Maximum Flows

- A flow network $G=(V, E)$ is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity .
- If $(u, v) \notin E$, we assume that $c(u, v)=0$.
- We distinguish two vertices in a flow network: a source s and a sink t.

A flow in G is a real-valued function $f: V \times V \rightarrow R$ that satisfies the following three properties:

Capacity constraint: For all $u, v \in V$, we require $f(u, v) \leq c(u, v)$.
Skew symmetry: For all $u, v \in V$, we require $f(u, v)=-f(v, u)$.
Flow conservation: For all $u \in V-\{s, t\}$, we require

$$
\sum_{v \in V} f(u, v)=0
$$

The value of a flow f is defined as

$$
\begin{equation*}
|f|=\sum_{v \in V} f(s, v), \tag{1}
\end{equation*}
$$

Example

2

Solutions

Ford Fulkerson

Ford-Fulkerson-Method (G, s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

- The residual capacity of (u, v), is

$$
\begin{equation*}
c_{f}(u, v)=c(u, v)-f(u, v) \tag{2}
\end{equation*}
$$

- The residual graph G_{f} is the graph consisting of edges with positive residual capacity
- Flows add

$s-t$ Cuts

An $s-t$ cut satsfies

- $s \in S, t \in T$
- $S \cup T=V, S \cap T=\emptyset$

- For all cuts (S, T) and all feasible flows $f, f(S, T) \leq c(S, T)$
- For all pairs of cuts $\left(S_{1}, T_{1}\right)$ and $\left(S_{2}, T_{2}\right)$, and all feasible flows $f, f\left(S_{1}, T_{1}\right)=$ $f\left(S_{2}, T_{2}\right)$.

Max-flow min-cut theorem

If f is a flow in a flow network $G=(V, E)$ with source s and $\operatorname{sink} t$, then the following conditions are equivalent:

1. f is a maximum flow in G.
2. The residual network G_{f} contains no augmenting paths.
3. $|f|=c(S, T)$ for some $\operatorname{cut}(S, T)$ of G.

Ford Fulkerson expanded

Ford-Fulkerson (G, s, t)

```
for each edge \((u, v) \in E[G]\)
    do \(f[u, v] \leftarrow 0\)
    \(f[v, u] \leftarrow 0\)
    while there exists a path \(p\) from \(s\) to \(t\) in the residual network \(G_{f}\)
    do \(c_{f}(p) \leftarrow \min \left\{c_{f}(u, v):(u, v)\right.\) is in \(\left.p\right\}\)
        for each edge \((u, v)\) in \(p\)
            do \(f[u, v] \leftarrow f[u, v]+c_{f}(p)\)
            \(f[v, u] \leftarrow-f[u, v]\)
```


Algorithm

Graph

Algorithm

Graph

Algorithm

Graph

