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Abstract 
 
We investigate the external validity of local average treatment effects (LATEs), 
specifically Angrist and Evans’ (1998) use of same sex of the two first children as an 
instrumental variable for the effect of fertility on labor supply. We estimate their 
specification in 139 country-year censuses using Integrated Public Use Micro Sample 
International data. We compare each country-year's actual LATE to the extrapolated 
LATE from other country-years. We find that, with a sufficiently large reference sample, 
we extrapolate the treatment effect reasonably well, but the degree of accuracy depends 
on the extent of covariate similarity between the target and reference settings. 
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1. Introduction 

In this paper we examine the extent to which we can extrapolate an instrumental variables (IV) 

local average treatment effect (LATE) from a quasi-experimental evidence base to new contexts 

of interest; i.e., the external validity of IV. In light of Imbens and Angrist (1994), Angrist, 

Imbens, and Rubin (1996) and the subsequent local average treatment effect literature, the 

empirical relevance of a LATE is limited not just to the time and place of the data used, but also 

to the subpopulation of compliers. In this sense, it is doubly local. Yet it is natural for social 

scientists to hope that LATEs are causal effects that are relevant beyond their specific context to 

other settings of policy interest. 

We address the tension between the localness of the empirical analysis and the desire to 

generalize the results by extending the Angrist and Evans (1998) IV strategy from their original 

data set (the United States in 1980 and 1990) to 139 country-year censuses from the Integrated 

Public Use Micro Sample International (IPUMS-I; Minnesota Population Center 2015) data. The 

censuses span the world geographically (as listed in Appendix Table A-1) and cover five decades 

from 1960 to 2010. We use results from Abadie (2003) and Angrist and Fernadez-Val (2010) to 

characterize the complier population in each country-year sample in terms of covariates. We use 

these characteristics to extrapolate the treatment effect from a given country-year or -years (the 

“reference” context) to a country-year of hypothetical interest (the “target” country-year). We do 

so by calibrating estimates from the reference context to the complier distribution of covariates 

in the target context.  Our approach extends current methods for extrapolation by incorporating 

macro-level covariates along with micro-level covariates.  In principle one could extrapolate a 

reference LATE to various subpopulations in the target country. We focus on the complier 
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subpopulation because we can directly identify an internally valid benchmark (namely the target 

country-year LATE) against which to compare the extrapolation. Using our approach, one could 

also extrapolate both the target and reference LATEs to average treatment effects (ATE’s), hence 

compare an extrapolated reference ATE to the target ATE (see Appendix D).  

The exercise connects to three interrelated literatures within labor and development 

economics. First, it relates to Lalonde (1986) and the papers that followed from it (see Heckman 

et al. 1997, 1998, 1999 and Dehejia and Wahba 1998, 2002 inter alia). By using an external 

reference sample to estimate the treatment effect in a setting where we already possess a 

plausibly internally valid estimate of the treatment effect, we adopt Lalonde’s basic template. In 

addition, we are interested in characterizing when an externally extrapolated result is likely to 

provide a reliable estimate of the treatment effect (in the spirit of Heckman, Ichimura, Smith, and 

Todd 1998).  

Second, a handful of papers has applied the Angrist-Evans design to data from other 

countries. Cruces and Galiani (2007) study fertility and labor supply in Mexico and Argentina, 

and find that the US results generalize to these contexts. Ebenstein (2009) studies Taiwan and 

concludes that, due to stronger sex preferences, the instrumental variables estimate is closer to 

the ATE than it is in the United States.    

Third, our work also connects to a small but growing literature that has begun to grapple 

with issues of external validity in randomized controlled trials (RCT’s); see inter alia Allcott 

(2014), Dehejia, Pop-Eleches, and Samii (2015), Gechter (2015), Prichett and Sandefur (2013), 

and Vivalt (2015). In no small part spurred by Lalonde (1986) and the ensuing literature, RCT’s 

have been used extensively, indeed globally, to estimate the causal impact of a broad range of 

policy interventions. A tension similar to that of instrumental variables resonates in this exercise. 
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Each RCT evaluation is also a local average treatment effect, perhaps in the Imbens-Angrist 

(1994) sense if issues of non-compliance arise, but also in the broader sense of evaluating an 

intervention in a specific time and place on a not always representative set of experimental 

subjects. At the same time, there is an intellectual agenda in which an accumulation of 

experimental evidence might allow one to reach more general conclusions regarding the efficacy 

of certain policies or the relevance and validity of specific economic models (an issue which we 

examine in Dehejia, Pop-Eleches, and Samii 2015). 

Following Dehejia, Pop-Eleches, and Samii  (2015), we test the performance of our 

approach using four different steps: first, we document substantial effect heterogeneity in both 

the first stage and instrumental variable estimates; second, we characterize which differences 

between a target and reference context most strongly predict errors in our method; third, we look 

at how performance improves as we accumulate a larger evidence base from which to 

extrapolate; and fourth we compare the errors associated with our method to the errors produced 

by using an unidentified OLS estimate from within the target context.  

The paper begins by outlining our identifying assumptions and empirical approach in 

Section 2 with simulation results included in Appendix B. We then examine the ability of our 

method to accurately extrapolate causally-identified relationships to new settings in Sections 3 

through 6. We include a range of robustness checks in Section 7 that focus on potential 

violations of internal validity while our eighth section concludes. 
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2. Methods 

We begin by defining the conditions and methods for extrapolating from an instrumental 

variables estimate to the causal effect in a target population.1 We focus on using covariate-

adjusted local average treatment effects (LATEs) estimated from a set of reference contexts to 

identify and estimate the LATE in a target context, where the LATEs are the complier average 

causal effects in the respective populations (Angrist et al. 1996).  The IPUMS-I data allow us to 

estimate LATEs in different populations defined by country and year.  As such, we can use these 

data to conduct benchmarked comparisons between actual LATEs in a given context and what 

we would obtain by extrapolation from other contexts.  Nonetheless, the methods that we apply 

here are straightforward to generalize for extrapolation to other types of populations. Angrist and 

Fernandez-Val (2010) and Hartman et al. (2015) provide useful discussions of defining targets 

for extrapolating causal effects. 

We suppose that a sample of units is drawn and distributed over a sample of locations.  

Building on Angrist and Fernandez-Val (2010), a randomly sampled unit i falling in location c is 

characterized by a treatment variable, 𝐷"# ∈ {0,1}, and potential outcomes, Yic(1) and Yic(0), that 

would obtain depending on whether the unit is assigned to treatment (𝐷"# = 1) versus control 

(𝐷"# = 0).2 In our application, the treatment is an indicator for whether a mother has more than 

two children, restricting consideration to the subpopulation of women with at least two children.  

Observed outcomes for unit i in context c are given by, 

                                                
1 This section and the analysis in this paper draw extensively on Dehejia, Pop-Eleches, and Samii 
(2015), where we discuss external validity issues in the context of experiments. 
2  Our notation differs slightly from Angrist and Fernandez-Val (2010) in that we use the 
subscripts, i and c, to denote terms associated with random draws of individuals and locations, 
whereas terms without subscripts denote population functionals/parameters or indices. 
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 Yic = αc + ric Dic + ηic (1) 

 

where αc = E[Yic(0)], ηic = Yic(0) – αc, and ric = Yic(1) – Yic(0) is the unit-level causal effect of Dic. 

Expectations are taken with respect to distributions in location c.   

We also define an instrument, 𝑍"# ∈ {0,1}, that affects treatment assignment.  Thus, we 

have potential treatment assignments, Dic(1) and Dic(0), that correspond to the treatment values 

that would obtain for a unit under Zic = 1 versus Zic = 0, respectively. In our application, the 

instrument is an indicator for whether the sexes of the first two children are the same.  The 

realized treatment for unit i in location c is given by, 

 
Dic = γc + picZic + νic (2) 

where γc = E[Dic(0)], νic = Dic(0)- γc , and pic = Dic(1) – Dic(0). Again, expectations are taken 

with respect to distributions in location c.  

Units are characterized by unit-level covariates, 𝑋-"# , as well as covariates that 

characterize their location, 𝑋.# , and we collect these covariates into the vector 𝑋"# =

(𝑋-"#0 , 𝑋.#0 )′.3  These covariates play a central role in extrapolation. We assume throughout that 

conditions required for identifying the conditional LATEs in the different locations hold (Angrist 

and Fernandez-Val 2010, p. 7).  These include, for all values of x that might occur in the 

populations and locations to which we want to extrapolate,  

C1(a) Conditional independence and exclusion:  

                                                
3 One may wonder how our approach relates to conventional meta-analysis (Glass, 1976). In our 
view, it differs in two important ways: (1) our primary interest is in extrapolating to specific 
target populations, rather than describing the distribution of effects, although we do conduct 
some descriptive analyses below; and (2) we incorporate micro-level data in our analysis rather 
than only working with macro-level data that varies at the same level as the effect estimates 
themselves. 
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(Yic(1), Yic(0), Dic(1), Dic(0)) ╨ Zic|Xic = x, 

C1(b) Valid conditional first stage:  

E[pic|Xic = x] ≠ 0 and 0 < Pr[Zic = 1|Xic = x] < 1, and 

C1(c) Conditional monotonicity:  

Pr[Dic(1) ≥ Dic(0)|Xic = x] = 1 or Pr[Dic(1) ≤ Dic(0)|Xic = x] = 1. 

Without loss of generality, we focus on the case where Pr[Dic(1) ≥ Dic(0)|Xic = x] = 1.  

We also define an indicator, Wic, for whether a unit is in the target population to which 

we want to extrapolate, Wic = 1, or whether it is from a reference population for which we have 

LATE estimates, Wic = 0.  

The covariate-specific LATE in the target population is defined as 

 𝛥4 𝑥-, 𝑥., 1 = 𝐸[𝑟"#|𝐷"# 1 > 𝐷"# 0 , 𝑋-"# = 𝑥-, 𝑋.# = 𝑥.,𝑊"# = 1], (3) 

and in a reference set population as 

 𝛥4 𝑥-, 𝑥., 0 = 𝐸[𝑟"#|𝐷"# 1 > 𝐷"# 0 , 𝑋-"# = 𝑥-, 𝑋.# = 𝑥.,𝑊"# = 0]. (4) 

Substantively, equations (3) and (4) characterize the average treatment effect in the target and 

reference populations for compliers with 𝑋"# 	= (𝑥-0 , 𝑥.0 )′.  

