and extrapolation error. We find that the differences 

in all covariates save for mother’ age at first child’s birth, the labor force participation rate, and 

temporal and geographic distances, are significant predictors in the expected direction: greater 

reference-target differences are associated with increased extrapolation error. The magnitude of 

the bias is considerable for each covariate. Since the significant covariates are in logs, the 

coefficients can be directly compared in terms of percent changes; this suggests that a ten percent 

increase in the difference between reference and target in mother’s education, spouse’s 

education, mother’s age at the time of the survey, per capita GDP, the gender ratio, and total 

fertility rate is associated with a 0.017, 0.02, 0.009, 0.013, 0.006, or 0.01 increase in 

extrapolation error respectively (relative to an average world LATE of -0.129).  

Temporal and geographic distances are presented in standardized measures, implying that 

a 1 standard deviation increase in geographic distance (substantively an increase of roughly 

4,650km) corresponds to a 5 percent increase in extrapolation error although this is not 

significant at conventional levels. Similarly, the effect of time is noisily measured but, again, 

pointing in a positive direction. 
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[TABLE 2 ABOUT HERE] 

 

When we include all covariates simultaneously, we find in Table 3 that differences in the 

spouse’s education, differences in mother’s age at the time of the survey, and differences in the 

gender ratio remain significant in the full sample. The coefficients on spouse’s education and 

mother’s age at the time of the survey are robust to restricting the analysis to country-years 

where first-stage t-statistics are greater than 2, 5, and 10 although the estimate for mother’s age 

becomes less precisely estimated. As in Table 2, the magnitudes are considerable for spouse’s 

education. A ten percent increase in the difference in spouse’s education corresponds to a 0.018 

increase in the absolute difference between the target and extrapolated estimates (again relative 

to an average world LATE of -0.129). It is worth noting that these coefficients decline both in 

significance and in magnitude as we restrict the sample to stronger first stage targets. This 

suggests that the accuracy of our extrapolation technique is less susceptible to differences in the 

covariate profile when our target estimate is more precisely estimated. However, certain 

covariates remain significant, particularly differences in spouse’s education.  

 

[TABLE 3 ABOUT HERE] 

 

 Overall the results underline an intuitive but important result: when the target and 

reference countries are close together in the covariate space, extrapolation error tends to be 

smaller. As will be demonstrated in Section 7, this intuition motivates our use of minimized 

Mahalanobis distance to predict the optimal dyad for extrapolation.  
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6. Accumulation of evidence 

While the dyadic regressions in Tables 2 and 3 highlight the importance of covariate differences 

between reference and target countries, they do not allow us to deduce how close the 

extrapolation comes to the target country LATE. Furthermore, while the dyadic setup is useful to 

explore the external validity function, it uses only a single country-year reference to predict the 

target, whereas in fact the available pool of reference countries is much larger in all but the first 

time period of our data set. We address both issues in Figures 6 to 11.  

 In Figures 6 to 9, we depict the extrapolation error for specific target country-years 

(Greece-1971, Colombia-1985, Belarus-1999, Colombia-2005), and show how the prediction 

error changes as additional reference country-years become available at each point in time. Note 

that in any given year, we use all of the available reference country-years available up to that 

point in time (excluding the target country in earlier periods) to predict the target country-year. 

Our exclusion of the target country data in earlier periods constitutes a more difficult test of our 

extrapolation technique by removing the (presumably) most similar reference data from the 

accumulated pool of observations. 

 

[FIGURES 6 – 9 ABOUT HERE] 

 

Several patterns become evident. First, as more evidence becomes available through an 

increased reference set, prediction error typically decreases. Second, although there are counter-

examples, the pattern that extrapolation error is not statistically significant when using the 
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maximal reference set does usually hold. Third, there are instances in which the target LATE 

itself is not precisely estimated, and in these cases extrapolation error, although not statistically 

significant, can be large in terms of magnitude. Fourth, for target countries later in the sample for 

which a larger reference set is available, prediction error tends to converge to zero. 

 Figures 10 and 11 average the extrapolation error across all target countries with the dots 

color-coded by the number of observations in the accumulated reference data and the vertical 

bars representing the standard deviation of the averaged estimates. Figure 10 averages with 

respect to years relative to the target country-year (so for example, 1970 is -4 with respect to 

Ecuador 1974). Figure 11 averages by calendar year. In Figure 10, predictions by t=0 combine 

some country-years early in the sample with few reference countries and those later in the 

sample with more country-years available. Conversely, Figure 11 presents an unbalanced panel, 

with country-years rotating out as targets for years after their own year (so for example US 1980 

does not enter the average as a target country beyond 1980, but remains in use as a reference 

country). Both figures confirm the pattern that bias tends to be smaller for country-years later in 

the sample although Figure 10 exhibits greater variance in the estimates, owing to the inclusion 

of early target-years for which larger reference sizes are unavailable.  

 

[FIGURES 10 & 11 ABOUT HERE] 

 

 Overall, Figures 6 to 11 show that with a sufficiently large reference set, the extrapolated 

LATE is able to systematically replicate the actual country-year LATE with considerable 

precision. Given the validity of the IV strategy, this in turn serves as a test of the validity of our 

key identifying assumption of uncounfounded location.  
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7. Extrapolation vs. interpolation 

This section presents a series of comparisons between the extrapolated LATE estimates 

measured using different criteria and the OLS estimates within the target country. The thought 

experiment is trading off two possible biases: extrapolation error from the extrapolated LATE 

versus endogeneity bias from regressing a women’s labor force status on an endogenous 

indicator of incremental fertility. In other words, is there any reason to believe that errors 

associated with extrapolation are systematically larger or smaller than biases associated with 

endogeneity? It is worth noting the artificiality of the exercise at the outset. We know that OLS, 

whether biased or not, is estimating the average treatment effect, whereas the extrapolated LATE 

is replicating the LATE for the target country. So even without bias, we would not expect these 

two to be the same. Nonetheless, we argue that the choice is not entirely artificial: a policy maker 

could indeed be faced with the choice of two potential biases. In Section 8.1, we present results 

comparing an extrapolated ATE to target country-year OLS estimates.  

 The results are presented in Figure 12, where the x-axis depicts the mean of the dyadic 

extrapolated LATE’s for a given target country-year less the within-country estimated target 

country-year LATE and the y-axis depicts within country-year OLS less the estimated LATE. 

Both values are represented in absolute terms, reflecting that we are agnostic as to whether the 

extrapolated estimate is larger or smaller than the target. In addition, we divide the absolute error 

by the sum of the squared standard errors of each estimate. Doing so helps account for the 

precision of the point estimates of both the target and the reference. For example, a 5 unit 

difference between target and extrapolated estimates where the target standard error is 5 should 
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not be as concerning for our technique as a 5 unit difference where the target standard error is 

0.1. By dividing the absolute error by the sum of the target and reference variation, we account 

for the first two moments of the results, giving us a more comprehensive understanding of the 

efficacy of our technique.  

