Selection
Given a set of n numbers, want to find the $1^{\text {th }}$ smallest.

Cases

$$
\begin{aligned}
& i=1 \quad \text { minimum } O(n) \\
& i=n \quad \text { maximum } \\
& i=n / 2 \text { median }
\end{aligned}
$$

sort, return $A[n 12]$.
Median is" ~ 0 harder than" sorting Is median "easier than" sorting

$$
\begin{aligned}
& T(n)=M+T\left(\frac{n}{2}\right)+O(n) \\
& \text { If } M=O(n) \\
& T(n)=T\left(\frac{n}{2}\right)+O(n) \\
& n^{\lg _{2} 1} \quad n \\
& 1 \\
& n \\
& O(n) .
\end{aligned}
$$

Find something "close" to median, and not increase asymptotic running time

Suppose we found an element in the middle half (between $\frac{n}{4} \frac{3 n}{4}$ smallest)

Always recuse on a plece of size $\leq \frac{3}{4} n$.

$$
\begin{aligned}
& T(n)=T\left(\frac{3}{4} n\right)+O(n) \geqslant O(n) \\
& n \lg _{43} \mid n
\end{aligned}
$$

$$
\begin{aligned}
& T(n) \leqslant T\left(\frac{n}{5}\right)+T\left(\frac{3 n}{4}\right)+O(n) \\
& C \operatorname{laim} T(n)=O(n) \\
& T(n) \leqslant T\left(\frac{n}{5}\right)+T\left(\frac{3 n}{4}\right)+k n
\end{aligned}
$$

Prove $T(n) \leq c n$ for some c Pf

$$
\begin{aligned}
T(n) & \leq T\left(\frac{n}{5}\right)+T\left(\frac{3 n}{4}\right)+k n \\
& \leq \frac{c n}{5}+\frac{3 c n}{4}+k n \\
& =\frac{19}{20} c n+k n \\
& =c n-\frac{1}{20} c n+k n \leq c n \\
& \text { if }-\frac{1}{20} c n+k n \leq 0 \\
& \text { if } \frac{1}{20} c n \geq k n \\
& c \geq 20 k .
\end{aligned}
$$

Choose $C=20 \mathrm{k}$. \otimes

Randomized Alas.
Randomization is a tool or resound.

Las eogerect, running time is random correctness random, running time is det. Monte Call

Hiving Problem

$$
\begin{aligned}
& \text { best }=0 \\
& \text { forl }=1 \text { ton }
\end{aligned}
$$

internew candidate o
sf i is better than best hive i

$$
\text { best }=i
$$

count \#hivings.
$\partial(n)$ hinings

$$
\begin{aligned}
& (n) \text { hinings } \\
& 1 \leq \text { hinings } \leq n . \quad \frac{n}{2} .
\end{aligned}
$$

Assume all orderingsof
candidates are equally
likely.
expected value $(X)=$

$$
\sum_{\substack{\text { outcomes } \\ \text { of } X}} \operatorname{Pr}(X \text { occurs }) \cdot v_{a} \text { que }(X) \text {. }
$$

$h=\#$ hissings
$h\left(\pi_{i}\right)=$ \#hirings when the order of 4 candidates is permutation π i

$$
E[h]=\sum_{\substack{\text { perm. } \\ \pi_{i}}} \frac{1}{n!} h\left(\pi_{i}\right)
$$