Given covariate-specific LATEs for a target location (Wic = 1), for which the location-

level covariates equal x1, the marginal LATE for the target location is given by (Froelich 2007) 

 
𝛥4 1 = 𝛥4(𝒳?

𝑥-, 𝑥@, 1)𝑑𝐹 𝑥- 𝐷"# 1 > 𝐷"# 0 ,𝑊"# = 1 , (5) 

where 𝒳- is the support for unit-level covariates and 𝐹 𝑎 𝑏  is the distribution function for a 

conditional on b. 

We now state the assumptions needed to allow for a LATE from a reference population 

to be transported to the target population conditional on covariates.  Our analysis builds on Hotz 
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et al. (2005), although our setup is different in that we consider the accumulation of locations and 

therefore we incorporate macro-level covariates into the identification analysis. 

 

Proposition 1 (Identification): Suppose C1 holds across all populations.  Furthermore, suppose 

C2 Unconfounded location: (Yic(1), Yic(0)) ╨ Wic|Dic(1) > Dic(0), Xic = x; and 

C3 Covariate overlap: 0 < Pr[Wic = 0|Dic(1) > Dic(0), Xic = x] < 1  

for all x in the support of Xic in the target population. Finally, suppose we have data to estimate 

Δz(xu, xp, 0) for all x in the support of Xic in the target population. Then, Δz(1) is identified and 

can be estimated from the data.   

 

Proof: Under C1-C3, we have 

 Δz(xu, xp,1) = Δz(xu, xp, 0) (6) 

for all x = (xu’,xp’)’ in the support of Xic in the target population, in which case  

 
𝛥4 1 = 𝛥4(

𝒳?

𝑥-, 𝑥@, 0)𝑑𝐹 𝑥- 𝐷"# 1 > 𝐷"# 0 ,𝑊"# = 1  (7) 

n  

To calibrate estimates from reference contexts to target contexts, we adopt an estimation 

approach based on interacted regressions.  

 

Proposition 2 (Complier-centered interaction estimation): Suppose conditions C1-C3 hold 

and that we have for the reduced form relationship 

 
𝑌"# = 𝛽GH + 𝛽@H𝑍"# + 𝑋"#J∗ 𝜙JH + 𝑍"#𝑋"#J∗ 𝜆JH + 𝜖"#H

O

JP@

, (8) 

and the first stage relationship 
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𝐷"# = 𝛽GQ + 𝛽@Q𝑍"# + 𝑋"#J∗ 𝜙JQ + 𝑍"#𝑋"#J∗ 𝜆JQ + 𝜖"#Q

O

JP@

, (9) 

with 𝑋"#J∗  being the value of the covariate 𝑋"#J  centered on the sample complier mean in the 

target context (Wic = 1), and 𝐸[𝑍"#, 𝜖"#R ] 	= 𝐸[𝑋"#J, 𝜖"#R ] = 0 for 𝑅 = 𝑌,𝐷. Let 𝑍"# be the residuals 

from a linear regression of the sample Zic values onto the matrix of sample 

(𝑋"#@∗ , … , 𝑋"#O∗ , 𝑍"#𝑋"#@∗ , … , 𝑍"#𝑋"#O∗ ) values.   Over C contexts, each with samples of 𝑁# units and 

with 𝑊"# = 0, as C and Nc grow large, 

 

𝑝𝑙𝑖𝑚

𝑌"# − 𝑌 𝑍"#
𝑍"#[

\]
"P@

^
#P@

𝐷"# − 𝐷 𝑍"#
𝑍"#[

\]
"P@

^
#P@

= 𝛥_ 1 . (10) 

 

Proof: By standard results for centered regression with heterogeneous effects (e.g., Imbens and 

Wooldridge 2009, pp. 28-30), we have for units with Wic = w 

 
𝑝𝑙𝑖𝑚

𝑅"# − 𝑅 𝑍"#
𝑍"#[

\]

"P@

^

#P@

=
𝐶𝑜𝑣 𝑅"#, 𝑍"# 𝑋"# = 𝑥
𝑉𝑎𝑟 𝑍"# 𝑋"# = 𝑥

𝑑𝐹 𝑥 	𝐷"# 1 > 𝐷"# 0 ,𝑊"# = 𝑤 .
	

	
 

(11) 

for 𝑅"# ∈ {𝑌"#, 𝐷"#}, 𝑅 the sample mean of the 𝑅"# values, and 𝑍"# formed as residuals off of 𝑋"#∗  

values centered on the means for compliers with Wic = w. The result then follows from the 

consistency of the IV estimator for the LATE (Imbens and Angrist 1994).  

n 

The key assumption for this estimation strategy is that we can define a linear series in 

covariates to account for unit-level heterogeneity in both outcomes and treatment take-up given 

variation in the instrument.  When the covariates are limited to indicators for an exhaustive set of 
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micro-level strata, estimation via a centered interaction regression is algebraically equivalent to 

the stratification reweighting used by Angrist and Fernandez-Val (2010) (see, e.g., Miratrix et al. 

2012).   

 Proposition 2 shows that we can use 2SLS with interactions centered on the target 

population complier means to extrapolate from reference data to the LATE in the target 

population.  This requires that we can estimate the means of covariates among compliers 

(𝐷"# 1 > 𝐷"# 0 ).  For macro-level covariates, of course, compliers have the same location-

level value as all other units.  For the unit-level covariates, by Theorem 3.1 of Abadie (2003), we 

can estimate the complier means via “kappa weighting.”  Specifically, for our target population 

with 𝑊"# = 1, we have 

 
𝐸 𝑋-"# 𝐷"# 1 > 𝐷"# 0 ,𝑊"# = 1 =

𝐸[𝜅"# 𝑋-"#, 1 𝑋-"#	]
𝐸[𝜅"# 𝑋-"#, 1 ]

, (12) 

where 

 
𝜅"# 𝑥-, 1 = 1 −

𝐷"# 1 − 𝑍"#	
1 − 𝐸 𝑍"# 𝑋-"# = 𝑥-,𝑊"# = 1 −

1 − 𝐷"# 𝑍"#
𝐸 𝑍"# 𝑋-"# = 𝑥-,𝑊"# = 1  (13) 

We use the macro-level covariates and the sample analog of expression (12) to compute the 𝑋"J#  

terms for the complier-centered interaction regression.  In our applications below, we take the 

𝑋"J#  terms as fixed and therefore apply standard 2SLS inference. 

The success of extrapolation rests on the unconfounded location assumption (C2) and on 

covariate overlap (C3). We corroborate the validity of these assumptions in our data below, and 

also examine the implications of violations of (C3) for extrapolation.  
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3. A world of LATEs: same-sex, more kids, and mothers’ labor 

supply 

3.1 The same-sex instrumental variable and IPUMS-I data 

Angrist and Evans (1998) used two instrumental variables for a mother’s incremental fertility: 

the first two children having the same sex (i.e., boy-boy or girl-girl) and a twin birth. In this 

paper we focus on the first. They examine the sample of married women between age 18 and 34 

with two or more children from the 1980 and 1990 US IPUMS. A preference for a gender mix of 

children encourages mothers with the first two children of the same sex to have an additional 

child. The IV strategy uses that variation to look at the effect of increased fertility on labor 

supply.  The identified local average treatment effect is the effect of fertility on labor supply for 

those women who have an extra child when their first two children are the same sex but would 

not otherwise. For the 1980 (1990) sample, same-sex leads to a 0.068 (0.070) increase in the 

probability of the third child (relative to approximately 0.5 of the sample that has a third child). 

The reduced-form effect of same-sex on whether the mother worked for pay is -0.0080 (for 

1980) and -0.0053 (for 1990), with an IV estimate of -0.120 (for 1980) and -0.104 (for 1990), 

relative to 0.528 of the 1980 sample and 0.667 of the 1990 sample who work. 

 We use the IPUMS-I data (Minnesota Population Center 2015) to take the Angrist-Evans 

strategy to the world. The IPUMS-I data provide harmonized measures that are comparable 

across countries and years. Data are available for a maximum of 139 country-years, although our 

sample is smaller for some specifications due to missing data. Individual covariates include the 

mother’s age, her age at the birth of her first child, her education (coded as 1=illiterate, 

2=primary, 3=secondary, and 4=college or higher), and her spouse’s education (coded similarly). 
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Summary statistics are presented in Table 1. The average age of mothers at the time of the survey 

in the global sample is 30.05, and the average mother’s education is 1.92.  

 In our investigation of external validity we explore country-year level differences and 

whether they explain the pattern of extrapolation error. Our country-year covariates include GDP 

per capita, female labor force participation, the sex ratio imbalance (the number of male children 

divided by the number of female children minus 0.5), the total fertility rate, and the pairwise 

geographical and temporal distances between country-year samples. Summary statistics of these 

dyadic absolute differences are presented in column 2 of Table 1. We will demonstrate that these 

differences strongly predict the magnitude of the extrapolation error.  

We focus on the same-sex instrumental variable rather than a twin birth because it is 

more likely that two non-twinned children can be born in the same calendar year in high-fertility 

countries than in the US. Same-sex has its own challenges when used as an instrument on a 

global scale.  The first concern is sex selection. While this is not believed to be an issue with US 

data, for some countries in our sample (such as China) it is clearly a concern. We address this by 

treating sex-selectivity as a country-year covariate and examining whether it affects the IV 

extrapolation from reference to target. In Section 7.2, we also show that dropping potentially 

sex-selective countries does not significantly affect the results.  

A related concern regarding instrument validity is the total fertility rate of a country. The 

decision to have a third child is based on preferences for sex heterogeneity is clearly less salient 

in countries where most families have more than three children. We confirm that our results 

persist when we drop countries in the 25th and 75th percentiles of the total fertility rate measure. 