 

[FIGURE 12 ABOUT HERE] 

 

Points are coded in different shades of grey by the size of the reference sample for the 

target country-year. One pattern that again emerges is that, while extrapolation error can be large 

when the size of the reference sample is small, much of the data lies close to zero. In this range, 

OLS and extrapolated errors are roughly equivalent.  However, as we move further away from 

the best cases, there is evidence in favor of the extrapolated results over OLS. Note, however, 

that the mean extrapolated results are much noisier than the OLS estimates, as evidenced by the 

wider horizontal confidence intervals as compared to the vertical lines, which are almost hidden 

at the scales presented.  

 Figures 13 and 14 use the same framework to compare the OLS estimates against the 

dyadic prediction error where the reference country-year is chosen to minimize geographical 

distance or Mahalanobis covariate distance with the target country-year.  As demonstrated above, 

differences in the covariate profile significantly predict absolute error between target and 

extrapolated estimates. By minimizing the Mahalanobis distance, we are effectively reducing the 

total impact of these differences in choosing the best dyadic pair. Meanwhile, minimizing 

geographic distance is included as a second-best heuristic to follow if additional comparison data 

are unavailable. In both figures, there is clear evidence in favor of the extrapolated estimation 
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technique over OLS. For small-sample reference sets, the extrapolated IV consistently 

outperforms OLS; for larger sample sizes this also appears to be the case for minimized 

geographic distance. 

 

[FIGURES 13 & 14 ABOUT HERE] 

 

 Having demonstrated that extrapolated IV performs well relative to OLS using either a 

raw average for each target country-year or choosing the best reference country-year based on 

minimized Mahalanobis or geographic distance, we finally turn to a similar comparison using the 

cumulative results from Section 6. Given the convergence trends summarized in Section 6, we 

choose the most recent cumulative extrapolated results for each target country-year under the 

assumption that this represents both the largest reference dataset as well as the most accurate 

extrapolated prediction on average. We calculate absolute error in the same fashion as described 

above and plot the cumulative error on the x-axis. On the y-axis, we re-plot the OLS errors as 

well as the minimized Mahalanobis and geographical distance results.  

 

[FIGURE 15 ABOUT HERE] 

 

As depicted in Figure 15, there is strong evidence in favor of the cumulative approach over OLS 

estimates and suggestive evidence in favor of cumulative results over the best dyadic 

extrapolated estimates. 

As a final best practice, we turn to combining the minimum Mahalanobis distance 

technique from the dyadic results with the cumulative data, leveraging both the ability to reduce 
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distance in the covariate profile as well as the larger reference sample sizes afforded by the 

cumulative results. Specifically, from each year prior to the target’s year, we select the year 

whose reference country-years minimize Mahalanobis covariate distance with the target. As 

depicted in Figure 16, this approach even more strongly favors extrapolation over within-

country-year OLS estimation. Almost all prediction errors are above the 45 degree line, 

indicating a better fit for the cumulative minimized Mahalanobis distance approach. 

 

[FIGURE 16 ABOUT HERE] 

 

Our results suggest that while extrapolation error remains a concern, at least for this 

application, the endogeneity bias of within country-year OLS is generally larger. 

 

8. Robustness checks and extensions 

8.1 Extrapolating reference ATE to target ATE 

In the extrapolation exercise presented above, we are assuming that the characteristics of the 

complier population in the target setting are known and can be used to reweight the local average 

treatment effect in the reference country. There is a potential circularity here in the sense that 

knowledge of the target complier population implies the existence of micro data on the 

instrument and treatment variables in the target. Our argument in favor of the exercise is that the 

target complier population is simply one possible policy-relevant subpopulation in the target, 

specifically the only target subpopulation for which we have an internally valid estimate of the 

average treatment effect. An alternative approach is to use our extrapolation procedure to 
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estimate the target ATE from both the target data and the reference data. We then measure “bias” 

as the extrapolated ATE from the reference data minus the extrapolated ATE from the target 

data. A snapshot of the results for this approach is presented in Figure 17. 

 

[FIGURE 17 ABOUT HERE] 

 

 Figure 17 depicts the average extrapolation error, where the set of reference countries 

evolves along the x-axis as they become available in years up to and including the year of 

observation of the target. The pattern is similar to Figure 10. Twenty or more years prior to the 

target country-year, the extrapolation tends to be noisy. But as additional reference country-years 

become available, extrapolation error approaches zero in magnitude and is not significantly 

different from zero despite being reasonably stable.  

 An advantage of extrapolating ATE’s is that these are directly comparable to OLS 

estimates within the target. In Figure 18 we revisit our extrapolated reference IV to target OLS 

comparison for this case. 

 

[FIGURE 18 ABOUT HERE] 

 

In particular, Figure 18 compares extrapolated reference IV average treatment effects to OLS, 

where the nearest geographical country is used as the reference. The results are similar to Figure 

13. Most of the points lie about the 45-degree line, with a significant concentration of points at 

very low values of extrapolation error for IV estimates on the x-axis.  
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Thus our conclusions regarding the reference LATE to target LATE extrapolation also 

carry over to reference ATE to target ATE extrapolation. 

 

8.2 Extrapolating using the number of children as the endogenous variable 

Angrist and Evans (1998) present results using both the number of children and an indicator for 

more than two children as the endogenous variable. In our main results, we focus on the latter. 

Here we present results using the former. Figure 19 presents cumulative extrapolation error 

results. The results are again similar to Figure 10. When using reference countries available 

twenty or more years prior to the target, estimates are noisy and tend to bounce around from year 

to year. But moving closer in time to the target, estimates home in on, and are not statistically 

significantly different from, zero extrapolation error. 

 

[FIGURE 19 ABOUT HERE] 

 

8.3 Using prior information to improve predictions 

In many evaluation contexts prior information exists that can be used to improve the 

extrapolation. For example, one might begin with the prior of a zero treatment effect (perhaps 

motivated by Rossi’s [1987] “Iron Law”). In the context of our application, prior information, if 

available, can readily be incorporated into the extrapolation by appropriately weighting the 

reweighted reference LATE with the prior. Here we present the simplest case of taking a convex 

combination of the reweighted LATE and the prior of a zero treatment effect.  

 Figure 20 summarizes the weight on the prior that minimizes the root mean squared error 

of the cumulative extrapolation for each reference sample size (where the reference sample size 
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increases with the increasing availability of reference country-years over time). The optimal 

weights range from 0.9 to 0.5. The fact that the optimal weights tend to put substantial weight on 

the prior reflects the fact that in this application many IV LATE’s are in fact close to zero, i.e., 

that the prior of zero treatment effect is, ex post, a good one. The optimal weight also reflects the 

fact that the zero prior reduces posterior estimation variability. The importance of the latter 

diminishes as sample size increases, which is reflected in the downward trend of the optimal 

weight toward 0.5 for the full reference sample. In general, of course, the prior cannot be chosen 

with the benefit of hindsight, and absent extremely strong prior information weights in this range 

are unlikely.  

