
Dynamic Programming

We’d like to have “generic” algorithmic paradigms for solving problems

Example: Divide and conquer

• Break problem into independent subproblems

• Recursively solve subproblems (subproblems are smaller instances of

main problem)

• Combine solutions

Examples:

• Mergesort,

• Quicksort,

• Strassen’s algorithm

• . . .

Dynamic Programming: Appropriate when you have recursive subprob-

lems that are not independent



Example: Making Change

Problem: A country has coins with denominations

1 = d1 < d2 < · · · < dk.

You want to make change for n cents, using the smallest number of coins.

Example: U.S. coins

d1 = 1 d2 = 5 d3 = 10 d4 = 25

Change for 37 cents – 1 quarter, 1 dime, 2 pennies.

What is the algorithm?



Change in another system

Suppose

d1 = 1 d2 = 4 d3 = 5 d4 = 10

• Change for 7 cents – 5,1,1

• Change for 8 cents – 4,4

What can we do?



Change in another system

Suppose

d1 = 1 d2 = 4 d3 = 5 d4 = 10

• Change for 7 cents – 5,1,1

• Change for 8 cents – 4,4

What can we do?

The answer is counterintuitive. To make change for n cents, we are going

to figure out how to make change for every value x < n first. We then build

up the solution out of the solution for smaller values.



Solution

We will only concentrate on computing the number of coins. We will

later recreate the solution.

• Let C[p] be the minimum number of coins needed to make change for

p cents.

• Let x be the value of the first coin used in the optimal solution.

• Then C[p] = 1 + C[p− x] .

Problem: We don’t know x.



Solution

We will only concentrate on computing the number of coins. We will

later recreate the solution.

• Let C[p] be the minimum number of coins needed to make change for

p cents.

• Let x be the value of the first coin used in the optimal solution.

• Then C[p] = 1 + C[p− x] .

Problem: We don’t know x.

Answer: We will try all possible x and take the minimum.

C[p] =

 mini:di≤p{C[p− di] + 1} if p > 0

0 if p = 0



Example: penny, nickel, dime

C[p] =

 mini:di≤p{C[p− di] + 1} if p > 0

0 if p = 0

Change(p)

1 if (p < 0)

2 then return ∞
3 elseif (p = 0)

4 then return 0

5 else

6 return 1 + min{Change(p− 1),Change(p− 5),Change(p− 10)}

What is the running time? (don’t do analysis here)



Dynamic Programming Algorithm

DP-Change(n)

1 C[< 0] = ∞
2 C[0] = 0

3 for p = 2 to n

4 do min = ∞
5 for i = 1 to k

6 do if (p ≥ di)

7 then if (C[p− di]) + 1 < min)

8 then min = C[p− di] + 1

9 coin = i

10

11 C[p] = min

12 S[p] = coin

Running Time: O(nk)



Dynamic Programming

Used when:

• Optimal substructure

• Overlapping subproblems

Methodology

• Characterize structure of optimal solution

• Recursively define value of optimal solution

• Compute in a bottom-up manner


