Multiple Machines

e Model Multiple Available resources
— people
— time slots
— queues
— networks of computers

e Now concerned with both allocation to a machine and ordering on that
machine.



P|Cmax

NP-complete from partition.

Example
o,
10
8
6
4
2
1

S U N W N =S

e What is the makespan on 2 machines?
e 3 machines ?

e 4 machines ?



Approxmiation Algorithms

e Cannot come up with an optimal solution in polynomial time
e Will look at relative error : (. (our algorithm)/C,,..(OPT)
e Challenges:

— Our algorithm’s performance is different on different instances
— We can’t compute C..(OPT)



Approxmiation Algorithms

e Cannot come up with an optimal solution in polynomial time
e Will look at relative error : (. (our algorithm)/C,,..(OPT)
e Challenges:

— Our algorithm’s performance is different on different instances
— We can’t compute C..(OPT)

Solution:

e We will use a worst case measure on performance

e We will use a lower bound on .. (OPT)



Approximation Algorithms

An algorithm A is a p approximation algorithm for a problem, if for all
inputs

CmaX(A)
<p
Conax(OPT)

In addition, A must run in polynomial time.

We can’t compute C,.x(OPT) .

Recipe:
e Instead, we compute a lower bound LB(OPT) , such that

— LB(OPT) is easy to compute
— LB(OPT) < Cpue(OPT) .

e We then show that C,..(A) < pLB(OPT) .
Combining the previous two steps, we have:

Cinax(A) < pLB(OPT) < pChax(OPT)
which can be rewritten as
CInaX(A)
<p
Chrnax(OPT)




Notes:
e Must come up with a good lower bound

e Can replace (., with any objective.



Lower Bounds for P||Cpax

e Average load

e Longest job



Lower Bounds for P||Cpax

e Average load — [xp;/m]
e Longest job — p,. = max;{p;}



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.



List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

Analysis
e Let ¢/ be the last time at which all machines are busy.
ot <x;p;/m
® Ciax < T+ Pmax < T Pj/M + Prnax -

Put this together with our lower bound:

Omax S t+pmax S Zp//m +pmax S 2LB S 20PT
J



Improved Algorithm

e Schedule length is average load plus last job.
e When last job is small, the schedule is shorter.

e Force last job to be small — LPT (Longest Processing Time).

LPT is a 4/3-approximation for P||Cy.x-

Proof Outline
e If last job is small ( < 1/30PT ) then 4/3-approximation

e Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: . A polynomial-time approximation
scheme (PTAS) is an algorithm that, given fixed ¢ >0, returns at (1 +¢)
-approximation in polynomial time. The running time can have a bad
dependence on ¢, such as n?/9 .

P||Chx has a PTAS.



Precedence Constraints

e Poo|prec|Ch.  is known as project scheduling.

e P|prec|Ch.c has a 2-approximation.

What are good lower bounds for P|prec|Clay



Precedence Constraints

e Poo|prec|Ch.  is known as project scheduling.

e P|prec|Ch.c has a 2-approximation.

What are good lower bounds for P|prec|Clay
e Average load
® Pmax
e any path in the precedence graph
e the critical path is the longest path in the precedence graph.



Unit Processing Times

Plp; = 1, prec|Cpax  is NP-hard.

Heuristics
e Critical Path (CP) rule

— The job at the head of the longest string of jobs in the constraint
graph has the highest priority

— Plp; = 1,tree|Cy.x is solved by CP.
e Largest Number of Successors First (LNS)

— The job with the largest total number of successors in the constraint
graph has highest priority.
— For in-trees and chains, LNS is identical to CP

— LNS is also optimal for Pp; = 1,outtree|C, .«

e Generalization to arbitrary processing times is possible

Fixed Number of Processors
® 2|p; = 1,prec|C, is solvable in polynomial time

® P3|p;, = 1,prec|C,, is a big open question.



Preemptions: P|pmtn|Ciax

e McNaughton’s wrap-around rule is optimal.

Example
J Dpj

7

10

HOQW >
© A=



LP for P|pmtn|Ciax

Variables:  z;;, is the time that job j; runs on machine . (), is also
a variable.

Constraints
e Each job runs for p; units of time
e Fach machine runs for at most (.. time.

e (.. is more than any processing time.

min Clyax (1)
s.t. (2)
ity xii=p; Jj=1...n (3)
S 1% S Cmax t=1...m (4)
it @i < Chax J=1...1n (5)
(6)

Note that LP only assigns pieces of jobs to machines. Need to also assign
jobs to times.



Machines with speeds — Q|pmtn|Ciax

e Machines M,... M, with speeds uvy,....,v,, .
e Assume wlog that v, > v, > v,
e Assume wlog that p;, > py > p,

e If a job runs for one unit of time on machine J/; , it uses up v; units
of processing.

e If job j runs on machine M/, , then it takes p;/v; time units to
complete.

Example
J D
A 20
B 16
C 2
D1

What are the lower bounds



Lower bounds for Q|pmtn|Chax

e What is the analog of p,.. 7
e What is the analog of average load ?

® Are there others ?



Lower bounds for Q|pmtn|Chax

e What is the analog of p... 7 — pi/v
e What is the analog of average load 7 — »p,;/>v;

® Are there others 7 — Yes

General Lower Bound

+ an Zn
C... > max (pl P1 T D2 T 11]03 m1pj
v U1+ v2 Y1 Vi L=



Lower Bound

m—1
Cmax > max (pl p1+ P Z?lzl Dj 2?21 pj)

9 AR m—1 9 m
vl U1+ V9 2i=1 Vi 2i=17;

What is the lower bound for our example?

Can we achieve this lower bound?



LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1
J D
A 20
B 16
C 2
D1

v=(4,2,1)

Example 2
J D
A 20
B 16
C 12
D1

Notes:
e LRPT-FM is optimal in continuous time

e LRPT-FM is near otimal in discrete time, for small time steps.