 

[FIGURE 20 ABOUT HERE] 

 

At the same time, even a small weight put on a prior of a zero treatment effect tends to 

improve the root mean squared error of the extrapolation. This is depicted in Figure 21. As 

weight on the prior increases, root mean squared error decreases essentially linearly. Again, 

while a very high weight on the prior is implausible, even a low weight on a prior of zero is 

beneficial. As illustrated in Table 4, a weight of 0.01 on the prior reduces mean prediction error 

by 0.031 and root mean squared error by 0.14. These values are statistically significant after 

controlling for reference population size and the standard error of the extrapolated estimate. Prior 

information, if it is available and proves to be correct, is a valuable input to improving external 

predictions. 

 

[FIGURE 21 ABOUT HERE] 
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[TABLE 4 ABOUT HERE] 

 

 

8.4 Dropping sex-selectors 

The most direct challenge to the validity of the IV assumptions in our application is the well-

known practice of sex selection in some of the countries in our sample (most notably China 

under the one-child policy). In our main results we control for the degree of sex selection within 

country-years. In this section we instead drop countries where sex selection and potential non-

exogeneity of the same-sex variable is a concern (in particular, India, China, and Nepal and 

Vietnam). Figure 22 presents the cumulative extrapolation error results corresponding to Figure 

11. The results are qualitatively and quantitatively similar. After an initial “burn in” period where 

average extrapolation error bounces around from year to year, it homes in on, and is not 

statistically significantly different from, zero. 

 

[FIGURE 22 ABOUT HERE] 

 

8.5 Dropping country-years with invalid IV’s  

As an extension of Section 8.4, we rely on recent work by Kitagawa (2008) and Huber and 

Mellace (2014) who exploit the implications of the LATE assumptions to derive systematic tests 

of IV validity. Unlike Section 8.4, where our rationale for dropping sex selectors is based on 

indirect evidence and case study research on cultural determinants of gender heterogeneity (see 

Rosenzweig and Wolpin [2000] for evidence from India and Edlund and Lee [2013] for evidence 
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from South Korea), here we employ a data-driven test for violations of the LATE assumptions. 

As described in Huber (2015), the LATE assumptions require that, for all y in the support of Y: 

 

f(y,D=1|Z=1) ≥ f(y,D=1|Z=0), f(y,D=0|Z=0) ≥ f(y,D=0|Z=1), 

 

lest the joint densities of the compliers be less than zero. Violations of these inequalities are not 

enough to identify which LATE identifying assumptions fail, but they do constitute smoking-gun 

evidence that: Z is not randomly assigned; defiers exist in the data and dominate the compliers; 

or both.  

 We use the procedure outlined by Huber (2015) to identify which country-years fail to 

satisfy the identifying assumptions necessary for the same-sex instrument to be valid.3 One 

benefit we enjoy thanks to our large dataset is that our finite sample power is high enough that 

we are unlikely to commit Type II errors. Nevertheless, as stressed by Huber (2015), failures to 

reject the null cannot be taken as evidence of instrument validity. Table 5 lists the country-years 

with partial p-values smaller than 0.4, representing a conservative test for IV validity. We rerun 

our cumulative analysis on the restricted data and present the results in Figure 24, represented by 

light gray circles. The results are not meaningfully different from those presented above. 

 

 [TABLE 5 ABOUT HERE] 

 

A final check is to stratify the data over coarsened covariates in an attempt to see whether 

the IV test fails for any subset of the population. We use three bins for the educational attainment 

                                                
3 We are grateful to Martin Huber for graciously providing his original R code. 
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of the mother and her spouse (0 = less than high school, 1 = high school, 2 = more than high 

school) and a binary variable indicating whether the mother is in her 20s or her 30s at the time of 

the survey. We then stratify over these covariates and run the IV validity test on each sub-

population in each country-year, yielding as many as 18 separate p-values for evaluation 

(although many country-years do not have full coverage for all possible strata). Figure 23 lists 

the results for all 139 available country-years in the dataset, ranked by the minimum partial p-

value across all available strata. With 18 possible violations for each country-year, we elevate 

our threshold for removal to the 95% level of confidence and drop any country-year with at least 

one p-value less than 0.05 from our analysis, resulting in the omission of 29 country-years for 

our robustness check, listed in dark font at the top of the y-axis. 

 

[FIGURE 23 ABOUT HERE] 

 

Again, our conclusions are largely robust to the omission of these country-years. Figure 

24 overlays the cumulative running counter analysis from the main results with the same results 

calculated after dropping the invalid country-years. The convergence is still striking. The 

robustness-check results outperform the main analysis in the earliest counters. Although for the 

most stringent robustness exercise of dropping country-years that fail the stratified IV validity 

test, we note that it takes longer for the extrapolation results to converge to approximately zero 

error. This is not surprising given the reduced sample size. 

 

[FIGURE 24 ABOUT HERE] 
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9. Conclusion 

In this paper we have investigated the degree to which LATE’s from one context can be 

extrapolated to another. Returning to our twofold motivation in pursuing this exercise – namely 

informing both the external validity of instrumental variables estimates and of the growing body 

of policy-relevant evidence from natural and randomized experiments – our findings are both 

optimistic and cautious. We find that external validity improves when the reference data and 

target data are from similar settings and that given sufficient data, even with a small set of 

covariates, average extrapolation error is close to zero when extrapolating LATE’s from one 

country-year to another. Furthermore, the resulting extrapolation error is usually less than the 

endogeneity bias of using within-target OLS.  

At the same time, extrapolation error increases considerably with reference-target 

covariate differences. Covariate differences of 10 percent between reference and target settings 

lead to extrapolation error ranging from 5 to 20 percent of the overall treatment effect. While it is 

difficult to offer a specific quantitative guideline, our results suggest the importance of a close 

match between covariate profiles in reference and target settings. This echoes findings in the 

program evaluation literature such as Heckman, Ichimura, Smith, and Todd (1998) and our own 

related work on this theme (Dehejia, Pop-Eleches, and Samii 2014).  

 Given the increasing number of internally valid, albeit local estimates that are becoming 

available to assess the impact of policy interventions, our results suggest that there is some hope 

to reach externally valid, general conclusions from this stream of evidence but also that the 

quality of extrapolation depends crucially on a sufficient body of quasi-experimental evidence 
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from contexts that resemble the policy environment of interest. Finally, we note an important 

qualification: our results are narrowly relevant only to the application we have considered. 