Similarly, we note that there are some country-year observations in which the female 

labor force participation rate was effectively zero. In these cases, the relationship between an 
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additional child and the economic activity of the mother is necessarily null, regardless of the 

instrumentation strategy or first-stage strength. Our results are robust to the omission of these 

observations.  

A final concern relates to exclusion restriction violations, especially for low-income 

countries. Butikofer (2011) has presented suggestive evidence that the gender mix of the first 

two children in low-income countries can directly influence a mother’s labor supply through the 

cost associated with having a third child (see also Huber 2015 for evidence of instrument validity 

for US data). We address this in a similar fashion, first by examining the extent to which GDP 

per capita affects extrapolation error and second, in Section 7.3, by using the Huber-Mellace 

(2015) test to detect and drop country-years that are unlikely to satisfy instrument validity. 

 

3.2 IPUMS-I data: first stage, compliers, and IV estimates 

In this section we provide a graphical summary of the variation in the first stage and IV estimates 

from IPUMS-I data. Figure 1, panel a, plots the first-stage effect of same-sex on an incremental 

child against the standard error of the estimate. Each point represents a country-year IPUMS-I 

sample, and different markers are indicators for where the country-year falls in the distribution of 

fertility rates. Figure 1, panel b, plots the density of first-stage effects. We note that all but a 

handful of first stage estimates are positive: the preference for a gender mix of children seems to 

be global. From panel b, we note that the average first-stage effect is approximately 0.04 across 

countries and years. Both panels highlight the heterogeneity of the first-stage strength, an issue 

we return to in the cumulative analysis. The strongest first stage relationships are found among 

countries in the first three quartiles of the fertility rate measure (between 1.4 and 3.1 children per 
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mother). Intuitively, the countries with small first-stage coefficients are predominantly those 

with the highest fertility rates above 3.1 children per mother.  

 Figure 2 recreates the analysis of Figure 1 but replaces the first-stage results with the IV 

estimates of the effect of an additional child on the mother’s work status. We indicate 

observations not by where they fall in the fertility rate distribution but rather by where they fall 

in the labor force participation rate distribution. The striking difference between Figures 1 and 2 

is that the IV estimates are both negative and positive. While we can see in Figure 2, panel b, that 

the average affect across countries and years is negative (-0.129, compared to -0.120 and -0.104 

for the US in 1980 and 1990), there is a genuine mix of positive and negative coefficients. In 

panel a, the most significant negative IV estimates are among countries with higher levels of 

female labor force participation. However, as with the total fertility rate results presented above, 

the pattern is not systematic.  

In Figure 3, we examine how the population of individuals who comply with the 

instrument differs from the overall population. Points are coded by geographic region. In the top 

two panels, we look at mother’s age at the time of the survey and at the time of the first birth. 

The top-left panel indicates that, on average, the complier population is younger than the overall 

population for most country-years at the time of the survey. At the same time, there are regions 

(notably North America and Western Europe) where these two distributions are similar. This 

pattern is reversed in the top-right panel, which charts the comparison for mother’s age at first 

birth. Here we note that compliers are consistently older than the overall population across all 

country-years in our data set. In the bottom two figures, we find that complier mothers and their 

spouses are more likely to have secondary or tertiary education than the overall population 

although these differences are far less pronounced.  
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The above analysis highlights a key aspect of our approach: heterogeneity in differences 

between complier and raw populations is the dimension along which we calibrate the IV 

treatment effects in the reference country to extrapolate to the target of interest. While discussed 

formally in the methodology section above, it bears emphasizing that this heterogeneity lies at 

the heart of what external validity means in an IV context. If differences in complier populations 

affect the relationship of interest, external validity may be compromised. By calibrating our 

reference estimates to approximate the target complier population, we remove this threat to 

external validity. The efficacy of this technique hinges crucially on whether the observable 

covariates that we can measure fully capture the latent characteristics that would otherwise 

undermine external validity.  

4. Extrapolation error regressions 

In this section, we examine the extent to which extrapolation error from reference to target 

country-year can be explained by covariate differences between the two contexts. Our strategy is 

to create all possible pairwise combinations of the country-year samples, with one country 

serving as the target and the other as the reference. We use the complier characteristics in the 

target country to calibrate the conditional-on-x LATEs in the reference country. Since for any 

two country-years, the extrapolation differs depending on which is the target country and which 

is the reference country, our dyads consist of all n×(n-1) pairwise permutations. For each dyad, 

we record the extrapolation error, Eij (the target country-year c LATE estimate minus the 

extrapolated treatment effect from the reference country-year d), its standard error, and covariate 

differences between reference and target (for simplicity we assume these can be summarized 

simply as 𝛿#h = 𝑋# − 𝑋h). 
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As in Dehejia, Pop-Eleches, and Samii (2015) we use this setup to estimate an external 

validity function that characterizes the extrapolation error:  

𝐸#h = 𝛽′𝛿#h + 𝜖#h, 

where we weight the regression by the inverse of the variance of the extrapolation error, 

constructed as the sum of variances of the component LATE estimates. In the spirit of the 

Heckman, Ichimura, Smith, and Todd (1998) bias function, which characterizes selection bias as 

a function of covariates, our goal is to characterize the reference-to-target country-year 

extrapolation error, while maintaining the assumption of a valid instrumental variables strategy 

(hence an internally valid target country-year LATE). Note that, in addition to within country-

year micro covariates, 𝛿"i includes country-year level macro covariates as well, including GDP 

per capita, labor force participation, and total fertility rate. We do not (indeed, we cannot) use 

these population-level covariates in our extrapolation procedure in the dyadic estimation as they 

are constant for units from a single target context. Nevertheless, we are interested in exploring 

whether these differences between target and reference are significant predictors of extrapolation 

error for the cumulative analysis that follows. 

 Results are presented in Figure 4 and Table 2. We begin in Figure 4 by examining the 

univariate relationship between covariate differences and extrapolation error. For most 

covariates, we find that differences between target and reference context are significant 

predictors in the expected direction: greater reference-target differences are associated with 

increased extrapolation error. Since the majority of these estimates are from log-log regressions, 

the coefficients can be directly compared in terms of percent changes, meaning that a ten percent 

increase in the difference between reference and target in mother’s education, spouse’s 
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education, total fertility rate, and per capita GDP is associated with a 0.02, 0.017, 0.01, and 0.007 

increase in extrapolation error, respectively (relative to an average world LATE of -0.129).  

Temporal and geographic distances are presented in standardized measures, implying that 

a 1 standard deviation increase in geographic distance (roughly 4,650km) corresponds to a 2 

percent increase in extrapolation error although this is not significant at conventional levels. The 

effect of reference-target temporal distance is noisily estimated but seemingly negligible. 

When we include all covariates simultaneously, we find in Table 2 that differences in 

spouse’s education and total fertility rate remain significant in the full sample. The magnitudes 

are considerable for these covariates. A ten percent increase in the difference in mean levels of 

mother’s age corresponds to a 0.011 increase in the absolute difference between the target and 

extrapolated estimates (again relative to an average world LATE of -0.129). Overall the results 

underline an intuitive but important result: when the target and reference countries are more 

similar, extrapolation error tends to be smaller.  It is worth noting that these coefficients are 

relatively stable as we restrict the sample to successively stronger first stage targets in columns 

(2) to (4).  

 

5. Accumulation of evidence 

While the dyadic regressions discussed above highlight the importance of covariate differences 

between reference and target countries, they do not allow us to deduce how close the 

extrapolation comes to the target country LATE. Furthermore, while the dyadic setup is useful to 

explore the external validity function, it uses only a single country-year reference to predict the 

target, whereas in fact the available pool of reference countries is much larger in all but the first 



 18 

time period of our data set. In extending the available reference pool, we can also expand the 

covariates used in extrapolation to include both individual-level and population-level covariates. 

We center the cumulative reference distribution of the macro-level covariates on the target 

values.  

There are two similar ways to conceptualize how evidence accumulates. The first uses all 

available data prior to the target year for any given unit. To highlight the improvement of our 

procedure as we increase the reference sample size, we estimate the extrapolation error 

associated with each reference dataset accumulated up to different calendar years. For example, 

consider Ecuador in 1974 as our target of interest. We calculate the prediction error associated 

with a reference sample comprised of only the available data in 1970, 1971, 1972, and 1973. In 

1970, the reference sample size contains less than 200,000 observations from only a handful of 

countries. The sample increases with each additional year although we are careful to exclude 

Ecuador itself. (Our exclusion of the target country data in earlier periods constitutes a more 

difficult test of our extrapolation technique by removing the most similar reference data from the 

accumulated pool of observations.) We assess the prediction error in this manner for all available 

target country-years, averaging by year and depicting two standard deviations with vertical bars. 

Figure 5 depicts these results.  

Several patterns become evident. First, as more evidence becomes available through an 

increased reference set, prediction error typically decreases. Second, for target countries later in 

the sample for which a larger reference set is available, prediction error tends to converge to 

zero. Third, the improvements in extrapolation performance can be understood in terms of both 

bias and variance, as indicated by mean error estimates that converge to zero with increasing 

precision. Finally, the earliest years exhibit dramatically imprecise extrapolation estimates. In 
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these cases, the available reference data is too sparse to ensure unconfounded location. 

Recognizing that errors in excess of an absolute value of 1 are theoretically impossible, we 

bound the y-axis accordingly and indicate extreme errors with X’s.  

We adopt a different approach to visualizing the cumulative benefits of extrapolation in 

Figure 6 which examines cumulative improvements for each target country-year. Here, we are 

interested in estimating how extrapolation error changes over time, not measured by calendar 

year, but by temporal distance from each target. Returning to our Ecuador example, the reference 

populations for 1970 through 1973 would be treated as 4, 3, 2, and 1 years distant from our 

target.  However, using the cumulative data up to 2000 when assessing Chile in 2004 would also 

be treated as 4 and the two prediction errors are averaged together. As in Figure 5, we indicate 

the increasing reference sample size with shaded points and two standard deviations with vertical 

bars.  

While the overall results reinforce the findings discussed above, Figure 6 highlights the 

importance of choosing a reference set that is not too temporally distant from the target. 

