Dynamic Programming

We’d like to have “generic” algorithmic paradigms for solving problems

Example: Divide and conquer

e Break problem into independent subproblems

e Recursively solve subproblems (subproblems are smaller instances of
main problem)

e Combine solutions

Examples:
e Mergesort,
e Quicksort,
e Strassen’s algorithm

Dynamic Programming: Appropriate when you have recursive subprob-
lems that are not independent

Example: Making Change

Problem: A country has coins with denominations
l=dy<dy <---<dj.

You want to make change for n cents, using the smallest number of coins.

Example: U.S. coins

di=1 do=5 d3 =10 dy =25

Change for 37 cents — 1 quarter, 1 dime, 2 pennies.

What is the algorithm?

Change in another system

Suppose

di=1dy=4 d3=5 dy =10

e Change for 7 cents — 5,1,1
e Change for 8 cents — 4,4

What can we do?

Change in another system

Suppose

di=1dy=4 d3=5 dy =10

e Change for 7 cents — 5,1,1
e Change for 8 cents — 4,4

What can we do?

The answer is counterintuitive. To make change for n cents, we are going
to figure out how to make change for every value z < n first. We then build
up the solution out of the solution for smaller values.

Solution

We will only concentrate on computing the number of coins. We will
later recreate the solution.

e Let (C|p|] be the minimum number of coins needed to make change for
p cents.

e Let = be the value of the first coin used in the optimal solution.

@ Then Clp|=1+Clp—z].

Problem: We don’t know x.

Solution

We will only concentrate on computing the number of coins. We will
later recreate the solution.

e Let (C|p|] be the minimum number of coins needed to make change for
p cents.

e Let = be the value of the first coin used in the optimal solution.

@ Then Clp|=1+Clp—z].

Problem: We don’t know x.

Answer: We will try all possible x and take the minimum.

| mingg,<,{Clp—d;) +1} if p>0
Clpl = { 0 ifp=20

Example: penny, nickel, dime

- mini;digp{C'[p — dz] + 1} if p >0
Clel= { 0 ifp=0

CHANGE(p)
if (p <0)
then return oo
elseif (p =0)
then return 0
else
return 1 + min{CHANGE(p — 1), CHANGE(p — 5), CHANGE(p — 10)}

O CUL I W N ==

What is the running time? (don’t do analysis here)

Dynamic Programming Algorithm

DP-CHANGE(n)

1 Cl<0]=x
2 C0]=0
3 forp=2ton
4 do min = oo
5 for :=1to k
6 do if (p > d;)
7
8
9
10
11 Clp] = min
12 Slp| = coin

Running Time: O(nk)

then if (Clp—d;]) +1 < min)

then min = Clp —d;] + 1
com =1

Dynamic Programming

Used when:
e Optimal substructure

e Overlapping subproblems

Methodology
e Characterize structure of optimal solution
® Recursively define value of optimal solution

e Compute in a bottom-up manner