Further replications of this exercise for other instrumental variables and natural and field 

experiments are necessary to develop a more systematic understanding of the opportunities for 

and limits to externally valid knowledge. 
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Appendix A: Full Summary Statistics 
 

[TABLE A-1 ABOUT HERE] 
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Appendix B: Simulations 
 
The simulations were run on a 1% random sample of the full IPUMS data in which we generated 
potential outcomes conditional on the covariate profile and observation “type”. In this context, 
observation type refers to whether the unit was a complier, an always-taker, or a never-taker. We 
deterministically set half of the population to compliers and a quarter each to always- and never-
takers. By construction, defiers are removed, thus ensuring we meet the conditional monotonicity 
assumption (C1(c)) discussed in Section 2. Combining the covariate profile with type yielded an 
extended covariate vector  which has length  and, when stacked on observations, yields 
matrix .  
 
To generate the potential outcomes, we multiplied  by a -length vector of coefficients  to 
yield .  was drawn from a multivariate normal distribution. Without loss of generality, we set 

.   
 
Having defined our potential outcomes as such – and in so doing, guaranteeing compliance with 
the necessary assumptions – we simulated the instrument assignment in a manner that varied 
with the covariate profile . (Note that instrument assignment varies with  and not  since 
the latter would violate the conditional random assignment assumption of the instrument.) 
Specifically, we used a logit specification to determine the probability that the instrument  
conditional on  using the following specification (as above, let  be a stacked matrix of  
covariates and  observations): 
 

 
(B.1) 

where  is a  length vector of coefficients, again drawn from a multivariate normal distribution 
for the sake of simplicity. Note that  to account for the removal of unit type (again, 
compliers, always-, and never-takers) from the extended covariate vector .  
 
The simulation was run 1,000 times, using the centered-interactions technique specified above to 
extrapolate the target estimate from the reference population. The code (in both Stata and R) is 
available upon request.  
 

 



Table 1: Main variables summarized by observations and dyadic absolute differences.

Variable Name Country-Year Level Dyadic Level
Raw statistics Abs. Differences

Average Education (mother) 1.92 0.64
N = 132 / 13,539 (0.56) [0.63] (0.467)

Average Education (spouse) 2.05 0.59
N = 132 / 13,539 (0.51) [0.85] (0.434)

Average Age (mother @ survey) 30.05 0.93
N = 139 / 15,205 (0.80) [3.49] (0.689)

Average Age (mother @ 1st birth) 20.73 1.09
N = 139 / 15,205 (0.95) [3.00] (0.861)

GDP per capita 9,806 10,464
N = 139 / 15,205 (9,591) [ - ] (9,383)

Gender Ratio (male::female) 0.012 0.008
N = 139 / 15,205 (0.008) [0.30] (0.008)

Total Fertility Rate (children per mother) 2.68 0.73
N = 139 / 15,205 (0.65) [ - ] (0.541)

Labor Force Participation Rate 0.52 0.24
N = 125 / 15,205 (0.21) [ - ] (0.17)

Year 1989 11.7
N = 139 / 15,205 (11.8) [ - ] (10.2)

Geographical Distance (km) - 7,942
N = - / 15,205 - (4,656)

2SLS Variables

Economically active mother (Y ) 0.44 0.27
N = 125 / 15,205 (0.24) [0.44] (0.20)

More Kids (D) 0.57 0.22
N = 139 / 15,205 (0.19) [0.46] (0.16)

Number of Children (D) 3.05 0.59
N = 139 / 15,205 (0.52) [1.11] (0.43)

Two children of same sex (Z ) 0.51 0.008
N = 139 / 15,205 (0.008) [0.50] (0.008)

Two Girls (Z ) 0.24 0.009
N = 139 / 15,205 (0.009) [0.43] (0.008)

Two Boys (Z ) 0.26 0.009
N = 139 / 15,205 (0.009) [0.44] (0.008)

Notes: Standard deviations calculated on country year means presented in parentheses. Average
household standard deviations presented in brackets. The three 2SLS variables are dummies. More
kids is coded zero if the mother has only 2 children and one if the mother has more than 2 children.
Same sex is coded zero if the first two children are of different genders and coded one if the first
two children are of the same gender. Economically active mother is coded zero if the mother is not
economically active and coded one if the mother works for pay.
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Table 3: Multivariate regression of absolute extrapolation error on absolute covariate differences in
dyadic data.

(1) (2) (3) (4)
Full Sample FS t-stat > 2 FS t-stat > 5 FS t-stat > 10

Mother’s Education (log) .02 .02 .01 .01
(.05) (.05) (.05) (.06)

Spouse’s Education (log) .18*** .18*** .18*** .18***
(.06) (.06) (.06) (.06)

Mother’s Age @ Survey (log) .06** .06** .06* .05
(.03) (.03) (.03) (.03)

Mother’s Age @ First Birth (log) .02 .02 .02 .03
(.03) (.03) (.03) (.03)

GDP pc (log) .03 .03 .03 .05*
(.03) (.03) (.03) (.03)

Gender Ratio (log) .05* .05 .05 .05
(.03) (.03) (.03) (.03)

Labor Force Part. Rate (log) -.02 -.02 -.02 -.02
(.03) (.03) (.03) (.03)

Total Fert. Rate (log) .04 .04 .04 .03
(.03) (.03) (.03) (.04)

Temporal Dist. (1SD = 10yrs) -.01 -.01 -.01 -.03
(.03) (.03) (.03) (.04)

Geographic Dist. (1SD = 4,650km) -.02 -.02 -.02 -.03
(.03) (.03) (.03) (.03)

Constant -2.31*** -2.32*** -2.37*** -2.61***
(.31) (.31) (.31) (.33)

N 13539 10861 7832 4089
R2 .06 .06 .06 .06

Notes: Heteroskedastic-robust standard errors presented in parentheses. Explanatory variables are measured
by the log of the absolute difference between the target value and the reference. Gender ratio calculated as
the ratio of boys to girls. Mother’s education level coded as 1 = less than primary completed, 2 = primary com-
pleted, 3 = secondary completed, 4 = university completed. Temporal and geographic distances presented in
standardized units. * p < 0.10; ** p < 0.05; *** p < 0.01.
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Table 4: Shrinkage weights on measures of extrapolation error in dyadic data.

Root Mean Squared Error (RMSE) Mean Prediction Error
(1) (2)

Weight on Prior -0.142§§§ -0.031§§§

(0.004) (0.001)

Reference Size 0.04 -0.07§§§

(1SD = 73,160) (0.11) (0.023)

Extrapolated SE 3.56§§§ 1.03§§§

(1SD = 6,394) (0.11) (0.023)
N 12,624 12,624

R2 0.16 0.22

Notes: Dependent variables given in column headers. RMSE calculated as
q

1
N

PN
i=1(Øt ar °Øexti )2

for each target country-year. Mean prediction error (MPE) calculated as average of absolute difference
between target estimate and each reference extrapolated estimate. Reference sample size and standard
error of extrapolated estimate standardized to facilitate coefficient comparisons.

