Simple Dispatch Rules

e We will first look at some simple dispatch rules: algorithms for which
the decision about which job to run next is made based on the jobs
and the time (but not on the history of jobs running, or by computing
tentative schedules).

e® These are also called greedy algorithms.

Goals:
e To recognize when simple dispatch rules apply.
e To prove that they are the correct algorithm.

e To analyze the running time of the algorithm.
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e What is its running time?

e How do we prove it?
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Questions:
e What is the right algorithm?— SPT
e What is its running time? — O(nlogn)

e How do we prove it?
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Questions:
e What is the right algorithm?— SPT
e What is its running time? — O(nlogn)

e How do we prove it? — Interchange Argument



Basic format of an interchange argument

e Specify the simple dispatch rule X.

e Assume, for the purposed of contradiction, that you have an optimal
schedule that does not obey the rule X.

e F'ind two specific jobs ; and £ that violate rule X.
e Show that if you interchange jobs ; and £k , then

— The resulting schedule is still feasible.

— The objective function value does not increase (for a minimization
problem).

® You can then conclude that, via repeated swaps, there must exist an
optimal schedule that satisfied rule X.

Comment: Even though the proof is boilerplate, you must provide enough
mathematical detail that shows that your proof applies to the particular
problem and the particular rule!
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e How can we figure out a simple dispatch rule?

e How do we prove it is correct — Interchange Argument
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Questions: %0 )

e How can we figure out a simple dispatch rule?

e How do we prove it is correct — Interchange Argument

Two answers to first question;
e Experiment with small examples and develop a plausible rule.

e Start an exchange argument and see what you need to make it work.
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WSPT, Smith’s rule

e Want to have large weight, small processing time jobs early

e Schedule jobs in decreasing order of w;/p; .



e i 1s a constant.

e For intuition:
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Problems with chain precedence constraints
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® Version 1: Once you start a chain, the whole chain must be completed.

e Version 2: Chains represent normal precedence constraints.
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Version 1: Whole Chain
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Version 2: Normal Chain Precendence Constraints
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Adding release dates to a completion tlme problem.
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EDD - Earliest Due date

a.k.a. EDF - Earliest deadline first.

Theorem If, for an instance, on one machine with processing times and
deadlines, there is a schedule meeting all deadlines, then EDF meets all
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What if you can’t meet all deadlines:

d <0 @JP&MHLQ

e One metric: lateness L, =C; —d; \) 20

o 1HLmaX L\)Q O M;ﬁ(:jl‘ﬂ

e Interpretation: if L,.. is 4, then there is a schedule in which no job

misses its deadline by more than 4 time units.
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Question: Does EDD minimize L, ?
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What if you can’t meet all deadlines:

e One metric: lateness L; = C; —d;
o 1HLmaX

e Interpretation: if L,.. is 4, then there is a schedule in which no job
misses its deadline by more than 4 time units.

Question: Does EDD minimize L., ?

Answer: YES

® Reason 1. Think about [, .. =1 as extending all deadlines by 1 .

e Reason 2. Interchange argument.
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Adding Release Dates. 1|r;|Lyax

Question: Does EDD still produce an optimal schedule?
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Maybe some other dispatch rule still works?

Example 1

Example 2
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