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Abstract. When uncontrollable resources fluctuate, Optimum Power Flow (OPF), routinely
used by the electric power industry to re-dispatch hourly controllable generation (coal, gas and hy-
dro plants) over control areas of transmission networks, can result in grid instability, and, potentially,
cascading outages. This risk arises because OPF dispatch is computed without awareness of major
uncertainty, in particular fluctuations in renewable output. As a result, grid operation under OPF
with renewable variability can lead to frequent conditions where power line flow ratings are signifi-
cantly exceeded. Such a condition, which is borne by simulations of real grids, would likely resulting
in automatic line tripping to protect lines from thermal stress, a risky and undesirable outcome
which compromises stability. Smart grid goals include a commitment to large penetration of highly
fluctuating renewables, thus calling to reconsider current practices, in particular the use of standard
OPF. Our Chance Constrained (CC) OPF corrects the problem and mitigates dangerous renewable
fluctuations with minimal changes in the current operational procedure. Assuming availability of
a reliable wind forecast parameterizing the distribution function of the uncertain generation, our
CC-OPF satisfies all the constraints with high probability while simultaneously minimizing the cost
of economic re-dispatch. CC-OPF allows efficient implementation, e.g. solving a typical instance
over the 2746-bus Polish network in 20s on a standard laptop.
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The power grid can be considered one of the greatest engineering achievements
of the 20th century, responsible for the economic well-being, social development, and
resulting political stability of billions of people around the globe. The grid is able
to deliver on these goals with only occasional disruptions through significant control
sophistication and careful long-term planning.

Nevertheless, the grid is under growing stress and the premise of secure electrical
power delivered anywhere and at any time may become less certain. Even though
utilities have massively invested in infrastructure, grid failures, in the form of large-
scale power outages, occur unpredictably and with increasing frequency. In general,
automatic grid control and regulatory statutes achieve robustness of operation as
conditions display normal fluctuations, in particular approximately predicted inter-
day trends in demand, or even unexpected single points of failure, such as the failure
of a generator or tripping of a single line. However, larger, unexpected disturbances
can prove quite difficult to overcome. This difficulty can be explained by the fact
that automatic controls found in the grid are largely of an engineering nature (i.e.
the flywheel-directed generator response used to handle short-term demand changes
locally) and are largely not of a data-driven, algorithmic and distributed nature.
Instead, should an unusual condition arise, current grid operation relies on human
input. Additionally, only some real-time data is actually used by the grid to respond
to evolving conditions.

All engineering fields can be expected to change as computing becomes ever more
enmeshed into operations and massive amounts of real-time data become available.
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Fig. 0.1. Bonneville Power Administration [14] shown in outline under 9% wind penetration,
where green dots mark actual wind farms. We set standard deviation to be 0.3 of the mean for each
wind source. Our CC-OPF (with 1% of overload set as allowable) resolved the case successfully (no
overloads), while the standard OPF showed 8 overloaded lines, all marked in color. Lines shown
orange are at 4% chance of overload. There are two dark red lines which are at 50% of the overload
while other (dark orange) lines show values of overload around 10%.

In the case of the grid this change amounts to a challenge; namely how to migrate
to a more algorithmic-driven grid in a cost-effective manner that is also seamless and
gradual so as not to prove excessively disruptive – because it would be impossible
to rebuild the grid from scratch. One of the benefits of the migration, in particular,
concerns the effective integration of renewables into grids. This issue is critical because
large-scale introduction of renewables as a generation source brings with it the risk
of large, random variability – a condition that the current grid was not developed to
accommodate.