Specifically, we find quite poor extrapolated estimates in cases where the reference population is 

more than 10 years separated from our target, as indicated by errors that increasingly exceed the 

theoretically plausible bounds of 1 and -1. However, we still document a steady decline in mean 

absolute error as we move closer to the target in time.   

 Overall, Figures 5 and 6 show that with a sufficiently large reference set, the extrapolated 

LATE is able to systematically replicate the actual country-year LATE with considerable 

precision. Given the internal validity of the IV estimates, this in turn serves as a test of the 

validity of our key identifying assumption of uncounfounded location. However, additional 

research would be needed to explore whether the weak results for earlier years are merely due to 
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smaller reference sample sizes or reflect a change in the underlying causal relationship between 

fertility and female labor supply among the countries in our sample.  

 

6. Extrapolation vs. interpolation 

Is there any reason to believe that errors associated with extrapolation are systematically larger 

or smaller than biases associated with endogeneity? This section presents a series of comparisons 

between the extrapolated LATE estimates measured using different criteria and the OLS 

estimates within the target country. The thought experiment is trading off two possible biases: 

extrapolation error from the extrapolated LATE versus endogeneity bias from regressing a 

women’s labor force status on an endogenous indicator of incremental fertility.  

It is worth noting the artificiality of the exercise at the outset. We know that OLS, 

whether biased or not, is estimating the average treatment effect, whereas the extrapolated LATE 

is replicating the LATE for the target country. So even without bias, we would not expect these 

two to be the same. Nonetheless, we argue that the choice is not entirely artificial: a policy maker 

could indeed be faced with the choice of two potential biases.  

 The results are presented in Figure 7, where the x-axis depicts the LATE extrapolation 

error and the y-axis depicts the difference between the OLS estimate and the estimated LATE in 

the target. The left-panel averages over the extrapolated error in all available dyad pairs for each 

target country-year, weighting by the reference sample size. The right panel uses the 

accumulated evidence up to the prior year, excluding data from the target country itself. We 

choose the most recent cumulative extrapolated results for each target country-year under the 

assumption that this represents both the largest reference dataset as well as the most accurate 
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extrapolated prediction on average. The average OLS error is indicated by the horizontal solid 

line while the average extrapolation error is indicated by the vertical solid line. The dotted lines 

represent zero average bias.  

As illustrated in the left-panel, simply choosing a reference context at random yields 

larger errors than relying on the OLS estimate calculated in the target country-year. However, the 

right-panel indicates superior extrapolation performance when using the accumulated evidence 

as the reference. This improvement is due partly to the ability to include macro-level covariates 

in the extrapolation procedure using accumulated data, which we can’t do in a dyadic 

extrapolation context.  

In Appendix C, we present additional results that compare OLS estimates to a variety of 

different extrapolation methods, including pairing the target with the reference closest in terms of 

the Mahalnobis distance, geographic distance, or using the reference dyad with the best 

predictive accuracy in previous years for a given target country. The results suggest that, while 

extrapolation error remains a concern, the endogeneity bias of within country-year OLS is 

generally larger. 

  

7. Robustness checks and extensions 

7.1 Extrapolating using the number of children as the endogenous variable 

Angrist and Evans (1998) present results using both the number of children and an indicator for 

more than two children as the endogenous variable. In our main results, we focus on the latter. 

Here we present results using the former. Figure 8 presents cumulative extrapolation error results 

which are similar to those presented in Figure 5. When using reference countries separated by 



 22 

twenty or more years from the target, estimates are noisy and tend to bounce around from year to 

year. But as we move closer in time to the target, estimates converge on, and are not statistically 

significantly different from, zero extrapolation error. 

7.2 Dropping sex-selectors 

The most direct challenge to the validity of the IV assumptions in our application is the practice 

of sex selection in some of the countries in our sample (most notably China under the one-child 

policy). In our main results we control for the degree of sex selection within country-years via 

the gender ratio measure. In this section we instead drop countries where sex selection and 

potential non-exogeneity of the same-sex variable is a concern (in particular, India, China, Nepal 

and Vietnam). Figure 9 presents the cumulative extrapolation error results which are 

qualitatively and quantitatively similar to those in Figure 7. After an initial “burn in” period, 

extrapolation error converges to zero. 

7.3 Dropping country-years with invalid IV’s  

As an extension of Section 7.2, we rely on recent work by Kitagawa (2008) and Huber and 

Mellace (2014) who exploit the implications of the LATE assumptions to derive systematic tests 

of IV validity. Unlike Section 7.2, where our rationale for dropping sex selectors is based on 

indirect evidence and case study research on cultural determinants of gender heterogeneity (see 

Rosenzweig and Wolpin 2000 for evidence from India and Edlund and Lee 2013 for evidence 

from South Korea), here we employ a data-driven test for violations of the LATE assumptions. 

As described in Huber (2015), the LATE assumptions require that, for all y in the support of Yic: 

 

f(y, Dic = 1|Zic = 1) ≥ f(y, Dic = 1|Zic = 0),  f(y, Dic = 0|Zic = 0) ≥ f(y, Dic = 0|Zic = 1), 
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lest the joint densities of the compliers be less than zero. Violations of these inequalities are not 

enough to identify which LATE identifying assumptions fail, but they do provide evidence that 

Zic is not randomly assigned, defiers exist in the data and dominate the compliers, or both.  

 We use the procedure outlined by Huber (2015) to identify which country-years fail to 

satisfy the identifying assumptions necessary for the same-sex instrument to be valid.4 One 

benefit we enjoy thanks to our large dataset is that our finite sample power is high enough that 

we are unlikely to commit Type II errors. Nevertheless, as stressed by Huber (2015), failures to 

reject the null cannot be taken as evidence of instrument validity. Table 4 lists the country-years 

with partial p-values smaller than 0.4, representing a conservative test for IV validity. We rerun 

our cumulative analysis on the restricted data and present the results in Figure 11, represented by 

light gray circles. The results are not meaningfully different from those presented above. 

As a final check, we stratify the data over coarsened covariates in an attempt to see 

whether the IV test fails for any subset of the population. We use three bins for the educational 

attainment of the mother and her spouse (0 = less than high school, 1 = high school, 2 = more 

than high school) and a binary variable indicating whether the mother is in her 20s or her 30s at 

the time of the survey. We then run the IV validity test on each sub-population in each country-

year, yielding as many as 18 separate p-values for evaluation (although many country-years do 

not have full coverage for all possible strata). Figure 10 lists the results for all 139 available 

country-years in the dataset, ranked by the minimum partial p-value across all available strata. 

With 18 possible violations for each country-year, we elevate our threshold for removal to the 

95% level of confidence and drop any country-year with at least one p-value less than 0.05 from 

                                                
4 We are grateful to Martin Huber for graciously providing his original R code. 
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our analysis, resulting in the omission of 29 country-years for our robustness check, listed in 

dark font at the top of the y-axis. 

Again, our conclusions are robust to the omission of these country-years. Figure 11 

overlays the main results with the same results calculated after dropping the invalid country-

years defined by sex-selectors and the simple and stratified IV tests. We indicate extreme errors 

with small black icons. The convergence is still striking with the IV test results outperform the 

main analysis in the earliest years.  

 

8. Conclusion 

In this paper we have investigated the degree to which LATEs from one context can be 

extrapolated to another. We set out to develop and demonstrate an extrapolation procedure built 

on the assumption that effect heterogeneity can be captured by observable covariates. We 

demonstrated the validity of our methodology using real world data on the relationship between 

having a third child and a mother’s labor force participation. Despite heterogeneity in both the 

first-stage strength of our IV strategy in certain country-years, as well as variation the overall 

effect, our procedure performs well, particularly when we exploit the accumulated data.  

Returning to our twofold motivation in pursuing this exercise – namely informing both 

the external validity of instrumental variables estimates and of the growing body of policy-

relevant evidence from natural and randomized experiments – our findings are both optimistic 

and cautious. We find that external validity improves when the reference data and target data are 

from similar settings and given sufficient data. Even with a small set of covariates, average 

extrapolation error is close to zero when extrapolating LATEs from one country-year to another 
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using the richest reference sample sizes. Furthermore, the resulting extrapolation error is usually 

less than the endogeneity bias of using within-target OLS.  

At the same time, extrapolation error increases considerably with reference-target 

differences in both micro- and macro-level covariates. Covariate differences of 10 percent 

between reference and target settings lead to extrapolation error ranging from 5 to 20 percent of 

the overall treatment effect. While it is difficult to offer a specific quantitative guideline, our 

results suggest the importance of a close match between covariate profiles in reference and target 

settings. This echoes findings in the program evaluation literature such as Heckman, Ichimura, 

Smith, and Todd (1998) and our own related work on this theme (Dehejia, Pop-Eleches, and 

Samii 2015).  

 Given the increasing number of internally valid, albeit local estimates that are becoming 

available to assess the impact of policy interventions, our results suggest that there is some hope 

to reach externally valid, generalizable conclusions from this stream of evidence. However, we 

also demonstrate that the quality of extrapolation depends crucially on a sufficient body of quasi-

experimental evidence from contexts that resemble the policy environment of interest. Finally, 

we note an important qualification: our results are narrowly relevant only to the application we 

have considered. Further replications of this exercise for other instrumental variables and natural 

and field experiments are necessary to develop a more systematic understanding of the 

opportunities for, and limits to, externally valid knowledge. 
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Appendix B: Simulations 
 
We use a simulation to demonstrate the properties of IV extrapolation under assumptions C1-C3.  
To construct an empirically plausible simulation, we start with the covariate, instrument (that is, 
the “same sex of first two kids” indicator), and treatment data (that is, the “more than two kids” 
indicator) from one percent subsamples of the IPUMS census data for Cuba in 2002 (yielding 
215 observations) and the United States in 1990 (yielding 2,976 observations). The covariates 
that we use include the gender of the first and second born children, the woman’s age coarsened 
into three-year bins, the woman’s education level coarsened into four bins (less than primary, 
primary, secondary, and university completed), and her spouse’s education level coarsened into 
the same four bins.  We use these covariates to generate potential outcomes under treatment and 
control for women in each simulation replicate sample.   We generate observed treatments and 
outcomes on the basis of the actual instrument and treatment values in the data.  As such, we 
have realistic potential outcome distributions but we can also compute the actual LATE for each 
simulation replicate sample.  
 