Table 5: List of country-years with partial P-values less than 0.40.

Country Year Partial P-value St. Diff0 St. Diff1

Egypt 1996 0.001 -0.063 -0.142
France 1990 0.011 -0.124 -0.112
France 1999 0.055 -0.121 -0.12

Uganda 2002 0.112 0.017 0.002
India 1987 0.122 -0.052 0.016

Portugal 2001 0.147 0.024 -0.203
Panama 1960 0.158 -0.157 0.046

Malaysia 1980 0.205 -0.058 0.024
Israel 1995 0.243 0.004 0.021

Malaysia 1991 0.245 -0.057 0.014
Chile 1970 0.28 0.018 -0.097
India 1993 0.329 -0.014 0.009

Greece 2001 0.365 -0.061 -0.206
India 1983 0.37 0.002 0.011
Mali 1998 0.37 -0.005 0.008

Rwanda 1991 0.375 0.019 -0.004
Guinea 1996 0.383 -0.014 0.007

Costa Rica 1973 0.389 -0.015 0.009

Notes: Invalid country-years ranked by partial P-values from Huber-Mellace (2014) test
of IV validity, column 3. The p-values test whether f (y,D = 1|Z = 1) ∏ f (y,D = 1|Z = 0)
and, similarly, f (y,D = 0|Z = 0) ∏ f (y,D = 0|Z = 1). These constraints can be rewritten
as four point estimates (µ̂1, . . . , µ̂4) which must fall between the bounds of the mixed
population. The fourth and fifth columns give the standardized point estimates in the

form of max(µ̂1,µ̂2)
SD(Y ) for the treated (St. Diff1) and non-treated (St. Diff0) subpopulations.

Violations of the null are therefore positive values. Inference is applied to the test statis-
tics using two-stage bootstrapping, the details of which can be found in Huber and Mel-
lace (2014).
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Figure 1: Simulated results of recovering Cuba (2002) LATE using data from US (1990). 1,000 simulations
run to generate distributions. The light-gray shaded polygon depicts the distribution of the simulated
estimates using the Cuban (2002) data while the vertical light-gray line represents the mean estimate. The
solid unshaded polygon depicts the unadjusted simulated estimates using the US (1990) data. The dashed
distribution represents the extrapolated simulations using the same US (1990) data after calibrating to the
complier covariate profile from the target country-year.
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(2002). The light-gray shaded polygon depicts the distribution of the simulated estimates using the Cuban
(2002) data. The solid lines depict the extrapolated estimates calculated using the US (1990) data, drop-
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Figure 3: Summary of first-stage results of morekids on samesex in full data. The left-panel is a scatter of
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Figure 12: Scatter plot of weighted absolute error of OLS estimate versus mean error averaged across all

possible dyads for each target country-year. Weighted absolute error given by
|Øextr ap.°Øt ar g et |

(se2
extr ap.+se2

t ar g et )
. Each dot

represents a target country year. Two standard errors depicted by horizontal (for extrapolated error) and
vertical (for OLS error) bars.
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Figure 13: Scatter plot of weighted absolute error of OLS estimate versus the extrapolated error associated
with the dyad that minimizes geographical distance to the target country year. Weighted absolute error

given by
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. Each dot represents a target country year. Two standard errors depicted by hori-
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Figure 14: Scatter plot of weighted absolute error of OLS estimate versus the extrapolated error associated
with the dyad that minimizes the Mahalanobis distance to the target country year. Weighted absolute error

given by
|Øextr ap.°Øt ar g et |

(se2
extr ap.+se2

t ar g et )
. Mahalanobis distance calculated on mother’s age at survey, mother’s age at first

birth, mother’s educational attainment, spouse’s educational attainment, labor force participation rate,
total fertility rate, and per capita GDP.
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tive extrapolated estimate. Weighted absolute error given by
|Øextr ap.°Øt ar g et |

(se2
extr ap.+se2

t ar g et )
. Each dot represents a target

country year.
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Figure 16: Scatter plot of weighted absolute error of OLS (X’s), minimized dyadic Mahalanobis dis-
tance (solid circles), and minimized geographic distance (hollow circles) versus minimized Mahalanobis
distance for cumulative extrapolated estimate, where accumulated reference covariates are population

weighted in household sample data. Weighted absolute error given by
|Øextr ap.°Øt ar g et |

(se2
extr ap.+se2

t ar g et )
. Each dot represents

a target country year.
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Figure 17: Average cumulative predictions across all target country-years. Averaging with t=0 being year of
observation. The dots are shaded according to accumulated sample size while the vertical bars represent 2
standard errors. Extrapolation technique reweighted to target ATE.
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Figure 19: Average cumulative predictions across all target country-years. Averaging with t=0 being year of
observation. The dots are shaded according to accumulated sample size while the vertical bars represent 2
standard errors. Treatment measured by number of children.
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Figure 20: Optimal weights on zero prior in full data on y-axis, calculated as binned averages over range
of reference sample sizes. Dotted line represents loess smoother with Æ parameter of 0.9.
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Figure 21: Cumulative shrinkage results for all data, calculated on most recent cumulative reference
population for each target country-year. Weight on zero prior (w) that minimizes RMSE for all tar-
get country-years across all targets measured on x-axis, such that higher values on x-axis reflect greater
weight on zero prior. RMSE on y-axis. w is a function of extrapolated estimate variance as follows:

Øsh =
≥

(1°w)§V ar [Øext ]
V ar [Øext ]

¥
§Øext for w 2 [0,1]. RMSE is calculated as follows:

q
1
N

P1
i=0(Øt ar °Øshi )2 where

i indexes shrinkage weights for the full data. Minimizing shrinkage value given by gray circle.
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Figure 22: Average cumulative predictions across all target country-years. Averaging with t=0 being year of
observation. The dots are shaded according to accumulated sample size while the vertical bars represent 2
standard errors. Sex selectors dropped from sample include China, India, Nepal, and Vietnam.

−40 −30 −20 −10 0

0
5

10
15

Mean Absolute Error Against Counter:
Accumulating Data

Years Prior

M
ea

n 
Ab

so
lu

te
 E

rro
r

●

●

● ●

●

●

●
●

● ●

● ● ●

●

● ●
● ●

●
● ● ● ●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●
● ●

●

●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ●
●

●
●

● ● ● ●
● ●

● ● ●
●

● ● ● ● ● ● ● ●● ●
● ● ● ● ● ● ● ●

●
● ●

●
● ● ●

●
● ● ●

●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●
●

●
●

● ● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ● ●
● ●

●

●

●

● ●
● ● ● ●

●

●

●

●

Main
Sex Selectors
IV−Test (Simp.)
IV−Test (Strat.)