This issue becomes clear when we consider how the grid sets generator output
in “real time”. This is typically performed at the start of every fifteen-minute (to
an hour) period, or time window, using fixed estimates for conditions during the pe-
riod. More precisely, generators are dispatched so as to balance load (demand) and
generator output at minimum cost, while adhering to operating limitations of the
generators and transmission lines; estimates of the typical loads for the upcoming
time window are employed in this computation. This computational scheme, called
Optimum Power Flow (OPF) or economic dispatch, can fail, dramatically, when re-
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newables are part of the generation mix and (exogenous) fluctuations in renewable
output become large. By “failure” we mean, in particular, instances where a com-
bination of generator and renewable outputs conspire to produce power flows that
significantly exceed power line ratings. When a line’s rating is exceeded, the likeli-
hood grows that the line will become tripped (be taken uncontrollably out of service)
thus compromising integrity and stability of the grid. If several key lines become
tripped a grid would very likely become unstable and possibly experience a cascading
failure, with large losses in serviced demand. This is not an idle assumption, since
firm commitments to major renewable penetration are in place throughout the world.
For example, 20% renewable penetration by 2030 is a decree in the U.S. [24], and
similar plans are to be implemented in Europe, see e.g. discussions in [20, 22, 29].
At the same time, operational margins (between typical power flows and line ratings)
are decreasing and expected to decrease.

A possible failure scenario is illustrated in Fig. 0.1 using as example the U.S.
Pacific Northwest regional grid data (2866 lines, 2209 buses, 176 generators and 18
wind sources), where lines highlighted in red are jeopardized (flow becomes too high)
with unacceptably high probability by fluctuating wind resources positioned along the
Columbia river basin (green dots marking existing wind farms). We propose a solu-
tion that requires, as the only additional investment, accurate wind forecasts; but no
change in machinery or significant operational procedures. Instead, we propose an in-
telligent way to modify the optimization approach so as to mitigate risk; the approach
is implementable as an efficient algorithm that solves large-scale realistic examples in
a matter of seconds, and thus is only slightly slower than standard economic dispatch
methods.

Maintaining line flows within their prescribed limits arises as a paramount opera-
tional criterion toward grid stability. In the context of incorporating renewables into
generation, a challenge emerges because a nominally safe way of operating a grid may
become unsafe – should an unpredictable (but persistent) change in renewable output
occur, the resulting power flows may cause a line to persistently exceed its rating. It
is natural to assess the risk of such an event in terms of probabilities, because of the
non-deterministic behavior of e.g. wind; thus in our proposed operational solution we
will rely on techniques involving both mathematical optimization and risk analysis.

When considering a system under stochastic risk, an extremely large variety of
events that could pose danger might emerge. Recent works [18, 19, 2] suggest that
focusing on instantons, or most-likely (dangerous) events, provides a practicable route
to risk control and assessment. However, there may be far too many comparably
probable instantons, and furthermore, identifying such events does not answer the
question of what to do about them. In other words, we need a computationally
efficient methodology that not only identifies dangerous, relatively probable events,
but also mitigates them.

This paper suggests a new approach for handling the two challenges, that is to
say, searching for the most probable realizations of line overloads under renewable
generation, and correcting such situations through control actions, simultaneously
and efficiently in one step. Our approach relies on methodologies recently developed
in the optimization literature and known under the name of ”Chance-Constrained”
(CC) optimization [41]. Broadly speaking, CC optimization problems are optimization
problems involving stochastic quantities, where constraints state that the probability
of a certain random event is kept smaller than a target value.

To address these goals, we propose an enhancement of the standard OPF to be
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used in the economic dispatch of the controllable generators. We model each bus that
houses a power source subject to randomness to include a random power injection,
and reformulate the standard OPF in order to account for this uncertainty. The for-
mulation minimizes the average cost of generation over the random power injections,
while specifying a mechanism by which (standard, i.e. controllable) generators com-
pensate in real-time for renewable power fluctuations; at the same time guaranteeing
low probability that any line will exceed its rating. This last constraint is naturally
formulated as a chance constraint – we term out approach Chance-Constrained OPF,
or CC-OPF.

This paper is organized as follows. In Section 1 we motivate and present the
various mathematical models used to describe how the grid operates, as well as our
proposed methodology. We explain how to solve the models in Section 2. We then
present, in Section 3 a number of examples to demonstrate the speed and usefulness
of our approach. Section 4 summarizes the results and discusses the path forward.

1. Formulating Chance-Constrained Optimum Power Flow Models.

1.1. Transmission Grids: Controls and Limits. The power systems we con-
sider in this paper are transmission grids which operate at high voltages so as to
convey power economically, with minimal losses, over large distances. This is to be
contrasted with distribution systems; typically residential, lower voltage grids used to
provide power to individual consumers. From the point of view of wind-power gen-
eration, smooth operation of transmission systems is key since reliable wind sources
are frequently located far away from consumption.