The simulations were run on a 1% random sample of the full IPUMS data in which we generated 
potential outcomes conditional on the covariate profile and observation “type”. In this context, 
observation type refers to whether the unit was a complier, an always-taker, or a never-taker. We 
deterministically set half of the population to compliers and a quarter each to always- and never-
takers. By construction, defiers are removed, thus ensuring we meet the conditional monotonicity 
assumption C1c discussed in Section 2.  
 
Because potential outcomes are defined in terms of the micro-covariates only, C2 holds.  We 
restrict attention to the portions of the Cuba and United States samples that overlap in their 
covariates such that C3 holds.  We determine that C1b holds by observation: for the US in 1990, 
the first stage coefficient in the sample is 0.060 (robust s.e.=0.015), while for Cuba in 2002, the 
first stage coefficient in the sample is 0.090 (robust s.e.=0.048). We then assume C1a based on 
arguments of Angrist and Evans (1998).  To generate the extrapolations, we use the complier-
centered interactions 2SLS model defined above.   
 
Combining the covariate profile with type yielded an extended covariate vector 𝑉"# which has 
length 𝑘  and, when stacked on observations, yields matrix 𝑉k×J . To generate the potential 
outcomes, we multiplied 𝑉k×J by a 𝑘-length vector of coefficients 𝐵 to yield the 𝑌(1) vector. 𝐵 
was drawn from a multivariate normal distribution with mean -0.1 and standard deviation 0.01, 
capturing the observed effect estimates in the real data. Without loss of generality, we set 𝑌(0) =
0.   
 
Having defined our potential outcomes as such – and in so doing, guaranteeing compliance with 
the necessary assumptions – we simulated the instrument assignment in a manner that varied 



 31 

with the covariate profile 𝑋". (Note that instrument assignment varies with 𝑋" and not 𝑉" since the 
latter would violate the conditional random assignment assumption of the instrument.) 
Specifically, we used a logit specification to determine the probability that the instrument 𝑍"# =
1 conditional on 𝑋"# using the following specification: 
 

Pr	[𝑍"# = 1|𝑋"#] =
1

1 + 𝑒q(rs]t), 
(B.1) 

where 𝐴 is a 𝑘0 length vector of coefficients, again drawn from a multivariate normal distribution 
for the sake of simplicity. Note that 𝑘0 = 𝑘 − 3 to account for the removal of unit type (again, 
compliers, always-, and never-takers) from the extended covariate vector 𝑉"#. The simulation was 
run 1,000 times, using the centered-interactions technique specified above to extrapolate the 
target estimate from the reference population.  
 
Figure B.1 displays results from the simulation exercise.   In this context, Cuba was the target 
and the US was the reference sample.  We see in Figure B.1 that the distribution of 
extrapolations is centered on the true LATE, even as we reduce the size of the reference 
population. The extrapolation distribution (depicted with the dotted lines) is also more precise 
than the IV estimates fit on the target population data (depicted with the light gray shading).  
This is because the reference sample (2,976 observations) is much larger than the target 
population sample (215 observations). 
 
We also document evidence of “super” external validity in which extrapolated estimates are 
measured more precisely than the target estimate. This phenomenon is not merely the result of a 
larger reference sample size. In order for this result to obtain, it must be that the covariate strata 
of compliers in the reference population is large. Furthermore, the unit-level effects must have 
the largest variance in strata that are well-represented in the reference population. 
 
In summary, the simulation illustrates our extrapolation strategy, and confirms that when the 
identifying assumptions are satisfied, the method indeed works (in the sense that extrapolated 
LATEs on average replicate the target LATE). Note, however, that the quality of the 
extrapolation depends on the sample size of the reference context and also on the degree of 
reference-target covariate overlap. 
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Appendix C: Dyadic Extrapolation Results 
 
In the analysis above, we explored the comparison between our extrapolation technique and 
using an internally invalid OLS estimate. Our extrapolation technique used all potential reference 
populations for each target country-year and averaged the extrapolation estimates over them. 
Some dyadic pairings may be very inappropriate matches due to large differences in the 
individual and country-level covariates, making the above analysis a harder test for the 
comparison to OLS estimates. In the analysis that follows, we run a variety of different 
comparisons to (1) confirm the substantive interpretation provided above and (2) highlight the 
variety of approaches one can take in selecting the appropriate reference population.  
 
Figure C.1 uses the same framework to compare the OLS estimates against the dyadic prediction 
error where the reference country-year is chosen according to different intuitive heuristics. The 
simplest heuristic, depicted in the top-right panel, is to simply use the largest available reference 
dataset. As illustrated, sample size along is not enough to generate accurate extrapolated 
estimates.  
 
An alternative approach is to use the reference country-year that most effectively predicted the 
target in previous years. The errors associated with this technique are depicted in the top-right 
panel although, again, they are marginally inferior to the biased OLS estimate. A more effective 
heuristic is to use the reference country that is geographically closest to the target. However, 
although the average bias is smaller, the bottom-left panel exhibits greater variance associated 
with the extrapolated estimates than associated with the OLS.  
 
Finally, in the bottom-right panel, we choose the reference that is closest to the target in 
covariate space. As discussed in Section 4, differences in the covariate profile significantly 
predict the errors between target and extrapolated estimates. By minimizing the Mahalanobis 
distance, we are effectively reducing the total impact of these differences in choosing the best 
dyadic pair.  
 
While heuristics do suggest modest improvements in extrapolation accuracy, the best approach is 
to use the accumulated data instead of relying on a single dyadic comparison. By including both 
micro and macro level covariates in the centered interactions, cumulative extrapolation is better 
able to capture the necessary variation to ensure that the unconfounded location assumption 
holds.  
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Appendix D: Extrapolating reference ATE to target ATE 

 
In the extrapolation exercise presented above, we are assuming that the characteristics of the 
complier population in the target setting are known and can be used to reweight the local average 
treatment effect in the reference country. There is a potential circularity here in the sense that 
knowledge of the target complier population implies the existence of micro data on the 
instrument and treatment variables in the target. Our argument in favor of the exercise is that the 
target complier population is simply one possible policy-relevant subpopulation in the target, 
specifically the only target subpopulation for which we have an internally valid estimate of the 
average treatment effect.  
 
An alternative approach is to use the procedure discussed in Section 2 to extrapolate to the ATE 
in the target location from both the target LATE and the reference LATEs. Rather than reweight 
the reference LATEs based on the characteristics of target compliers, we reweight based on the 
characteristics of the full target sample, and likewise reweight the target LATE to the target ATE 
using the characteristics of the full target sample. As above, after extrapolating, we then measure 
“bias” as the extrapolated ATE from the reference data minus the extrapolated ATE from the 
target data. A snapshot of the results for this approach is presented in Figure D.1. 
 
Figure D.1 depicts the average extrapolation error, where the set of reference countries evolves 
along the x-axis as they become available in years up to and including the year of observation of 
the target. The pattern is similar to Figure 5 in Section 5. Prior to 1980, the extrapolation tends to 
be noisy with values that exceed the theoretically sensible thresholds of 1 and -1. But as 
additional reference country-years become available, extrapolation error approaches zero in 
magnitude and is not significantly different from zero despite being reasonably stable.  
 
An advantage of extrapolating ATE’s is that these are directly comparable to OLS estimates 
within the target. In Figure D.2 we revisit our extrapolated reference IV to target OLS 
comparison for this case. 
 
 
Figure D.2 compares extrapolated reference IV average treatment effects to OLS, selecting the 
reference based on three different heuristics as well as using the accumulated data. Again, we see 
superior performance associated with the cumulative approach although it bears noting that the 
OLS estimate performs quite well.  
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Appendix E: Using prior information to improve predictions 

 
In many evaluation contexts prior information exists that can be used to improve the 
extrapolation. For example, one might begin with the prior of a zero treatment effect (perhaps 
motivated by Rossi’s [1987] “Iron Law”). In the context of our application, prior information, if 
available, can readily be incorporated into the extrapolation by appropriately weighting the 
reweighted reference LATE with the prior. Here we present the simplest case of taking a convex 
combination of the reweighted LATE and the prior of a zero treatment effect.  
 
Figure E.1 summarizes the weight on the prior that minimizes the root mean squared error of the 
cumulative extrapolation for each reference sample size (where the reference sample size 
increases with the increasing availability of reference country-years over time). The optimal 
weights range from 0.9 to 0.5. The fact that the optimal weights tend to put substantial weight on 
the prior reflects the fact that in this application many LATEs are in fact close to zero, i.e., that 
the prior of zero treatment effect is, ex post, a good one. The optimal weight also reflects the fact 
that the zero prior reduces posterior estimation variability. The importance of the latter 
diminishes as sample size increases, which is reflected in the downward trend of the optimal 
weight toward 0.5 for the full reference sample. In general, of course, the prior cannot be chosen 
with the benefit of hindsight, and absent extremely strong prior information weights in this range 
are unlikely.  
 
At the same time, even a small weight put on a prior of a zero treatment effect tends to improve 
the root mean squared error of the extrapolation as depicted in Figure E.2. As weight on the prior 
increases, root mean squared error decreases essentially linearly. Again, while a very high weight 
on the prior is implausible, even a low weight on a prior of zero is beneficial. As illustrated in 
Table E.1, a weight of 0.01 on the prior reduces mean prediction error by 0.031 and root mean 
squared error by 0.14. These values are statistically significant after controlling for reference 
population size and the standard error of the extrapolated estimate. Prior information, if it is 
available and proves to be correct, is a valuable input to improving external predictions. 



Table 1: Main variables summarized by observations and dyadic absolute differences.