Figure 24: Average cumulative predictions across all target country-years. Averaging with t=0 being year
of observation. Dots represent different robustness checks as indicated in the legend.
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Figure 23: Partial p-values for each of 18 possible strata, ranked by maximum confidence level for rejection
of IV validity. Country-years with at least one strata failing the validity test at the 95% level of confidence
(depicted by hollow-circles) are dropped.
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Table A-1: All country year statistics

Country Year GDPpc Sex Ratio Educ. Age LFP TFR FS Ø IV Ø

Argentina 1970 7615 .011 (.342) 1.62 (.87) 34.8 (7.7) .31 2.48 .043 (.005) .023 (.093)

1980 8487 .008 (.333) 1.65 (.63) 33.7 (7.9) .28 2.67 .036 (.002) -.020 (.047)

1991 7423 .008 (.330) 2.04 (.80) 34.4 (7.5) .51 2.59 .036 (.002) -.118 (.046)

2001 8552 .009 (.339) 2.30 (.75) 34.4 (7.6) .58 2.52 .028 (.002) -.136 (.068)

Armenia 2001 2837 .028 (.327) 3.12 (.55) 33.6 (6.4) .76 2.24 .111 (.005) -.080 (.045)

Austria 1971 16527 .013 (.397) .00 (.00) 34.2 (8.2) .60 2.08 .024 (.003) -.323 (.144)

1981 22437 .013 (.353) .00 (.00) 34.8 (7.4) .65 2.22 .042 (.004) -.160 (.106)

1991 27956 .015 (.357) .00 (.00) 34.4 (6.6) .67 2.07 .034 (.004) -.394 (.138)

2001 33839 .015 (.355) .00 (.00) 35.9 (6.1) .79 2.07 .038 (.004) -.128 (.103)

Belarus 1999 5678 .014 (.380) 3.02 (.59) 36.1 (6.4) .82 1.76 .022 (.002) .057 (.106)

Bolivia 1976 3255 .006 (.330) 1.35 (1.14) 33.7 (8.6) .22 3.06 .013 (.005) .000 (.267)

1992 2755 .008 (.320) 2.17 (2.03) 33.7 (8.2) .52 3.14 .013 (.004) .421 (.355)

2001 3134 .014 (.338) 1.88 (1.14) 34.0 (8.4) .49 2.84 .018 (.004) -.058 (.201)

Brazil 1960 2469 .010 (.307) 1.11 (.66) 32.0 (7.4) .14 3.83 .014 (.002) .021 (.083)

1970 3845 .009 (.304) 1.12 (.47) 32.5 (7.7) .19 3.71 .020 (.001) -.016 (.053)

1980 6943 .009 (.316) 1.29 (.71) 32.7 (7.8) .30 3.31 .027 (.001) -.012 (.044)

1991 6117 .010 (.328) 1.52 (.84) 33.3 (7.5) .43 2.85 .031 (.001) .015 (.035)

2000 6834 .012 (.344) 1.66 (.87) 33.7 (7.6) .58 2.37 .031 (.001) .005 (.034)

Cambodia 1998 888 .007 (.312) 1.20 (.47) 34.2 (7.7) .83 3.57 .018 (.003) .055 (.122)

Chile 1970 4465 .005 (.319) 1.59 (.66) 33.5 (7.9) .25 3.42 .020 (.004) .103 (.131)

1982 4308 .009 (.341) 1.85 (.72) 33.3 (7.5) .27 2.67 .026 (.003) .053 (.102)

1992 6527 .010 (.351) 2.14 (.74) 33.7 (7.0) .28 2.27 .036 (.003) .079 (.071)

2002 9664 .007 (.365) 2.35 (.73) 35.6 (7.0) .43 2.09 .027 (.003) .144 (.102)

China 1982 624 .025 (.313) 1.55 (.58) 33.8 (6.7) .88 2.90 .066 (.001) .009 (.011)

1990 1157 .030 (.321) 1.65 (.59) 33.6 (6.6) .90 2.26 .122 (.001) .002 (.005)

Colombia 1973 4089 .006 (.310) 1.51 (1.25) 32.5 (7.8) .31 3.77 .015 (.002) .131 (.123)

1985 4962 .009 (.332) 1.83 (1.23) 32.0 (7.4) .45 2.91 .031 (.002) -.047 (.066)

1993 5785 .009 (.344) 1.96 (1.18) 32.9 (7.2) .41 2.56 .034 (.002) .036 (.052)

2005 6491 .014 (.350) 2.13 (1.36) 34.1 (7.9) .32 2.31 .031 (.002) .224 (.054)

Costa Rica 1973 7067 .010 (.293) 1.45 (.69) 32.2 (7.6) .22 4.12 .006 (.008) -.840 (1.370)

1984 7075 .010 (.321) 1.79 (.72) 31.5 (7.0) .27 2.98 .049 (.007) .044 (.112)

2000 8870 .013 (.338) 2.11 (.80) 33.6 (7.1) .38 2.44 .034 (.005) .105 (.146)

Cuba 2002 7624 .014 (.442) 2.68 (.80) 33.7 (6.7) .47 1.44 .016 (.001) .124 (.168)

Ecuador 1974 4067 .010 (.310) 1.40 (1.02) 32.3 (8.0) .17 3.74 .005 (.004) 1.340 (1.363)

1982 5074 .010 (.319) 2.00 (1.88) 32.1 (7.8) .25 3.39 .013 (.004) .113 (.230)

1990 4429 .012 (.326) 2.01 (1.31) 32.7 (7.6) .33 3.03 .028 (.003) -.004 (.109)

2001 4824 .008 (.348) 2.04 (.92) 33.4 (7.8) .36 2.49 .025 (.003) -.058 (.118)

Egypt 1996 3233 .027 (.337) .00 (.00) 31.6 (7.0) .21 3.16 .049 (.001) -.012 (.019)

France 1962 11116 .011 (.388) 1.56 (.65) 35.2 (7.8) .47 2.21 .027 (.002) -.201 (.067)

1968 14312 .010 (.387) 1.74 (.69) 34.6 (7.7) .55 2.24 .027 (.002) -.216 (.069)

1975 18472 .013 (.396) 1.91 (.81) 34.1 (8.0) .71 2.13 .027 (.002) -.142 (.068)

1982 21910 .013 (.401) 1.99 (.87) 34.0 (7.5) .79 1.93 .031 (.002) -.189 (.057)

1990 25766 .013 (.400) 2.24 (.94) 34.6 (6.7) .85 1.88 .033 (.002) -.169 (.053)

1999 28716 .011 (.403) 2.48 (1.02) 36.1 (6.7) .89 1.87 .030 (.001) -.156 (.050)

Ghana 2000 1478 -.003 (.367) 1.44 (.64) 34.1 (8.3) .85 2.67 -.003 (.003) .514 (.735)

Greece 1971 13129 .015 (.393) 2.03 (1.53) 35.8 (7.7) .25 1.95 .041 (.002) -.206 (.067)