Transmission systems balance consumption/load and generation using a complex
strategy that spans three different time scales (see e.g. [5]). At any point in time,
generators produce power at a previously computed base level. Power is generated
(and transmitted) in the Alternating Current (AC) form. An essential ingredient to-
ward stability of the overall grid is that all generators operate at a common frequency.
In real time, changes in loads are registered at generators through (opposite) changes
in frequency. A good example is that where there is an overall load increase. In that
case generators will marginally slow down – frequency will start to drop. Then the
so-called primary frequency control, normally implemented on gas and hydro plans
with so-called “governor” capability will react so as to stop frequency drift (large coal
and nuclear units are normally kept on a time constant output). This is achieved by
having each responding generator convey more power to the system, proportionally
to the frequency change sensed. (In North America the proportionality coefficient is
normally set to 5% of the generator capacity for 0.5Hz deviation from the nominal
frequency of 60Hz.) This reaction is swift and local, leading to stabilization of fre-
quency across the system, however not necessarily at the nominal 60Hz value. The
task of the secondary, or Automatic Gain Control (AGC), is to adjust the common
frequency mismatch and thus to restore the overall balance between generation and
consumption, typically in a matter of minutes. Only some of the generators in a local
area may be involved in this step. The final component in the strategy is the tertiary
level of control, executed via the OPF algorithm, typically run as frequently as ev-
ery fifteen minutes (to one hour), and using estimates for loads during the next time
window, where base (controllable) generator outputs are reset. This is not an auto-
matic step in the sense that a computation is performed to set these generator levels;
the computation takes into account not only load levels but also other parameters
of importance, such as line transmission levels. Tertiary control computation, which
is in the center of this paper, thus represents the shortest time scale where actual
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off-line and network wide (in contrast to automatic primary and secondary controls
of frequency) optimal computations are employed. The three levels are not the only
control actions used to operate a transmission system. Advancing further in the time
scale, OPF is followed by the so-called Unit Commitment (UC) computation, which
schedules the switching on and off of large generation units on the scale of hours or
even days.

A critical design consideration at each of the three control levels is that of main-
taining “stability” of the grid. The most important ingredient toward stable operation
is synchrony – ultimately, all the generators of the network should stabilize thus lock-
ing, after a perturbation followed by a seconds-short transient, at the same frequency.
Failure to do so not only proves inefficient but, worse, it threatens the integrity of
the grid, ultimately forcing generators to shut down for protective reasons – thus,
potentially, causing a large, sudden change in power flow patterns (which may exceed
equipment limits, see below) and possibly also an unrecoverable generation shortage.
A second stability goal is that of maintaining large voltages. This is conducive to effi-
ciency; lower voltage levels cause as a byproduct more generation (to meet the loads)
and larger current values. Not only is this combination inefficient, but in an extreme
case it may make impossible to meet existing loads (so-called “voltage collapse” is
a manifestation of this problem). The third stability goal, from an operational per-
spective, is that of maintaining (line) power flows within established bounds. In long
transmission lines, a large flow value will cause excessive voltage drop (an undesirable
outcome as discussed). On a comparatively shorter line, an excessively large power
flow across the line will increase the line temperature to the point that the line sags,
and potentially arcs or trips due to a physical contact. For each line there is a given
parameter, the line rating (or limit) which upper bounds flow level during satisfactory
operation.

Of the three “stability” criteria described above, the first two (maintaining syn-
chrony and voltage) are a concern only in a truly nonlinear regime which under normal
circumstances occur rarely. Thus, we focus on the third – observing line limits.

1.2. OPF – Standard Generation Dispatch (tertiary control). OPF is a
key underlying algorithm in power engineering; see the review in [33] and e.g. [35, 5].
The task of OPF, usually executed off-line at periodic intervals, is to reset genera-
tor output levels over a control area of the transmission grid, for example over the
Bonneville Power Administration (BPA) grid shown in Fig. 0.1. In order to describe
OPF we will employ power engineering terms such “bus” to refer to a graph-theoretic
vertex and “line” to refer to an edge. The set of all buses will be denoted by V, the
set of lines, E and the set of buses that house generators, G. We let n = |V|. A line
joining buses i and j is denoted by (i, j) indicating an arbitrary but fixed ordering.
We assume that the underlying graph is connected, without loss of generality.

