Sorting Heapsolt $O(n \lg n)$ time
Several $O\left(n l_{g n}\right)$ time sorts No - (nlgn) time sorts known.
we'd like to say, no sort ins in o(nlgn) time.
三 There is no alg. that on all inputs runs in o $(n \lg n)$ time.

Sorts do comparisons d swaps

$$
\begin{array}{|l|l|l|l|}
\hline 5 / 2 \mid 1 & 9 & 7 \\
\hline x & 7
\end{array}
$$

Restrict attention to comparisons.
Anis sating alg. that a cusses the data using only compailsons) d swaps must do $\Omega(n \lg n)$ comparisons. Assume: elements are distinct \leq

3 items $\quad a_{1} a_{2} a_{3}$

Every permutation has to be at a leaf.
\#leaves $\geq n 1$
\#leaves $\leq 2^{h}$

$$
\begin{array}{ll}
& 2^{h} \geqslant n! \\
\Rightarrow \quad & h \geq \lg (n!) \\
& h=\Omega(n \lg n) .
\end{array}
$$

\Rightarrow any alg. must do at least $\Omega(n \lg n)$

Stirling's Approx.

$$
\begin{aligned}
n! & =\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\theta\left(\frac{1}{n}\right)\right) \\
& \sim\left(\frac{n}{\rho}\right)^{n} \\
\operatorname{lo}\left(\frac{n}{\rho}\right)^{n} & =n \ln n-n \ln e \\
& =n(\ln n-1) \\
& \sim n \lg n
\end{aligned}
$$

C.S. $O(n+k) \quad$ l...k
R.S. $O(d(n+b)) \quad \begin{aligned} & \text { do diagts } \\ & \text { b base }\end{aligned}$

Col. dir.

$$
\begin{array}{r}
O\left(n+27^{20}\right) \\
O(20(n+2))) \\
\lg n=20,000 \quad 0(n \lg n)
\end{array}
$$

$$
\begin{aligned}
\text { integers } & \Rightarrow \text { fixed pression flacting } \\
& \\
& \Rightarrow \text { pationts }
\end{aligned}
$$

