VCisp 2-applox.
Set Cover $O(\lg n)$-approx.
Subset Sum $(1+\varepsilon)$-ippicx, fol any $\varepsilon>0$. runningtime will slepend on ε
FPTAS polyin $n, \frac{1}{\varepsilon}$
PTAS poly in n fol -1 xed ε
PTAS $O\left(n^{1 / \varepsilon}\right)$ fítas $\left.O n^{2}\left(\frac{1}{\varepsilon}\right)^{3}\right)$

Set Cover
$x=$ bunch of elements
\mathcal{F} : family of subsets of X
A cupel $C \leq \mathcal{F}$ sit. $\bigcup_{S_{i} \in C} s_{i}=X$.

$$
\min |C|
$$

elements: skills
sets : people
Choose small set of people to cove all skills
ells.

 sdi-

$$
\sum_{x=S} C_{x}=O(\lg n)
$$

$\frac{G_{\text {need }}}{\text { Repeat }}$
pick the set w the max \# of uncovered elements

Alg choose $S_{1} \ldots S_{k}$
If x is covered f oi the first lime in S_{i} then
C alg cor $C_{x}=\frac{1}{\left|S_{i}-\left(S_{1} 0 \cdots \cup S_{(-1)}\right)\right|}$
(*. opt. caver

$$
|C|=\sum_{X \in X} c_{x}
$$

FF: $\sum_{S<c^{*}<S} C_{x}$

$\sum_{x \in X}\left(x S_{S \in C^{*} x^{\in S}}\right.$
n=\#elts.

$$
\begin{gathered}
\sum_{x \in S} c_{x}=O(\lg n) \\
|C|=\sum_{x \in x} c_{x} \leq \sum_{s \in C^{*}} \sum_{x \in S} c_{x}=\sum_{s \in C^{k}} O(\lg n)=\left|C^{*}\right| \cdot O(\lg n)
\end{gathered}
$$

$$
F_{0,1} S_{F} C^{*} \sum_{x \in S} C_{x}=O\left(\lg _{n}\right)
$$

Let u_{i} 二 \# of uncured pelts in S after greedy chooses $S_{1} \ldots, S_{i}$
$u_{0}=|S|$ in th iteration of greedy

$$
u_{k}=0
$$

$u_{i}-u_{i-1}$ efts. of S are raved, and assigned cost $\frac{1}{u_{i-1}}$

$$
\begin{aligned}
& \sum_{x_{\in S} S} C_{x}=\sum_{i=1}^{k}\left(u_{i-1}-u_{i}\right) \cdot \frac{1}{u_{i-1}} \\
&=\sum_{i=1}^{k} \sum_{i=1}^{u_{i-1}} \frac{1}{u_{i-1}} H(x)=\sum_{i=1}^{x} \frac{1}{x} \\
& \leq \sum_{i=1}^{k} \sum_{j=1}^{u_{i-1}=u_{i+1}} \frac{1}{j} \\
& \leq \sum_{l=1}^{k}\left(\sum_{j=1}^{u_{i-1}} \frac{1}{j}-\sum_{j=1}^{u_{i}} \frac{1}{j}\right) \begin{array}{c}
u_{0}-H_{1} \\
H_{0}-H_{1} \\
H_{1}-H_{3} \\
\hline
\end{array} \\
& \leq\left(H\left(u_{i=1}\right)-H\left(u_{i}\right) \mid=H\left(u_{0}\right)-H\left(u_{k}\right)\right. \\
& \leq H\left(u_{0}\right)=H(|S|) \leq H(n) \leq O(\lg n)
\end{aligned}
$$

$S=\{1,4,5\} \quad t=8$
Find subset of S whosesmis $s t$, and is large as po ssible.
Carful Rounding - represent an expanontial $4)^{\text {jried sed applox }}$ by a polynomal stied it.

$$
0,1,4,2,6,9,40
$$

$$
\begin{array}{lllllllll}
& \{1,4,5\} \\
0 & 0 & & & & & & & \\
1 & 0 & 1 & & & & & & \\
4 & 0 & 1 & 4 & 5 & & & & \\
5 & 0 & 1 & 4 & 5 & \$ & 6 & 9 & 10 \\
& 0 & 1 & 4 & 5 & 6 & 9 & 10 & 78 \\
& 81112 \\
& 0 & 13 & 16 & 17
\end{array}
$$

Trim (L) \boldsymbol{L}^{\prime} Fix F .

$$
\begin{aligned}
& \text { If } y \in L-L^{\prime} \\
& \quad \text { then } \exists 2 \in l^{\prime} \text { st. } \frac{y}{1+\delta} \leq 2 \leq y \\
& L= \\
& \langle 10,11,12,15,20,2(1,22,23,2 / 4,29\rangle
\end{aligned}
$$

$\delta=.1 \quad$ \#ets.inlist $\leq \lg _{1,1} 29$.

$$
\rightarrow \log _{1+\delta} t \text { polynomial in } n
$$

\rightarrow output is close to the best possible answer $\geq(1-\varepsilon) t^{*}$

E-desired acculacy

- add elt. to list
- Ti,m $w\left|\quad \delta=\frac{\varepsilon}{2 n} \quad n=|S|\right.$

$$
\begin{aligned}
\log _{1+\delta} t=\frac{\ln t}{\ln 1+\delta} & =\frac{\ln t}{\ln \left(1+\frac{\varepsilon}{2 n}\right)} \\
\frac{x}{1+x} \leqslant \ln (1+x) s x \quad & \leq \frac{\ln t\left(1+\frac{\varepsilon}{2 n}\right)}{\varepsilon / 2 n} \\
& =\frac{2 n \ln t}{\varepsilon} \cdot\left(1+\frac{\varepsilon}{2 n}\right) \\
& \leq \frac{4 n \ln t}{\varepsilon}
\end{aligned}
$$

$$
\left(1+\frac{\varepsilon}{2 n}\right)^{n} \leq 1+0(\varepsilon)
$$