The generic OPF problem can be stated as follows:

• The goal is to determine the vector p ∈ R
G, where for i ∈ G, pi is the output

of generator i, so as to of minimize an objective function c(p). This function
is, usually, a convex, separable quadratic function of p:

c(p) =
∑

i∈G

ci(pi),

where each ci is convex quadratic.
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• The problem is endowed by three types of constraints: power flow, line limit
and generation bound constraints.

Among the constraints, the simplest are the generation bounds, which are box con-
straints on the individual pi. The thermal line limits place an upper bound on the
power flows in each line. We will return to these constraints later on; they are related
to the physics model describing the transport of power in the given network, which
is described by the (critical) power flow constraints. In the most general form, these
are simply Kirchoff’s circuit laws stated in terms of voltages (potentials) and power
flows. In this context, for each bus i ∈ V its voltage Ui is defined as vie

jθi , where
vi and θi are the voltage magnitude and phase angle at bus i. Voltages can be used
to derive expression for other physical quantities, such as current and, in particular,
power, obtaining in the simplest case a system of quadratic equations on the voltage
real and imaginary coordinates. See e.g. [35, 5].

The AC power flow equations can constitute an obstacle to solvability of OPF
(from a technical standpoint, they give rise to nonconvexities). In transmission sys-
tem analysis a linearized version of the power flow equations is commonly used, the
so-called “DC-approximation”. In this approximation (a) all voltages are assumed
fixed and re-scaled to unity; (b) phase differences between neighboring nodes are as-
sumed small, ∀(i, j) ∈ E : |θi − θj | ≪ 1, (c) thermal losses are ignored (reactance
dominates resistance for all lines). Then, the (real) power flow over line (i, j), with
line susceptance βij (= βji) is related linearly to the respective phase difference,

fij = βij(θi − θj). (1.1)

Suppose, for convenience of notation, that we extend the vector p to include an entry
for every bus i ∈ V with the proviso that pi = 0 whenever i /∈ G. Likewise, denote
by d ∈ RV the vector of (possibly zero) demands and by θ ∈ RV the vector of phase
angles. Then, a vector f of power flows is feasible if and only if

∑

ij

fij = pi − di, for each bus i, (1.2)

and in view of equation (1.1), this can be restated as

θi

∑

ij

βij −
∑

ij

βijθj = pi − di, for each bus i. (1.3)

In matrix form this equation can be rewritten as follows:

Bθ = p − d. (1.4)

where the n × n matrix B is a weighted-Laplacian defined as follows:

∀i, j : Bij =







−βij , (i, j) ∈ E
∑

k;(k,j)∈E
βkj , i = j

0, otherwise

, (1.5)

(1.6)

For future reference, we state some well known properties of Laplacians and the power
flow system (1.4).
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Lemma 1.1. The sum of rows of B is zero and under the connectedness assump-
tion for the underlying graph the rank of B equals n−1. Thus system (1.4) is feasible
in θ if and only if

∑

i

pi =
∑

i

di. (1.7)

In other words: under the DC model the power flow Eqs. (1.4) are feasible precisely
when total generation equals total demand. Moreover, if Eqs. (1.4) are feasible, then
for any index 1 ≤ j ≤ n there is a solution with θj = 0.

In summary, the standard DC-formulation OPF problem can be stated as the
following constrained optimization problem:

OPF: min
p

c(p), s.t. (1.8)

Bθ = p − d, (1.9)

∀i ∈ G : pmin
i ≤ pi ≤ pmax

i , (1.10)

∀(i, j) ∈ E : |fij | ≤ fmax
ij , (1.11)