Variable Name Country-Year Level Dyadic Level
Raw statistics Abs. Differences

Average Education (mother) 1.88 0.64
N = 134 / 11,278,326 (0.85) [0.53] (0.47)

Average Education (spouse) 2.02 0.59
N = 134 / 9,715,191 (0.98) [0.49] (0.44)

Age (mother @ survey) 30 0.93
N = 141 / 11,749,847 (3.6) [0.63] (0.69)

Age (mother @ 1st birth) 20.65 1.1
N = 141 / 11,749,847 (3.11) [0.8] (0.86)

Ratio (male::female) 0.01 0.01
N = 141 / 11,749,847 (0.3) [0.01] (0.01)

GDP per capita 8927.8 10434.9
N = 141 / 11,749,847 (10182.84) [-] (9400.21)

Total Fertility Rate (children per mother) 2.77 0.74
N = 139 / 11,616,325 (0.59) [-] (0.54)

Labor Force Participation Rate 0.54 0.24
N = 125 / 10,140,694 (0.22) [-] (0.17)

Year 1990.7 13.19
N = 141 / 11,749,847 (10.33) [-] (10.21)

Geographic Distance - 7910.03
N = - / 15,034 (-) [-] (4638.53)

2SLS Variables

Economically active Mother (Y) 0.46 0.27
N = 127 / 10,259,072 (0.5) [0.25] (0.2)

More Kids (D) 0.6 0.22
N = 141 / 11,749,847 (0.49) [0.15] (0.16)

Number of Children (D) 3.11 0.6
N = 141 / 11,749,847 (1.26) [0.45] (0.43)

Two children of same sex (Z) 0.51 0.01
N = 141 / 11,749,847 (0.5) [0.01] (0.01)

Two boys (Z) 0.26 0.01
N = 141 / 11,749,847 (0.44) [0.01] (0.01)

Two girls (Z) 0.24 0.01
N = 141 / 11,749,847 (0.43) [0.01] (0.01)

Notes: Standard deviations calculated on country year means presented in parentheses. Av-
erage household standard deviations presented in brackets. The three 2SLS variables are
dummies. More kids is coded zero if the mother has only 2 children and one if the mother has
more than 2 children. Same sex is coded zero if the first two children are of different genders
and coded one if the first two children are of the same gender. Economically active mother
is coded zero if the mother is not economically active and coded one if the mother works for
pay. Total observations recorded as total country-years / total census-level observations.
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Table 2: Multivariate regression of absolute extrapolation error on absolute covariate differences in dyadic
data.

(1) (2) (3) (4)
Full Sample FS t-stat > 2 FS t-stat > 5 FS t-stat > 10

Mother’s Education (log) .092 .092 .092 .102
(.058) (.058) (.058) (.063)

Spouse’s Education (log) .107* .106* .106* .107*
(.060) (.060) (.060) (.063)

Mother’s Age @ Survey (log) .032 .031 .031 .019
(.038) (.038) (.038) (.041)

Mother’s Age @ First Birth (log) .000 .001 .002 .008
(.031) (.031) (.031) (.033)

GDP pc (log) .009 .009 .009 .025
(.029) (.029) (.029) (.031)

Gender Ratio (log) .052 .050 .048 .040
(.037) (.037) (.037) (.039)

Labor Force Part. Rate (log) -.032 -.032 -.031 -.034
(.036) (.036) (.036) (.039)

Total Fert. Rate (log) .079* .080* .080* .077*
(.041) (.041) (.041) (.044)

Temporal Dist. (1SD = 10yrs) -.005 -.005 -.004 -.006
(.037) (.037) (.037) (.040)

Geographic Dist. (1SD = 4,650km) -.030 -.029 -.029 -.029
(.038) (.038) (.038) (.041)

Constant -2.172*** -2.180*** -2.201*** -2.423***
(.345) (.347) (.348) (.367)

N 13362 10620 7730 3920
R2 .047 .046 .046 .048

Notes: Heteroskedastic-robust standard errors presented in parentheses. Explanatory variables are measured by the
log of the absolute difference between the target value and the reference. Gender ratio calculated as the ratio of boys
to girls. Mother’s education level coded as 1 = less than primary completed, 2 = primary completed, 3 = secondary
completed, 4 = university completed. Temporal and geographic distances presented in standardized units. * p <
0.10; ** p < 0.05; *** p < 0.01.
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Table 3: List of country-years with partial P-values less than 0.40.

Country Year Partial P-value St. Diff0 St. Diff1

Uganda 2002 0.094 0.017 0.002
India 1987 0.126 -0.052 0.016

Portugal 2001 0.157 0.024 -0.205
Panama 1960 0.163 -0.157 0.046

Israel 1995 0.212 0.004 0.021
Malaysia 1980 0.221 -0.059 0.025
Malaysia 1991 0.257 -0.057 0.014

Chile 1970 0.284 0.018 -0.097
India 1993 0.316 -0.014 0.009
Mali 1998 0.343 -0.005 0.008

Guinea 1996 0.36 -0.014 0.007
Guinea 1983 0.389 0.014 0.01

Costa Rica 1973 0.391 -0.017 0.01
India 1983 0.392 0.002 0.011

Notes: Invalid country-years ranked by partial P-values from Huber-Mellace
(2014) test of IV validity, column 3. The p-values test whether f(y,D = 1|Z =
1) ≥ f(y,D = 1|Z = 0) and, similarly, f(y,D = 0|Z = 0) ≥ f(y,D = 0|Z = 1).
These constraints can be rewritten as four point estimates (θ̂1, . . . , θ̂4) which must
fall between the bounds of the mixed population. The fourth and fifth columns

give the standardized point estimates in the form of max(θ̂1,θ̂2)
SD(Y )

for the treated

(St. Diff1) and non-treated (St. Diff0) subpopulations. Violations of the null are
therefore positive values. Inference is applied to the test statistics using two-stage
bootstrapping, the details of which can be found in Huber and Mellace (2015).
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Table A-1: All country year statistics

Country Year GDPpc LFP TFR Sex Ratio Educ. Age FS β IV β

Argentina 1970 7615 0.31 2.48 .508 (.31) 1.57 (.58) 30.2 (3.57) .049 (.008) -.064 (.124)

1980 8487 0.28 2.67 .506 (.30) 1.66 (.62) 29.6 (3.76) .044 (.003) -.060 (.054)

1991 7423 0.51 2.59 .506 (.30) 1.98 (.60) 30.1 (3.64) .035 (.002) -.157 (.069)

2001 8552 0.58 2.52 .508 (.31) 2.2 (.66) 29.9 (3.7) .026 (.003) -.169 (.109)

Armenia 2001 2837 0.76 2.24 .528 (.31) 3.06 (.53) 30.2 (3.55) .124 (.008) -.157 (.057)

Austria 1971 16527 0.6 2.08 .511 (.32) 30.07 (3.35) 0 (0.01) .045 (.184) - (-)

1981 22437 0.65 2.22 .513 (.33) 30.53 (3.25) 0.1 (0.01) -.292 (.132) - (-)

1991 27956 0.67 2.07 .511 (.33) 30.89 (3.07) 0 (0.01) -.311 (.156) - (-)

2001 33839 0.79 2.07 .515 (.33) 31.64 (2.85) 0.1 (0.01) -.200 (.128) - (-)

Belarus 1999 5678 0.82 1.76 .515 (.35) 2.95 (.55) 31.3 (3.08) .027 (.004) -.266 (.144)

Bolivia 1976 3255 0.22 3.06 .508 (.28) 1.26 (.52) 29.6 (3.67) .014 (.006) .113 (.400)

1992 2755 0.52 3.14 .509 (.29) 1.71 (.74) 29.6 (3.68) .018 (.005) .359 (.361)

2001 3134 0.49 2.84 .514 (.30) 1.83 (.77) 29.7 (3.71) .014 (.005) -.025 (.393)

Brazil 1960 2469 0.14 3.83 .510 (.27) 1.06 (.30) 29.3 (3.77) .016 (.002) -.021 (.095)

1970 3845 0.19 3.71 .509 (.27) 1.11 (.41) 29.4 (3.77) .021 (.002) -.073 (.065)

1980 6943 0.3 3.31 .507 (.29) 1.27 (.63) 29.5 (3.72) .028 (.002) -.019 (.060)

1991 6117 0.43 2.85 .510 (.30) 1.49 (.78) 29.9 (3.64) .040 (.002) -.063 (.038)

2000 6834 0.58 2.37 .510 (.31) 1.59 (.78) 29.9 (3.74) .035 (.002) -.057 (.044)

Cambodia 1998 888 0.83 3.57 .509 (.29) 1.2 (.43) 30.2 (3.44) .024 (.004) .087 (.131)

Chile 1970 4465 0.25 3.42 .504 (.28) 1.6 (.65) 29.5 (3.75) .027 (.005) .209 (.135)

1982 4308 0.27 2.67 .508 (.31) 1.87 (.70) 29.9 (3.62) .032 (.005) .017 (.115)

1992 6527 0.28 2.27 .511 (.32) 2.13 (.68) 30.3 (3.42) .040 (.004) .008 (.085)

2002 9664 0.43 2.09 .509 (.33) 2.31 (.67) 30.9 (3.28) .028 (.005) -.216 (.154)

China 1982 624 0.88 2.9 .525 (.30) 1.56 (.54) 30.9 (2.82) .077 (.001) -.055 (.013)

1990 1157 0.9 2.26 .529 (.30) 1.66 (.59) 30.7 (3.4) .149 (.001) -.017 (.006)

Colombia 1973 4089 0.31 3.77 .507 (.27) 1.35 (.55) 29.2 (3.88) .021 (.003) .134 (.118)

1985 4962 0.45 2.91 .508 (.30) 1.71 (.73) 29.4 (3.78) .036 (.003) -.025 (.076)

1993 5785 0.41 2.56 .509 (.31) 1.83 (.69) 29.8 (3.67) .036 (.003) .059 (.068)

2005 6491 0.32 2.31 .513 (.31) 1.91 (.79) 29.7 (3.76) .034 (.003) .035 (.067)

Costa Rica 1973 7067 0.22 4.12 .509 (.27) 1.45 (.67) 29.1 (3.87) .006 (.009) .622 (1.649)

1984 7075 0.27 2.98 .510 (.30) 1.8 (.68) 29.3 (3.76) .049 (.009) .001 (.141)

