
Minimum Cost Flow by Successive Shortest Paths

• Initialize to the 0 flow

• Repeat

– Send flow along a shortest path in Gf

Comments:

• Correctly computes a minimum-cost flow

• Not polynomial time.

• Simple bound of O(nmCU) time.



Pseudoflow

Pseudoflow: A pseudoflow is a function on the edges of a graph satisfying

0 ≤ f (v, w) ≤ u(v, w) ∀(v, w) ∈ E

• Given a pseduflow f , we define the “excess” at v as

e(v) = b(v) +
∑
w∈V

f (w, v)− ∑
w∈V

f (v, w).

• If e(v) = 0 ∀v ∈ V , then a pseudoflow is a flow.

• We define reduced cost optimality of a pseudoflow f as

∃πs.t.cπ(v, w) ≥ 0∀(v, w) ∈ Gf

Strategy: Maintain an f and π such that f is a pseudoflow satisfying

reduced cost optimality. Work to make f a flow. When f is a flow, you

know it is optimal.



How do you initialize?

• You can assume that c(v, w) ≥ 0∀(v, w) ∈ E . Then the 0-flow satisfies

reduced cost optimality.

• But what if the assumption doesn’t hold?



How do you initialize?

• You can assume that c(v, w) ≥ 0∀(v, w) ∈ E . Then the 0-flow satisfies

reduced cost optimality.

• But what if the assumption doesn’t hold?

• Set f (v, w) = u(v, w) for all edges with c(v, w) < 0 .

• Now, all edges in Gf , satisfy cπ(v, w) ≥ 0 .

• Update e(v) accordingly.



Successive Shortest Paths for Minimum Cost Flow

Successive Shortest Path

1 f = 0; Π = 0

2 e(v) = b(v) ∀v ∈ V
3 Initialize E = {v : e(v) > 0} and D = {v : e(v) < 0}
4 while E 6= 0

5 Pick a node k ∈ E and ` ∈ D
6 Compute d(v), shortest path distances from k in Gf

w.r.t. edge distances cπ.

7 Let P be a shortest path from k to `.

8 Set π = π − d
9 Let δ = min{e(k),−e(`),min{uf(v, w) : (v, w) ∈ P}}

10 Send δ units of flow on the path P

11 Update f , Gf , E, D and cπ.



Correctness of successive shortest path algorithm

Lemma: Let f be a pseudoflow satisfying reduced cost optimality with

respect to π . Let d(v) be the shortest path distance from some node s

to v in Gf with respect to cπ . Then

• f satisfies reduced cost optimality with respect to π′ = π − d .

• cπ′(v, w) = 0 if (v, w) is on a shortest path from s to some other node.



Correctness of successive shortest path algorithm

Corollary: After each iteration of the successive shortest paths algorithm,

f satisfies reduced cost optimality.

But still not necessarily polynomial.



Use Capacity Scaling on top of shortest path algorithm

Def:

Gf(∆) = {(v, w) ∈ Gf : uf(v, w) ≥ ∆}



Capacity Scaling Algorithm for Minimum Cost Flow

Successive Shortest Path

1 f = 0; π = 0

2 e(v) = b(v) ∀v ∈ V
3 ∆ = 2bUc

4 while ∆ ≥ 1

5 (∆ scaling phase )

6 for every edge (v, w) ∈ Gf

7 if uf(v, w) ≥ ∆ and cπ(v, w) < 0

8 Send uf(v, w) units of flow on (v, w); update f , e

9 S(∆) = {v ∈ V : e(v) ≥ ∆}
10 T (∆) = {v ∈ V : e(v) ≤ −∆}
11 while S(∆) 6= 0 and T (∆) 6= 0

12 Pick a node k ∈ S(∆) and ` ∈ T (∆)

13 Compute d(v), shortest path distances from k in Gf(∆)

w.r.t. edge distances cπ.

14 Let P be a shortest path from k to `.

15 Set π = π − d
16 Let δ = min{e(k),−e(`),min{uf(v, w) : (v, w) ∈ P}}
17 Send δ units of flow on the path P

18 Update f , Gf(∆), S(∆), T (∆) and cπ.

19 ∆ = ∆/2



Analysis of Running Time