Note that the pmin
i , pmax

i quantities can be used to enforce the convention pi = 0 for
each i /∈ G; if i ∈ G then pmin

i , pmax
i are lower and upper generation bounds which

are generator-specific. Here, Constraint (1.11) is the line limit constraint for (i, j);
fmax

ij represents the line limit (typically a thermal limit), which is assumed to be
strictly enforced in constraint (1.11). This conservative condition will be relaxed in
the following.
Problem (1.8) is a convex quadratic program, easily solved using modern optimization
tools. The vector d of demands is fixed in this problem and is obtained through
estimation. In practice, however, demand will fluctuate around d; generators then
respond by adjusting their output (from the OPF-computed quantities) proportionally
to the overall fluctuation as will be discussed below.
The scheme (1.8) works well in current practice, as demands do not substantially
fluctuate on the time scale for which OPF applies. Thus the standard practice of
solving (1.8) in the feasibility domain defined by Eq. (1.9),(1.5),(1.10),(1.11), using
demand forecasts based on historical data (and ignoring fluctuations) has produced a
very reliable result - generation re-dispatch covering a span of fifteen minutes to an
hour, depending on the system.

1.3. Chance constrained OPF: motivation. To motivate the problem we
outline how generator output is modulated, in real time, in response to fluctuations
of demand. Suppose we have computed, using OPF, the output pi for each generator
i assuming constant demands d. Let d̂(t) be the vector of real-time demands at time t.
Then so-called “frequency control”, or more properly, primary and secondary controls
in combination that we will also call in the sequel “affine” control, will reset generator
outputs to quantities p̂i(t) according to the following scheme

p̂i(t) = pi − ρi

∑

j

(dj − d̂j(t)) for each i ∈ G. (1.12)

In this equation, the quantities ρi ≥ 0 are fixed and satisfy
∑

i

ρi = 1.
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Thus, from (1.12) we obtain

∑

i

p̂i(t) =
∑

i

pi −
∑

j

(dj − d̂j(t)) =
∑

j

d̂j(t),

from Eq. (1.7), in other words, demands are met. The quantities ρi ≥ 0 are generator
dependent but essentially chosen far in advance and without regard to short-term
demand forecasts.

Thus, in effect, generator outputs are set in hierarchical fashion (first OPF, with
adjustments as per (1.12) which is furthermore risk-unaware. This scheme has worked
in the past because of the slow time scales of change in uncontrolled resources (mainly
loads). That is to say, frequency control and load changes are well-separated. Note
that a large error in the forecast or an under-estimation of possible d for the next
–e.g., fifteen minute– period may lead to an operational problem in standard OPF
(see e.g. the discussions in [15, 37]) because even though the vector p̂(t) is sufficient

to meet demands, the phase angles θ̂(t) computed from

Bθ̂(t) = p̂(t) − d̂(t)

give rise to real-time power flows

f̂ij(t)
.
= βij [θ̂i(t) − θ̂j(t)]

that violate constraints (1.11). In fact, even the generator constraints (1.10) may
fail to hold. This has not been considered a handicap, however, simply because line
trips due to overloading as a result of OPF-directed generator dispatch were (and still

are) rare, primarily because the deviations d̂i(t) − di will be small in the time scale
of interest. In effect, the risk-unaware approach that assumes constant demands in
solving the OPF problem has worked well.

This perspective changes when renewable power sources such as wind are incorpo-
rated. We assume that a subset W of the buses holds uncertain power sources (wind
farms); for each j ∈ W, write the amount of power generated by source j at time t as
µj + ωj(t), where µj is the forecast output of farm j in the time period of interest.
For ease of exposition, we will assume in what follows that G refers to the set of buses
holding controllable generators, i.e. G ∩ W = ∅. Renewable generation can be seam-
lessly incorporated into the OPF formulation (1.8)-(1.11) by simply setting pi = µi

for each i ∈ W. Assuming constant demands but fluctuating renewable generation,
the application of the frequency control yields the following analogue to (1.12):

p̂i(t) = pi − ρi

∑

j∈W

ωj(t) for each i ∈ G, (1.13)

e.g. if
∑

j∈W
ωj(t) > 0, that is to say, there is a net increase in wind output, then

(controllable) generator output will proportionally decrease.
Eq. (1.13) describes how generation will adjust to wind changes, under current

power engineering practice. The hazard embodied in this relationship is that the
quantities ωj(t) can be large resulting in sudden and large changes in power flows,
large enough to substantially overload power lines and thereby cause their tripping, a
highly undesirable feature that compromises grid stability. The risk of such overloads
can be expected to increase (see [20]); this is due to a projected increase of renewable
penetration in the future, accompanied by the decreasing gap between normal opera-
tion and limits set by line capacities. Lowering of the TL limits (the fmax

ij quantities
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in Eqs. (1.11)) can succeed in deterministically preventing overloads, but it also forces
excessively conservative choices of the generation re-dispatch, potentially causing ex-
treme volatility of the electricity markets. See e.g. the discussion in [46] on abnormal
price fluctuations in markets that are heavily reliant on renewables.