2000 8870 0.38 2.44 .509 (.31) 2.03 (.72) 30.1 (3.64) .039 (.008) .031 (.170)

2002 7624 0.47 1.44 .516 (.34) 2.47 (.63) 31.2 (3.07) .039 (.005) -.052 (.146)

Ecuador 1974 4067 0.17 3.74 .509 (.27) 1.31 (.54) 29.2 (3.82) .011 (.005) .740 (.506)

1982 5074 0.25 3.39 .510 (.28) 1.6 (.69) 29.2 (3.8) .017 (.005) .050 (.224)

1990 4429 0.33 3.03 .511 (.29) 1.88 (.78) 29.5 (3.7) .034 (.005) .181 (.129)

2001 4824 0.36 2.49 .510 (.31) 1.98 (.76) 29.6 (3.77) .029 (.005) -.053 (.144)

Egypt 1996 3233 0.21 3.16 .525 (.29) 30.05 (3.73) 0 (0) .014 (.030) - (-)

France 1962 11116 0.47 2.21 .510 (.30) 1.53 (.63) 30.8 (3.18) .031 (.004) -.174 (.094)

1968 14312 0.55 2.24 .512 (.30) 1.69 (.68) 30.7 (3.34) .039 (.004) -.132 (.078)

1975 18472 0.71 2.13 .513 (.32) 1.88 (.79) 30.2 (3.4) .033 (.003) -.066 (.100)

1982 21910 0.79 1.93 .514 (.32) 1.94 (.84) 31 (3.15) .049 (.003) -.267 (.063)

1990 25766 0.85 1.88 .512 (.32) 2.08 (.90) 31.3 (2.93) .048 (.004) -.155 (.072)

1999 28716 0.89 1.87 .512 (.33) 2.26 (.98) 31.9 (2.76) .046 (.004) -.144 (.075)

Ghana 2000 1478 0.85 2.67 .503 (.31) 1.4 (.60) 30.1 (3.52) -.006 (.004) .639 (.604)

Greece 1971 13129 0.25 1.95 .517 (.33) 1.74 (.66) 31 (3.3) .074 (.006) -.143 (.074)

1981 16555 0.33 1.86 .517 (.33) 2.18 (.59) 30.4 (3.51) .075 (.005) -.008 (.057)

1991 17768 0.44 2 .522 (.34) 2.39 (.64) 30.8 (3.28) .064 (.005) -.082 (.082)

2001 21887 0.5 2.01 .517 (.34) 2.64 (.72) 31.6 (2.93) .051 (.006) .022 (.131)

Guinea 1983 740 0.52 2.21 .520 (.33) 1.09 (.39) 29.2 (3.79) .005 (.007) -2.13 (3.46)

1996 727 0.73 2.72 .522 (.29) 1.07 (.30) 29.1 (3.78) .008 (.005) .461 (.620)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total
fertility rate, and labor force participation rate due to measurement at higher levels of aggregation than the
household.
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Table A-1: All country year statistics (cont’d)

Country Year GDPpc LFP TFR Sex Ratio Educ. Age FS β IV β

Hungary 1970 7779 1.88 0.51 .333 (1.97) 0.54 (30.62) 3.3 (0.04) .007 (-) - (-)

1980 11255 1.78 0.51 .337 (2.41) 0.6 (29.95) 3.4 (0.05) .006 (-) - (-)

1990 12489 0.75 1.76 .504 (.34) 2.58 (.58) 31.1 (3.22) .051 (.006) -.413 (.118)

2001 13732 0.62 1.88 .513 (.33) 2.72 (.69) 31 (3.14) .039 (.008) -.447 (.190)

India 1983 1107 0.32 2.78 .533 (.29) 1.35 (.64) 29.4 (3.75) .010 (.005) -.340 (.503)

1987 1261 0.3 2.75 .537 (.29) 1.42 (.71) 29.4 (3.74) .016 (.005) -.844 (.373)

1993 1434 0.33 2.63 .544 (.30) 1.51 (.77) 29.6 (3.65) .025 (.005) -.205 (.214)

1999 1910 0.3 2.64 .544 (.30) 1.59 (.82) 29.9 (3.59) .036 (.005) -.008 (.141)

Iraq 1997 2755 0.13 4.63 .512 (.26) 1.68 (.74) 29.3 (3.73) .010 (.002) -.044 (.181)

Israel 1972 13991 0.32 3.07 .518 (.31) 2.44 (.78) 28.5 (3.55) .025 (.008) -.119 (.276)

1983 16123 2.88 0.51 .316 (2.30) 0.79 (29.20) 3.4 (0.02) .007 (-) - (-)

1995 20790 0.59 2.78 .520 (.31) 2.5 (.83) 29.3 (3.34) .006 (.007) 2.06 (2.89)

Italy 2001 29146 0.66 1.72 .514 (.34) 2.4 (.60) 30.6 (2.58) .027 (.003) .047 (.174)

Jordan 2004 3947 0.27 4.12 .522 (.27) 2.52 (.73) 30.1 (3.48) .015 (.005) .192 (.324)

Kenya 1989 1172 0.76 3.55 .507 (.28) 1.5 (.53) 28.7 (3.7) -.004 (.003) .768 (1.183)

1999 1133 0.51 0.29 1.665 (.52) 29.12 (3.70) - (-) - (-) - (-)

Kyrgyz Republic 1999 1597 0.78 2.89 .511 (.30) 2.99 (.46) 30.1 (3.49) .068 (.006) -.132 (.075)

Malaysia 1970 2065 0.43 3.55 .511 (.26) 1.22 (.43) 29.6 (3.73) .012 (.008) .162 (.878)

1980 4250 0.53 3.28 .509 (.28) 1.57 (.54) 29.7 (3.51) .026 (.009) -.575 (.449)

1991 6272 0.47 2.91 .515 (.29) 1.84 (.58) 30.4 (3.41) .020 (.007) -.558 (.389)

2000 9474 0.5 2.85 .514 (.29) 1.9 (.73) 30.8 (3.27) .035 (.007) -.400 (.215)

Mali 1987 628 0.5 3.03 .514 (.29) 1.1 (.34) 29 (3.81) -.001 (.005) -3.67 (24.3)

1998 768 0.39 3.33 .515 (.28) 1.06 (.25) 29.2 (3.81) .005 (.004) 1.45 (1.42)

Mexico 1970 6848 0.17 3.94 .512 (.27) 1.24 (.48) 28.9 (3.88) .009 (.004) .188 (.451)

1990 9427 0.27 3.18 .508 (.29) 1.72 (.71) 29.6 (3.68) .030 (.001) -.079 (.039)

1995 9158 0.45 2.69 .505 (.30) 1.84 (.67) 29.5 (3.72) .029 (.007) -.079 (.259)

2000 11380 0.35 2.74 .510 (.30) 1.88 (.70) 29.7 (3.66) .033 (.001) -.031 (.039)

Mongolia 1989 2740 3.38 0.51 .283 (2.22) 0.82 (29.82) 3.2 (0.01) .008 (-) - (-)

2000 2219 0.78 2.59 .506 (.31) 2.59 (.70) 30.6 (3.26) .052 (.009) .066 (.136)

Nepal 2001 918 0.64 2.87 .532 (.29) 1.32 (.66) 29.5 (3.75) .009 (.003) -.583 (.335)

Pakistan 1973 991 0.54 0.28 1.133 (.41) 29.71 (3.85) - (-) - (-) - (-)

1998 1732 3.66 0.52 .280 (1.25) 0.55 (29.22) 3.8 (0) .001 (-) - (-)

Panama 1960 2142 0.38 2.98 .504 (.27) 1.42 (.59) 28.8 (3.85) .016 (.016) 1.48 (1.93)

1970 3419 0.34 3.39 .513 (.28) 1.56 (.65) 29 (3.84) .011 (.009) .056 (.942)

1980 5200 0.41 3.2 .513 (.29) 1.82 (.73) 29.4 (3.75) .009 (.009) -.700 (1.25)

1990 5531 0.37 2.59 .516 (.30) 2.1 (.77) 29.5 (3.74) .041 (.009) -.007 (.217)

2000 6950 0.45 2.42 .513 (.30) 2.16 (.74) 29.8 (3.73) .032 (.009) .439 (.324)

Peru 1993 3855 0.33 2.93 .505 (.30) 1.84 (.89) 29.8 (3.66) .027 (.003) -.017 (.104)

2007 6374 0.41 2.39 .509 (.32) 2.16 (.89) 30.1 (3.57) .030 (.003) .019 (.104)

Philippines 1990 2334 0.49 3.43 .513 (.28) 2.2 (.85) 29.8 (3.59) .028 (.002) -.133 (.062)

1995 2365 3.12 0.51 .283 (2.36) 0.87 (29.94) 3.6 (0.03) .002 (-) - (-)

2000 2464 2.99 0.52 .296 (2.33) 0.8 (30.09) 3.5 (0.03) .002 (-) - (-)

Portugal 1981 11369 0.64 2.09 .512 (.32) 1.27 (.64) 30.7 (3.34) .052 (.008) .042 (.159)

1991 15661 0.76 1.8 .509 (.34) 1.53 (.77) 31.3 (3.04) .024 (.008) .138 (.361)

2001 20095 0.86 1.63 .512 (.34) 1.88 (.85) 31.8 (2.94) .032 (.009) -.670 (.332)

Puerto Rico 1970 10418 3.05 0.5 .296 (2.09) 0.83 (29.29) 3.8 (0.02) .026 (-) - (-)

1980 12556 2.76 0.51 .303 (2.45) 0.78 (29.96) 3.6 (0.05) .011 (-) - (-)

1990 17870 0.5 2.26 .512 (.31) 2.73 (.69) 30.2 (3.58) .057 (.012) .169 (.208)

2000 25284 0.56 1.89 .514 (.32) 2.89 (.62) 30.1 (3.69) .056 (.012) -.354 (.219)

2005 26054 0.68 1.77 .514 (.32) 2.93 (.62) 30.4 (3.62) .061 (.033) -.191 (.545)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total
fertility rate, and labor force participation rate due to measurement at higher levels of aggregation than the household.
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Table A-1: All country year statistics (cont’d)

