=all compasses are with pinot.

$$
T(n)=T(x)+T(n-x-1)+O(n)
$$

when the split puts x efts. on left side.

$$
\text { if } \begin{array}{rlrl}
x=\frac{n}{2} & & T(n) & =2 T\left(\frac{n}{2}\right)+0(n) \Rightarrow O(\lg n) \\
x=1 & & T(n) & =T(1)+T(n-2)+O(n) \\
& =T(n-2)+O(n) \\
& & =n+(n-2)+(n-4)+\cdots+1=O\left(n^{2}\right)
\end{array}
$$

What happens in aug. case?

$$
\text { If } \begin{aligned}
x=\sum_{10} T(n) & =T\left(\frac{n}{10}\right)+T\left(\frac{9 n}{10}\right)+O(n) \\
& =O(n \lg n) .\binom{\text { need }}{\text { poof }}
\end{aligned}
$$

How often is the split $\frac{1}{10}, \frac{9}{16}$ or betel?

$80^{\circ} \%$ of time

Formally
$T(n)=$ expected rooming tine of q.s.
 th smallest
elf. is pivot (Exp. running when th smallest is pivot 1

$$
\left.T(n)=\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i)+O(n))\right)
$$

one (an show by auction $T(n)=O(n) \lg n)$

Different analysis:
Count executions of line 6
三 counting comparisons

- all comps. w/ pivot
- each pair of efts is compare at most once
ramp data $2, \ldots z_{n}$ in jolted order.

$$
Z_{i j}=\left\{z_{i,} z_{i, 1}, \ldots z_{j}\right\}
$$

$$
X_{i j}=I\left\{z_{i} \text { is compared in } z_{j}\right\}
$$

$X=$ total $\#$ comps

$$
\begin{aligned}
X & =\sum_{i=1}^{n \cdot 1} \sum_{j=i+1}^{n} X_{i j} \\
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] . \\
& =\sum_{i=1}^{n+1} \sum_{j=i+1}^{n} P_{1}\left(Z_{i} \mid \text { s compared } \omega \mid z_{j}\right)
\end{aligned}
$$

z_{i} iscmpoed to z_{j} iff
either $z_{;}$or z_{j} is chosen as pliot before any othe element in $Z_{i j}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(z_{i} \text { (onp. to } z_{j}\right)=\frac{2}{j-i+1} \\
& \sum_{i=1}^{n-1} \sum_{j=1+1)}^{n} \frac{2}{j-i+1}\left(k=j-(+1) \quad \begin{array}{c}
j=i+1 \\
k=(1+-(t)=2 \\
j=n \\
k=n(i)
\end{array}\right. \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n i+1} \frac{2}{k} \leq \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \leq \sum_{i=1}^{n-1} 2(\ln n+1) \\
& =O(n \lg n) .
\end{aligned}
$$

