Analysis of Algorithms

- Design d analysis of algorithms
- proofs
- theory
- eye to practice

Matrix Multiplication

$$
\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 0 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3 \\
2 & 6
\end{array}\right]=\left[\begin{array}{ll}
5 & 9 \\
10 & 24
\end{array}\right]
$$

pseubocode

$$
\begin{aligned}
& \text { input } \begin{array}{ll}
A & n \times m \\
B & m \times p
\end{array} n=m=P \\
& \text { output } C \text { nip } \\
& C=A \cdot B \\
& \text { for } i=1 \text { to } n \\
& \text { for } j=1 \text { to } p \\
& C[i, j]=0 \\
& \text { for } k=1 \text { to } m \\
& C[u, j]+=A[i, k] \cdot B[k, j] \\
& \begin{aligned}
& \text { Running time }= O(n m p) \\
& O\left(n^{3}\right)
\end{aligned}
\end{aligned}
$$

Lower bound of

$$
\Omega\left(n^{2}\right)
$$

Can you do better than $O\left(n^{3}\right)$?

Use recursion?

$$
\begin{aligned}
& \left(\frac{a: b}{c i d}\right)\left(\begin{array}{l}
e \cdot g \\
f
\end{array} h^{\prime}\right. \\
& r=a e+b f \\
& s=a g+b h \\
& t=c e+d f \\
& u=c g t d h
\end{aligned}
$$

$2 n \times n$ mat. nut.

$$
\begin{aligned}
& n \times n \text { mat. nut. }\left(\frac{n}{2}\right)^{3} \\
& >8 \frac{n}{2} \times \frac{n}{2} \text { mat. mutations (n) }
\end{aligned}
$$

$4 \frac{1}{2} \times \frac{n}{2}$ mat. additions $\left(\frac{n}{2}\right)^{2}$

Recurrences
$T(n)=$ fine to molt. $2 n \times n$ matrices

$$
\begin{aligned}
& \quad \begin{array}{l}
22 \\
T(n)=8 T\left(\frac{n}{2}\right)+4\left(\frac{n}{2}\right)^{2} \\
=8 T\left(\frac{n}{2}\right)+n^{2} \\
=O\left(n^{3}\right) \rightarrow 0\left(n^{\lg 7}\right) \\
\text { fewer mulls. }=O\left(n^{2.81}\right)
\end{array}
\end{aligned}
$$

but mores additions \downarrow \Rightarrow foster alg. $O\left(n^{237 . .}\right)$

Maximum Subsequence Sum
Given n numbers $a_{1} \ldots a_{n}$ (at least one is positive)

$$
\begin{aligned}
& \max _{1 \leq l \leq u \leq n} \sum_{k=l}^{4} a_{k} . \\
& -2 \underbrace{\frac{11-4}{}-5}_{20}-54-2
\end{aligned}
$$

n^{2} subsequence each consists of $\leq n$ terms
Straightforward $O\left(n^{3}\right)$ alg.
only look sub seq. that staitlend wa number 20
Compute all n^{2} subseq.

$$
S[x, y]=S[x, y-1]+a_{y} .
$$

replace a loop w) 1 addition $O\left(n^{2}\right) \quad O(n)$