1.4. Using chance constraints. Power lines do not fail (i.e., trip) instantly
when their flow thermal limits are exceeded. A line carrying flow that exceeds the
line’s thermal limit will gradually heat up and possibly sag, increasing the probability
of an arc (short circuit) or even a contact with neighboring lines, with ground, with
vegetation or some other object. Each of these events will result in a trip. The precise
process is extremely difficult to calibrate (this would require, among other factors, an
accurate representation of wind strength and direction in the proximity of the line)1.
Additionally, the rate at which a line overheats depends on its overload which may
dynamically change (or even temporarily disappear) as flows adjust due to external
factors; in our case fluctuations in renewable outputs. What can be stated with
certainty is that the longer a line stays overheated, the higher the probability that it
will trip – to put it differently, if a line remains overheated long enough, then, after a
span possibly measured in minutes, it will trip. In summary, (thermal) tripping of a
line is primarily governed by the historical pattern of the overloads experienced by the
line, and thus it may be influenced by the status of other lines (implicitly, via changes
in power flows); further, exogenous factors can augment the impact of overloads.

Even though an exact representation of line tripping seems difficult, we can how-
ever state a practicable alternative. Ideally, we would use a constraint of the form
“for each line, the fraction of the time that it exceeds its limit within a certain time
window is small”. Direct implementation of this constraint would require resolving
dynamics of the grid over the generator dispatch time window of interest. To avoid
this complication, we propose instead the following static proxy of this ideal model,
a chance constraint: “we will require that the probability that a given line will exceed
its limit is small”.

To formalize this notion, we assume:

W.1. For each i ∈ W, the (stochastic) amount of power generated by source i is of
the form µi + ωi, where

W.2. µi is constant, assumed known from the forecast, and ωi is a zero mean
independent random variable with known standard deviation σi.

Here and in what follows, we use bold face to indicate uncertain quantities. Let fij

be the flow on a given line (i, j), and let 0 < ǫij be small. The chance constraint for
line (i, j), is:

P (fij > fmax
ij ) < ǫij and P (fij < −fmax

ij ) < ǫij ∀ (i, j). (1.14)

One could alternatively use

P (|fij | > fmax
ij ) < ǫij ∀ (i, j), (1.15)

which is less conservative than (1.14). If (1.15) holds then so does (1.14), and if the
latter holds then P (|fij | > fmax

ij ) < 2ǫij . However, (1.14) proves more tractable, and
moreover we are interested in the regime where ǫij is fairly small; thus we estimate

1We refer the reader to [27] for discussions of line tripping during the 2003 Northeast U.S.-Canada
cascading failure.
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that there is small practical difference between the two constraints; this will be verified
by our numerical experiments. Likewise, for a generator g we will require that

P (pg > pmax
g ) < ǫg and P (pg < pmin

g ) < ǫg. (1.16)

The parameter ǫg will be chosen extremely small, so that for all practical purposes
the generator’s will be guaranteed to stay within its bounds.

Chance constraints [45], [16], [38] are but one possible methodology for handling
uncertain data in optimization. Broadly speaking, this methodology fits within the
general field of stochastic optimization. Constraint (1.14) can be viewed as a “value-
at-risk” statement; the closely-related “conditional value at risk” concept provides a
(convex) alternative, which roughly stated constrains the expected overload of a line
to remain small, conditional on there being an overload (see [41] for definitions and
details). Even though alternate models are possible, we would would argue that our
chance constrained approach is reasonable (in fact: compelling) in view of the nature
of the line tripping process we discussed above.