1981 16555 .018 (.389) 2.14 (.73) 35.3 (8.1) .33 1.86 .047 (.002) -.055 (.055)

1991 17768 .020 (.357) 2.43 (.72) 35.3 (7.0) .44 2.00 .055 (.003) -.105 (.064)

2001 21887 .018 (.359) 2.79 (.77) 36.0 (6.1) .50 2.01 .035 (.003) .042 (.117)

Guinea 1983 740 .024 (.418) 1.08 (.50) 31.8 (8.9) .52 2.21 .031 (.004) -.127 (.140)

1996 727 .022 (.342) 1.12 (.77) 31.7 (8.3) .73 2.72 .013 (.004) -.054 (.222)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total
fertility rate, and labor force participation rate due to measurement at higher levels of aggregation than the house-
hold.
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Table A-1: All country year statistics (cont’d)

Country Year GDPpc Sex Ratio Educ. Age LFP TFR FS Ø IV Ø

Hungary 1970 7779 .010 (.377) 1.98 (.53) 35.6 (7.7) .00 1.88 .021 (.004) .000 (.000)

1980 11255 .014 (.368) 2.36 (.63) 33.0 (6.9) .00 1.78 .038 (.004) .000 (.000)

1990 12489 .009 (.376) 2.59 (.60) 34.7 (6.5) .75 1.76 .035 (.004) -.283 (.121)

2001 13732 .015 (.365) 2.82 (.73) 35.0 (6.6) .62 1.88 .028 (.005) -.240 (.190)

India 1983 1107 .039 (.352) 1.35 (.70) 30.8 (7.5) .32 2.78 .039 (.004) -.052 (.089)

1987 1261 .043 (.353) 1.44 (.78) 30.7 (7.2) .30 2.75 .045 (.004) -.165 (.074)

1993 1434 .047 (.361) 1.58 (.86) 30.8 (6.9) .33 2.63 .052 (.004) -.078 (.070)

1999 1910 .043 (.358) 1.69 (.93) 31.1 (6.6) .30 2.64 .050 (.004) -.005 (.071)

Iraq 1997 2755 .010 (.284) 1.71 (.82) 31.2 (6.6) .13 4.63 .007 (.002) .015 (.222)

Israel 1972 13991 .020 (.330) 2.53 (1.32) 35.0 (8.3) .32 3.07 .021 (.006) -.025 (.240)

1983 16123 .010 (.327) 2.90 (2.05) 33.3 (6.9) .00 2.88 .020 (.005) .000 (.000)

1995 20790 .012 (.334) 2.64 (.95) 34.8 (6.9) .59 2.78 .014 (.005) .415 (.380)

Italy 2001 29146 .013 (.420) 2.57 (.67) 37.1 (6.9) .66 1.72 .020 (.001) -.035 (.090)

Jordan 2004 3947 .023 (.311) 2.61 (.84) 31.7 (6.2) .27 4.12 .023 (.004) -.031 (.160)

Kenya 1989 1172 .007 (.317) 1.48 (.72) 30.8 (7.9) .76 3.55 .007 (.003) -.387 (.408)

Kyrgyz Republic 1999 1597 .013 (.319) 3.02 (.51) 33.0 (6.7) .78 2.89 .058 (.005) -.009 (.062)

Malaysia 1970 2065 .008 (.306) 1.21 (.43) 32.9 (8.1) .43 3.55 .013 (.007) .418 (.625)

1980 4250 .012 (.315) 1.51 (.56) 32.7 (7.4) .53 3.28 .030 (.008) -.034 (.257)

1991 6272 .016 (.347) 1.87 (.84) 33.1 (7.1) .47 2.91 .034 (.005) -.355 (.149)

2000 9474 .015 (.349) 2.07 (1.36) 34.5 (7.2) .50 2.85 .032 (.005) -.375 (.145)

Mali 1987 628 .013 (.341) 1.33 (1.42) 32.4 (8.7) .50 3.03 .006 (.004) .088 (.531)

1998 768 .015 (.328) 1.28 (1.35) 32.0 (8.5) .39 3.33 .011 (.003) .235 (.311)

Mexico 1970 6848 .015 (.303) 1.23 (.48) 31.9 (8.0) .17 3.94 .024 (.004) .098 (.129)

1990 9427 .009 (.314) 1.71 (.74) 32.5 (7.5) .27 3.18 .028 (.001) -.015 (.032)

1995 9158 .008 (.360) 1.78 (.92) 31.7 (7.5) .45 2.69 .022 (.005) -.024 (.223)

2000 11380 .010 (.327) 2.19 (1.64) 32.9 (7.5) .35 2.74 .030 (.001) .003 (.031)

Mongolia 1989 2740 .010 (.318) 2.16 (.88) 32.7 (7.8) .00 3.38 .011 (.007) .000 (.000)

2000 2219 .007 (.382) 2.63 (.79) 31.9 (6.7) .78 2.59 .028 (.005) .073 (.161)

Nepal 2001 918 .032 (.313) 1.32 (.86) 32.3 (7.6) .64 2.87 .033 (.002) -.117 (.060)

Pakistan 1998 1732 .024 (.332) 1.28 (.66) 31.2 (7.8) .00 3.66 .031 (.001) .000 (.000)

Panama 1960 2142 .008 (.342) 1.40 (.75) 31.6 (8.0) .38 2.98 .015 (.013) .492 (.614)

1970 3419 .017 (.307) 1.56 (.70) 31.8 (7.6) .34 3.39 .028 (.008) .044 (.277)

1980 5200 .015 (.318) 1.84 (.89) 32.0 (7.4) .41 3.20 .015 (.008) -.031 (.470)

1990 5531 .017 (.334) 2.19 (1.08) 32.3 (7.2) .37 2.59 .048 (.007) .101 (.143)

2000 6950 .013 (.340) 2.27 (.91) 33.0 (7.2) .45 2.42 .035 (.006) .210 (.191)

Peru 1993 3855 .006 (.330) 1.97 (1.27) 33.4 (7.7) .33 2.93 .026 (.002) .126 (.079)

2007 6374 .009 (.351) 2.22 (.97) 34.7 (7.7) .41 2.39 .028 (.002) -.006 (.073)

Philippines 1990 2334 .015 (.307) 2.34 (1.19) 32.8 (7.4) .49 3.43 .028 (.001) -.088 (.047)

1995 2365 .017 (.342) 2.48 (1.04) 32.7 (7.5) .00 3.12 .035 (.001) .000 (.000)

2000 2464 .020 (.356) 2.74 (1.59) 32.9 (7.4) .00 2.99 .039 (.001) .000 (.000)

Portugal 1981 11369 .010 (.405) 1.30 (.67) 34.3 (8.2) .64 2.09 .028 (.003) .179 (.153)

