
Multiple Machines

• Model Multiple Available resources

– people

– time slots

– queues

– networks of computers

• Now concerned with both allocation to a machine and ordering on that

machine.



P ||Cmax

NP-complete from partition.

Example
j pj
1 10

2 8

3 6

4 4

5 2

6 1

• What is the makespan on 2 machines?

• 3 machines ?

• 4 machines ?



Approxmiation Algorithms

• Cannot come up with an optimal solution in polynomial time

• Will look at relative error : Cmax(our algorithm)/Cmax(OPT )

• Challenges:

– Our algorithm’s performance is different on different instances

– We can’t compute Cmax(OPT )



Approxmiation Algorithms

• Cannot come up with an optimal solution in polynomial time

• Will look at relative error : Cmax(our algorithm)/Cmax(OPT )

• Challenges:

– Our algorithm’s performance is different on different instances

– We can’t compute Cmax(OPT )

Solution:

• We will use a worst case measure on performance

• We will use a lower bound on Cmax(OPT )



Approximation Algorithms

An algorithm A is a ρ approximation algorithm for a problem, if for all

inputs

Cmax(A)

Cmax(OPT )
≤ ρ

.

In addition, A must run in polynomial time.

We can’t compute Cmax(OPT ) .

Recipe:

• Instead, we compute a lower bound LB(OPT ) , such that

– LB(OPT ) is easy to compute

– LB(OPT ) ≤ Cmax(OPT ) .

• We then show that Cmax(A) ≤ ρLB(OPT ) .

Combining the previous two steps, we have:

Cmax(A) ≤ ρLB(OPT ) ≤ ρCmax(OPT )

which can be rewritten as

Cmax(A)

Cmax(OPT )
≤ ρ



.

Notes:

• Must come up with a good lower bound

• Can replace Cmax with any objective.



Lower Bounds for P ||Cmax

• Average load

• Longest job



Lower Bounds for P ||Cmax

• Average load – d∑ pj/me
• Longest job – pmax = maxj{pj}



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

Analysis

• Let t be the last time at which all machines are busy.

• t ≤ ∑
j pj/m

• Cmax ≤ t + pmax ≤
∑
j pj/m + pmax .

Put this together with our lower bound:

Cmax ≤ t + pmax ≤
∑
j
pj/m + pmax ≤ 2LB ≤ 2OPT



Improved Algorithm

• Schedule length is average load plus last job.

• When last job is small, the schedule is shorter.

• Force last job to be small – LPT (Longest Processing Time).

LPT is a 4/3-approximation for P ||Cmax.

Proof Outline

• If last job is small ( ≤ 1/3OPT ) then 4/3-approximation

• Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: . A polynomial-time approximation

scheme (PTAS) is an algorithm that, given fixed ε > 0 , returns at (1 + ε)

-approximation in polynomial time. The running time can have a bad

dependence on ε, such as nO(1/ε) .

P ||Cmax has a PTAS.



Precedence Constraints

• P∞|prec|Cmax is known as project scheduling.

• P |prec|Cmax has a 2-approximation.

What are good lower bounds for P |prec|Cmax ?



Precedence Constraints

• P∞|prec|Cmax is known as project scheduling.

• P |prec|Cmax has a 2-approximation.

What are good lower bounds for P |prec|Cmax ?

• Average load

• pmax

• any path in the precedence graph

• the critical path is the longest path in the precedence graph.



Unit Processing Times

P |pj = 1, prec|Cmax is NP-hard.

Heuristics

• Critical Path (CP) rule

– The job at the head of the longest string of jobs in the constraint

graph has the highest priority

– P |pj = 1, tree|Cmax is solved by CP.

• Largest Number of Successors First (LNS)

– The job with the largest total number of successors in the constraint

graph has highest priority.

– For in-trees and chains, LNS is identical to CP

– LNS is also optimal for P |pj = 1, outtree|Cmax

• Generalization to arbitrary processing times is possible

Fixed Number of Processors

• P2|pj = 1, prec|Cmax is solvable in polynomial time

• P3|pj = 1, prec|Cmax is a big open question.



Preemptions: P |pmtn|Cmax

• McNaughton’s wrap-around rule is optimal.

Example
j pj
A 7

B 10

C 1

D 4

E 9



LP for P |pmtn|Cmax

Variables: xij is the time that job j runs on machine i . Cmax is also

a variable.

Constraints

• Each job runs for pj units of time

• Each machine runs for at most Cmax time.

• Cmax is more than any processing time.

minCmax (1)

s.t. (2)∑m
i=1 xij = pj j = 1 . . . n (3)∑n

j=1 xij ≤ Cmax i = 1 . . .m (4)∑m
i=1 xij ≤ Cmax j = 1 . . . n (5)

(6)

Note that LP only assigns pieces of jobs to machines. Need to also assign

jobs to times.



Machines with speeds – Q|pmtn|Cmax

• Machines M1, . . . ,Mm with speeds v1, . . . , vm .

• Assume wlog that v1 ≥ v2 ≥ vm

• Assume wlog that p1 ≥ p2 ≥ pn

• If a job runs for one unit of time on machine Mi , it uses up vi units

of processing.

• If job j runs on machine Mi , then it takes pj/vi time units to

complete.

Example
j pj
A 20

B 16

C 2

D 1

What are the lower bounds



Lower bounds for Q|pmtn|Cmax

• What is the analog of pmax ?

• What is the analog of average load ?

• Are there others ?



Lower bounds for Q|pmtn|Cmax

• What is the analog of pmax ? – p1/v1

• What is the analog of average load ? –
∑
pj/

∑
vi

• Are there others ? – Yes

General Lower Bound

Cmax ≥ max

p1
v1
,
p1 + p2
v1 + v2

, . . . ,

∑m−1
j=1 pj∑m−1
i=1 vi

,

∑n
j=1 pj∑m
i=1 vi





Lower Bound

Cmax ≥ max

p1
v1
,
p1 + p2
v1 + v2

, . . . ,

∑m−1
j=1 pj∑m−1
i=1 vi

,

∑n
j=1 pj∑m
i=1 vi



What is the lower bound for our example?

Can we achieve this lower bound?



LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1
j pj
A 20

B 16

C 2

D 1

v = (4, 2, 1)

Example 2
j pj
A 20

B 16

C 12

D 1

Notes:

• LRPT-FM is optimal in continuous time

• LRPT-FM is near otimal in discrete time, for small time steps.