Country Year GDPpc LFP TFR Sex Ratio Educ. Age FS β IV β

Romania 1977 5622 2.19 0.51 .318 (1.76) 0.79 (29.78) 3.6 (0.04) .004 (-) - (-)

1992 5005 0.77 2.12 .508 (.32) 2.47 (.66) 30.4 (3.61) .038 (.003) -.039 (.078)

2002 6575 0.56 1.9 .508 (.33) 2.43 (.67) 30.8 (3.29) .039 (.004) .041 (.107)

Rwanda 1991 768 0.97 3.98 .496 (.28) 30.27 (3.28) 0 (0) -.590 (1.16) - (-)

2002 732 0.92 3.39 .496 (.29) 1.31 (.51) 30 (3.48) .005 (.005) -1.18 (1.22)

Saint Lucia 1980 5432 0.53 3.9 .504 (.31) 1.2 (.61) 28.9 (4.02) .016 (.041) .190 (4.73)

1991 9052 0.54 3.05 .489 (.30) 1.76 (.93) 29.3 (3.62) .002 (.038) 1.79 (31.6)

Senegal 1988 1251 0.24 3.2 .497 (.28) 1.14 (.38) 28.8 (3.79) .003 (.004) -.322 (1.42)

2002 1276 0.33 3.25 .504 (.29) 1.16 (.42) 29.4 (3.76) -.001 (.005) 2.88 (17.7)

Slovenia 2002 20432 0.92 1.94 .520 (.35) 2.89 (.51) 30.6 (2.42) .008 (.010) -.696 (1.24)

South Africa 1996 5477 0.72 2.6 .500 (.31) 2 (.70) 30.4 (3.42) .025 (.003) -.007 (.118)

2001 5996 0.78 2.44 .497 (.31) 2.08 (.75) 30.6 (3.32) .020 (.003) .129 (.142)

2007 7442 0.84 2.29 .498 (.32) 2.23 (.71) 30.5 (3.46) .024 (.007) .088 (.212)

Spain 1991 20715 0.49 2.3 .514 (.33) 2.12 (.71) 31.6 (2.87) .057 (.004) -.027 (.080)

2001 26714 0.64 1.73 .516 (.34) 2.29 (.63) 32.3 (2.68) .045 (.005) -.067 (.140)

Switzerland 1970 29439 0.41 2.22 .513 (.32) 3 (.14) 30.9 (3.14) .018 (.011) -.395 (.542)

1980 30010 0.44 1.92 .516 (.33) 3.01 (.19) 31.5 (2.89) .055 (.010) -.368 (.191)

1990 34296 0.57 1.86 .514 (.33) 2.99 (.30) 31.6 (2.76) .057 (.011) -.143 (.193)

2000 35788 0.64 2.19 .506 (.33) 2.95 (.44) 32.3 (2.51) .051 (.012) -.009 (.246)

Tanzania 1988 687 0.88 3.13 .500 (.29) 1.39 (.53) 29.1 (3.66) -.013 (.003) -.113 (.160)

2002 790 0.76 2.91 .502 (.30) 1.75 (.53) 29.3 (3.61) .003 (.002) -.626 (.869)

Thailand 1970 1570 3.82 0.51 .274 (1.14) 0.44 (29.94) 3.6 (0.02) .004 (-) - (-)

1980 2413 3.28 0.51 .292 (1.09) 0.37 (29.56) 3.6 (0.04) .007 (-) - (-)

1990 4379 2.33 0.51 .319 (1.34) 0.71 (30.42) 3.4 (0.08) .007 (-) - (-)

2000 5651 1.97 0.51 .338 (1.77) 0.68 (31.01) 3.1 (0.06) .006 (-) - (-)

Uganda 1991 582 0.68 3.09 .500 (.28) 1.29 (.47) 28.7 (3.68) -.007 (.003) .414 (.546)

2002 884 0.59 3.4 .500 (.28) 1.39 (.55) 28.6 (3.76) .000 (.002) 29.9 (2582)

United Kingdom 1991 22766 0.58 1.88 .511 (.32) 30.91 (3.22) 0.1 (0.01) -.267 (.081) - (-)

United States 1960 15388 0.44 2.49 .506 (.30) 2.54 (.64) 30 (3.62) .040 (.003) -.158 (.076)

1970 20436 0.5 2.53 .509 (.30) 2.68 (.61) 29.9 (3.54) .038 (.003) -.173 (.089)

1980 24985 0.63 2.17 .511 (.32) 2.81 (.60) 30.4 (3.42) .060 (.002) -.142 (.026)

1990 31452 0.68 2.06 .511 (.32) 2.9 (.55) 30.7 (3.33) .062 (.002) -.131 (.024)

2000 39644 0.73 1.86 .511 (.32) 2.93 (.58) 30.7 (3.45) .057 (.002) -.105 (.027)

2005 42482 0.74 1.85 .511 (.32) 3.02 (.60) 31 (3.38) .058 (.004) -.011 (.066)

Venezuela 1971 9369 0.25 3.6 .507 (.27) 1.38 (.52) 28.9 (3.91) .017 (.004) .299 (.214)

1981 9643 0.44 3.05 .511 (.29) 1.65 (.61) 29.1 (3.79) .028 (.003) .076 (.125)

1990 8125 0.36 2.99 .510 (.29) 1.68 (.62) 29.4 (3.79) .029 (.003) -.137 (.108)

2001 8681 0.41 2.4 .509 (.31) 1.93 (.54) 29.7 (3.75) .074 (.003) -.059 (.042)

Vietnam 1989 855 0.87 3.23 .514 (.29) 1.68 (.69) 30.3 (3.26) .038 (.003) -.075 (.052)

1999 1466 0.83 2.5 .516 (.32) 1.83 (.68) 30.7 (3.24) .077 (.003) -.049 (.029)

Notes: Standard deviations presented in parentheses. Standard deviations unavailable for per capita GDP, total
fertility rate, and labor force participation rate due to measurement at higher levels of aggregation than the household.
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Table E.1: Shrinkage weights on measures of extrapolation error in dyadic data.

Dependent variable:
Root Mean Squared Error (RMSE) Mean Prediction Error

(1) (2)

Weight on Prior −3.040∗∗∗ −1.061∗∗∗

(0.137) (0.083)

Target Size −0.691∗∗∗ −0.446∗∗∗

(0.137) (0.083)

Target SE 5.025∗∗∗ 1.622∗∗∗

(0.137) (0.083)

Constant 5.904∗∗∗ 2.675∗∗∗

(0.137) (0.083)

Observations 12,625 12,625
R2 0.130 0.044

Notes: Dependent variables given in column headers. RMSE calculated as√
1
N

∑N

i=1
(βtar − βexti)2 for each target country-year. Mean prediction error (MPE) cal-

culated as average of absolute difference between target estimate and each reference ex-
trapolated estimate. Reference sample size and standard error of extrapolated estimate
standardized to facilitate coefficient comparisons.
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Figure 10: Partial p-values for each of 18 possible strata, ranked by maximum confidence level for rejection
of IV validity. Country-years with at least one strata failing the validity test at the 95% level of confidence
(depicted by hollow-circles) are dropped.
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Figure 11: Cumulative predictions averaged across all targets and accumulated reference data by year. The
dots indicate different robustness checks according to iv-tests. Extrapolation errors greater than 1 in absolute
value are indicated with smaller black icons.
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Figure B1: Simulation results for recovering LATE estimated in Cuba in 2002 using data from the United
States in 1990. The x-axis measures the simulated LATEs with densities reflecting the distribution over
1,000 simulation runs. The top two densities depict the target LATE and the unadjusted reference LATE.
The bottom three figures plot the adjusted reference LATEs after applying the extrapolation procedure.
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Figure C1: Scatter plot of prediction errors associated with OLS (y-axis) and extrapolation method (x-
axis). The top-left panel extrapolates using the largest available reference dyad. The top-right panel chooses
the reference dyad best able to extrapolate to the target in the prior year. The bottom-left panel chooses
the dyad that is geographically closest to the target. And the bottom-right panel chooses the dyad that
minimizes the Mahalanobis distance to the target country-year. The Mahalanobis distance is calculated on
mother’s age at survey, mother’s age at first birth, mother’s educational attainment, spouse’s educational
attainment, labor force participation rate, total fertility rate, and per capita GDP.
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Figure D1: Cumulative predictions averaged across all targets and accumulated reference data by year. The
dots indicate different robustness checks according to iv-tests. Extrapolation errors greater than 1 in absolute
value are indicated with black x’s. Extrapolation results are targeting ATE in target instead of LATE.
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Figure D2: Scatter plot of prediction errors associated with OLS (y-axis) and extrapolation method (x-axis).
The top-left panel extrapolates using the dyad that is geographically closest to the target. The top-right panel
chooses the reference dyad best able to extrapolate to the target in the prior year. The bottom-left panel
chooses the dyad that minimizes the Mahalanobis distance to the target country-year. The Mahalanobis
distance is calculated on mother’s age at survey, mother’s age at first birth, mother’s educational attainment,
spouse’s educational attainment, labor force participation rate, total fertility rate, and per capita GDP. And
the bottom-right panel chooses the largest available cumulative reference data and includes both micro and
macro-level covariates in the reweighting. Extrapolation technique reweighted to target ATE instead of
LATE.
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Figure E1: Optimal weights on zero prior in full data on y-axis, calculated as binned averages over range of
reference sample sizes. Dotted line represents loess smoother with α parameter of 0.9.
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Figure E2: Cumulative shrinkage results for all data, calculated on most recent cumulative reference
population for each target country-year. Weight on zero prior (w ) that minimizes RMSE for all tar-
get country-years across all targets measured on x-axis, such that higher values on x-axis reflect greater
weight on zero prior. RMSE on y-axis. w is a function of extrapolated estimate variance as follows:

βsh =
(

(1−w)∗V ar(βext)
V ar(βext)

)
∗ βextforw ∈ [0, 1]. RMSE is calculated as follows:

√
1
N

∑1
i=0(βtar − βshi

)2 where

i indexes shrinkage weights for the full data. Minimizing shrinkage value given by gray circle.
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