1991 15661 .010 (.417) 1.62 (.86) 34.6 (7.4) .76 1.80 .020 (.003) .085 (.201)

2001 20095 .011 (.432) 2.07 (.97) 35.0 (6.8) .86 1.63 .015 (.003) -.408 (.249)

Puerto Rico 1970 10418 .010 (.320) 2.06 (.89) 32.9 (7.9) .00 3.05 .042 (.020) .000 (.000)

1980 12556 .010 (.327) 2.45 (.83) 33.1 (7.2) .00 2.76 .033 (.008) .000 (.000)

1990 17870 .010 (.343) 2.78 (.75) 34.1 (7.3) .50 2.26 .063 (.008) -.018 (.126)

2000 25284 .013 (.392) 3.03 (.67) 33.7 (7.7) .56 1.89 .044 (.006) -.233 (.160)

2005 26054 .005 (.408) 3.12 (.68) 35.2 (8.0) .68 1.77 .024 (.014) -.791 (.808)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total fer-
tility rate, and labor force participation rate due to measurement at higher levels of aggregation than the household.
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Table A-1: All country year statistics (cont’d)

Country Year GDPpc Sex Ratio Educ. Age LFP TFR FS Ø IV Ø

Romania 1977 5622 .010 (.355) 1.70 (.83) 33.8 (7.4) .00 2.19 .034 (.002) .000 (.000)

1992 5005 .012 (.352) 2.45 (.83) 34.0 (7.0) .77 2.12 .035 (.002) -.054 (.059)

2002 6575 .012 (.365) 2.52 (.73) 34.4 (6.9) .56 1.90 .031 (.002) .064 (.094)

Rwanda 1991 768 -.004 (.311) .00 (.00) 33.1 (7.4) .97 3.98 -.001 (.004) .603 (3.071)

2002 732 -.004 (.332) 1.29 (.74) 33.4 (7.9) .92 3.39 .004 (.004) -.427 (.394)

Saint Lucia 1980 5432 .005 (.338) 1.27 (.93) 32.3 (8.6) .53 3.90 .031 (.033) -.166 (1.876)

1991 9052 -.008 (.337) 1.85 (1.37) 31.4 (7.0) .54 3.05 -.039 (.031) -.240 (.856)

Senegal 1988 1251 -.008 (.344) 1.23 (.94) 30.4 (7.5) .24 3.20 -.008 (.004) .079 (.400)

2002 1276 -.001 (.332) 1.18 (.46) 31.6 (7.7) .33 3.25 -.009 (.004) .333 (.387)

Slovenia 2002 20432 .015 (.368) 3.09 (1.24) 36.9 (6.0) .92 1.94 .022 (.006) .020 (.214)

South Africa 1996 5477 -.002 (.354) 2.21 (1.45) 33.7 (7.4) .72 2.60 .017 (.002) .185 (.114)

2001 5996 -.003 (.357) 2.05 (.80) 34.5 (7.3) .78 2.44 .018 (.002) .181 (.105)

2007 7442 .001 (.363) 2.30 (1.10) 34.9 (7.7) .84 2.29 .023 (.004) .083 (.142)

Spain 1991 20715 .014 (.344) 2.12 (.76) 36.2 (6.3) .49 2.30 .049 (.003) -.065 (.055)

2001 26714 .013 (.417) 2.48 (.72) 36.5 (6.1) .64 1.73 .026 (.001) -.132 (.094)

Switzerland 1970 29439 .014 (.388) 3.24 (1.16) 35.0 (7.7) .41 2.22 .021 (.005) .156 (.245)

1980 30010 .011 (.396) 3.20 (1.06) 35.8 (7.2) .44 1.92 .033 (.004) -.166 (.163)

1990 34296 .016 (.397) 3.08 (.72) 35.6 (6.7) .57 1.86 .036 (.004) -.238 (.158)

2000 35788 .010 (.351) 3.38 (1.49) 37.6 (6.0) .64 2.19 .036 (.006) -.054 (.171)

Tanzania 1988 687 .000 (.344) 1.35 (.55) 31.9 (8.3) .88 3.13 .003 (.002) .752 (.757)

2002 790 .004 (.348) 1.68 (.57) 32.2 (8.1) .76 2.91 .012 (.002) -.071 (.119)

Thailand 1970 1570 .008 (.306) 1.35 (1.29) 33.0 (7.4) .00 3.82 .012 (.004) .000 (.000)

1980 2413 .010 (.321) 1.14 (.63) 32.8 (7.7) .00 3.28 .029 (.005) .000 (.000)

1990 4379 .009 (.351) 1.42 (.92) 33.8 (7.2) .00 2.33 .057 (.005) .000 (.000)

2000 5651 .009 (.372) 1.77 (.98) 34.7 (6.7) .00 1.97 .043 (.004) .000 (.000)

Uganda 1991 582 .006 (.339) 1.28 (.54) 30.8 (7.9) .68 3.09 .005 (.003) -.439 (.501)

2002 884 .001 (.322) 1.37 (.55) 31.2 (8.3) .59 3.40 .002 (.002) 1.575 (2.143)

United Kingdom 1991 22766 .011 (.393) .00 (.00) 34.6 (7.1) .58 1.88 .050 (.004) -.246 (.086)

United States 1960 15388 .007 (.336) 2.56 (.67) 34.7 (8.0) .44 2.49 .033 (.002) -.116 (.065)

1970 20436 .009 (.340) 2.70 (.65) 35.1 (8.2) .50 2.53 .032 (.002) .016 (.072)

1980 24985 .011 (.352) 2.86 (.63) 34.5 (7.6) .63 2.17 .045 (.001) -.106 (.023)

1990 31452 .011 (.356) 3.01 (.60) 34.8 (6.8) .68 2.06 .049 (.001) -.101 (.019)

2000 39643 .010 (.400) 3.11 (.61) 35.7 (7.6) .73 1.86 .037 (.001) -.099 (.020)

2005 42482 .010 (.401) 3.21 (.61) 37.0 (7.8) .74 1.85 .038 (.002) -.033 (.045)

Venezuela 1971 9369 .009 (.306) 1.79 (1.82) 31.9 (7.9) .25 3.60 .019 (.003) .181 (.137)

1981 9643 .012 (.355) 1.70 (.65) 30.9 (7.4) .44 3.05 .028 (.003) -.003 (.085)

1990 8125 .013 (.322) 2.14 (1.87) 32.2 (7.3) .36 2.99 .036 (.003) -.048 (.064)

2001 8681 .011 (.344) 2.00 (.73) 33.4 (7.4) .41 2.40 .075 (.002) -.034 (.029)

Vietnam 1989 855 .016 (.313) 1.71 (.82) 33.4 (7.3) .87 3.23 .036 (.002) -.018 (.039)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total fertility
rate, and labor force participation rate due to measurement at higher levels of aggregation than the household.
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