Greedy Algorithms

- easy to design
- not always correct
greedy alg: Choose next "step" based orly on "simple" calculations of the input

Algs:
Shoitsist segment first:
ミ NOT UPTIMAL

Earliest segment (by start time) Not optimal

$$
---\quad-\quad
$$

Least \# of overlaps

$$
\overline{=}=
$$

Eolliest segment (by finish time)
Prove a greedy algin opt.

- Opt. substructure
- greedy choice properties
\rightarrow there exist an optimal solution that contains the choice made in step 1
$m(i, j)=$ Hofinterals in an opt. sol y from time i to time j

$$
m[i, j]=\max _{\substack{\text { intervals } \\ k \ln (i, j)}}\left\{m\left[i, s_{k}\right]+m\left[f_{k i j}\right]+1\right\}
$$

EFT
Let $a_{m}=\left(s_{m}, f_{m}\right)$ be the activity in (i;)) w/ eallust finishing time.
Then
greedy \rightarrow a) \exists an optimal colin using a_{m}
\rightarrow b) $\left(i, S_{m}\right)$ is empty
Pf b) $)_{i}^{i} s_{m} a_{m} f_{m}$
HK would have palter fin. Time
9) suppose we have an opt. sol $n(w) 0 a_{m}$

or a_{m} then $X-a_{1}+a_{m}$ is also an optimal sol'n.
because a_{m} does not ovelap

$$
w \mid a_{2}, a_{3}, \ldots
$$

Greedy

- identify apt. substiucture
- cast pioblem as one chare trecuise on remanny problem(s)
- piove \exists an opt. solin cansiant w) fust chaice

Robbery
Rob a house
Enter wi knapsack. Fill the knapsack al most profitable items

Hem	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$B=50$
w_{j} wt.	10	20	30	knapssekk charity
v_{j} juglve	60	100	120	5

$\frac{\text { Pichblem Valicats }}{\text { integral }(0+1)}$ - tale all or nothing of an fractional - take fractional pots of items

Both froctianal dintegich have optinal substiveture.

Chooseitems by $\frac{v_{j}}{w_{j}}$ maximied

$$
\begin{gathered}
1,2, \frac{2}{3} \text { of } 3 \\
50 \mathrm{lbs} . \\
\$ 240
\end{gathered}
$$

Integial- greedy does not wolk

