Minimum Cost Flow by Successive Shortest Paths

e Initialize to the 0 flow
e Repeat
— Send flow along a shortest path in G

Comments:
e Correctly computes a minimum-cost flow
e Not polynomial time.

e Simple bound of O(nmCU) time.

Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying

0< f(v,w) <ulv,w) V(v,w) € E

e Given a pseduflow [, we define the “excess” at v as

e(v) =blv) + X flw,v) = X flv,w).

welV weV

oIf ¢(v)=0 VveV , then a pseudoflow is a flow.

e We define reduced cost optimality of a pseudoflow f as

Jrs.t.c"(v,w) > O0V(v,w) € Gy

Strategy: Maintain an [and 7 such that [is a pseudoflow satisfying
reduced cost optimality. Work to make f a flow. When [is a flow, you
know it is optimal.

How do you initialize?

e You can assume that c(v,w)> 0V(v,w) € FE . Then the 0-flow satisfies
reduced cost optimality.

e But what if the assumption doesn’t hold?

How do you initialize?

e You can assume that c(v,w)> 0V(v,w) € FE . Then the 0-flow satisfies
reduced cost optimality.

e But what if the assumption doesn’t hold?

e Set f(v,w)=u(v,w) for all edges with c¢(v,w) <0 .
e Now, all edges in G/ , satisfy ¢ (v, w) >0 .
e Update ¢(v) accordingly.

Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

1 f=0; II=0

2 e(v)=bv)YveV

3 Initialize £ = {v:e(v) >0} and D ={v:e(v) < 0}

4 while F #0

5 Pick anode k€ E and { € D

6 Compute d(v), shortest path distances from £ in G

w.r.t. edge distances c".

7 Let P be a shortest path from £ to /.

8 Set =71 —d

9 Let 6 = min{e(k), —e(¢), min{us(v,w) : (v,w) € P}}
10 Send 0 units of low on the path P

11 Update f, Gy, £/, D and c".

Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with
respect to 7 . Let d(v) be the shortest path distance from some node s
to v in G, with respect to ¢" . Then

e / satisfies reduced cost optimality with respect to o' =7 —d .

e ¢"(v,w)=0 if (v,w) is on a shortest path from s to some other node.

Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm,
f satisfies reduced cost optimality.

But still not necessarily polynomial.

Use Capacity Scaling on top of shortest path algorithm

Def:
GiA) ={(v,w) € Gy rup(v,w) > A}

Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

1 f=0, #=0
2 e(v)=blv)VveV
3 A=20l
4 while A > 1
5 (A scaling phase)
6 for every edge (v,w) € Gy
7 if uf(v,w)> A and (v, w) <0
8 Send u(v,w) units of flow on (v,w); update f, e
9 S(A)={veV . .elv)>A}
10 TA)={veV: el <-A}
11 while S(A) # 0 and T(A) # 0
12 Pick a node k£ € S(A) and ¢ € T'(A)
13 Compute d(v), shortest path distances from % in G(A)
w.r.t. edge distances c”.
14 Let P be a shortest path from £k to /.
15 Set m=m—d
16 Let 0 = min{e(k), —e(¢), min{us(v,w) : (v,w) € P}}
17 Send ¢ units of flow on the path P
18 Update f, G(4A), S(A), T(A) and c".

19 A=AJ2

Analysis of Running Time

