## Skip Lists

Simple "balanced trees" using randomization

Motivation

- Ease of coding
- speed (debatable)

Starting Point Linked Lists (slow, simple)


## Starting Point



- Lists $1, \ldots, \log n$
- $n / 2^{\ell-1}$ nodes in list $\ell$
- Define the level of a node to be the highest list it is in. A node a level $i$ is in lists $1, \ldots, i$. There are $n / 2^{i-1}$ nodes at level $i$
- Can search in $O(\log n)$ time
- What about insert and delete?


## Idea: Maintain approximately and randomly

- Each node $j$ chooses a level, $v(j)$ and is then on lists $1, \ldots v(j)$.
- Approximately $n / 2^{i}$ nodes at level $i$
- Let maximum level be MAXLEVEL
- We maintain MAXLEVEL linked lists.

```
RANDOM-LEVEL()
level = 1
while (RANDOM}(0,1)<1/2
    do level = level +1
return level
```

- $\operatorname{Pr}($ level $=1)=1 / 2$
- $\operatorname{Pr}($ level $=2)=1 / 4$
- $\operatorname{Pr}($ level $=3)=1 / 8$
- $\operatorname{Pr}($ level $=i)=1 / 2^{i}$


## Code

Linked list routines

- LL-SEARCH $(L$, start, $x)$ - returns the largest element $<x$ on linked list $\mathbf{L}$ starting from start
- LL-insert $(L$, start, $x)$ - inserts $x$ into linked list L, starting from start SEARCH (x)
$\mathbf{p}=M A X L E V E L$ header
for $i=M A X L E V E L$ downto 1 do $p=\mathrm{LL}-\operatorname{SEARCH}(L[i], p, x)$
if $p \rightarrow n e x t \rightarrow k e y=x$ do return x else return "not found"

INSERT(x)
$\mathbf{p}=M A X L E V E L$ header
$\ell=$ RANDOM-LEVEL ()
for $i=M A X L E V E L$ downto 1
do $p=\mathrm{LL}-\operatorname{SEARCH}(L[i], p, x)$
if $(i \leq \ell)$
do $\operatorname{LL-insert}(L[i], p, x)$

## Code

Delete Similar to insert

Running Time Big-O of MAXLEVEL + the time to do all the searches. (Total down moves plus right moves).


## Analysis

Expected number of moves per list

$$
(1 / 2) 1+(1 / 4) 2+(1 / 8) 3+\ldots \leq 2
$$

Total time is therefore $O(\log n)$