[49] considers the standard OPF problem under stochastic demands, and describes
a method that computes fixed generator output levels to be used throughout the
period of interest, independent of demand levels. In order to handle variations in
demand, [49] instead relies on the concept of a slack bus. A slack bus is a fixed
node that is assumed to compensate for all generation/demand mismatches – when
demand exceeds generation the slack bus injects the shortfall, and when demand
is smaller than generation the slack bus absorbs the generation excess. A vector
of generations is acceptable if the probability that each system component operates
within acceptable bounds is high – this is a chance constraint. To tackle this problem
[49] proposes a simulation-based local optimization system consisting of an outer loop
used to assess the validity of a control (and estimate its gradient) together with an
inner loop that seeks to improve the control. Experiments are presented using a 5-
bus and a 30-bus example. The approach in [49], though universal (i.e., applicable
to any type of exogenous distribution), requires a number of technical assumptions
and elaborations to guarantee convergence and feasibility and appears to entail a very
high computational cost.

Chance constrained optimization has also been discussed recently in relation to
the Unit Commitment problem, which concerns discrete-time planning for operation
of large generation units on the scale of hours-to-months, so as to account for the
long-term wind-farm generation uncertainty [42, 47, 50].

1.5. Uncertain power sources. The physical assumptions behind our model
of uncertainty are as follows. Independence of fluctuations at different sites is due to
the fact that the wind farms are sufficiently far away from each other. For the typical
OPF time span of 15 min and typical wind speed of 10m/s, fluctuations of wind at
the farms more than 10km apart are not correlated. We also rely on the assumption
that transformations from wind to power at different wind farms is not correlated.

To formulate and calibrate our models, we make simplifying assumptions that
are approximately consistent with our general physics understanding of fluctuations
in atmospheric turbulence; in particular we assume Gaussianity of ωi

2. We will

2Correlations of velocity within the correlation time of 15 min, roughly equivalent to the time span
between the two consecutive OPF, are approximately Gaussian. The assumption is not perfect, in
particular because it ignores significant up and down ramps possibly extending tails of the distribution
in the regime of really large deviations.
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also assume that only a standard weather forecast (coarse-grained on minutes and
kilometers) is available, and no systematic spillage of wind in its transformation to
power is applied3.

There is an additional and purely computational reason for the Gaussian assump-
tion, which is that under this assumption chance constraint (1.14) can be captured
using in an optimization framework that proves particularly computationally practi-
cable. We will also consider a data-robust version of our chance-constrained problem
where the parameters for the Gaussian distributions are assumed unknown, but lying
in a window. This allows both for parameter mis-estimation and for model error, that
is to say the implicit approximation of non-Gaussian distributions with Gaussians;
our approach, detailed in Section 2.4, remains computationally sound in this robust
setting.

Other fitting distributions considered in the wind-modeling literature, e.g. Weibull
distributions and logistic distributions [12, 32], will be discussed later in the text as
well 4. In particular, we will demonstrate on out-of-sample tests that the computa-
tionally advantageous Gaussian modeling of uncertainty allows as well to model effects
of other distributions.

1.6. Affine Control. Since the power injections at each bus are fluctuating, we
need a control to ensure that generation is equal to demand at all times within the
time interval between two consecutive OPFs. We term the joint result of the primary
frequency control and secondary frequency control the affine control. The term will
intrinsically assume that all governors involved in the controls respond to fluctuations
in the generalized load (actual demand which is assumed frozen minus stochastic
wind resources) in a proportional way, however with possibly different proportionality
coefficients. Then, the random variable ω dependent version of Eq. (1.13) becomes

∀bus i ∈ G : pi = p̄i − αi

∑

j∈W

ωj . αi ≥ 0. (1.17)

Here the quantities p̄i ≥ 0 and αi ≥ 0 are design variables satisfying (among other
constraints)

∑

i∈G
αi = 1. Notice that we do not set any αi to a standard (fixed)

value, but instead leave the optimization to decide the optimal value. (In some cases
it may even be advantageous to allow negative αi but we decided not to consider such
a drastic change of current policy in this study.) The generator output pi combines a
fixed term p̄i and a term which varies with wind, −αi

∑

j∈W
ωj . Observe that

∑

i pi =
∑

i p̄i −
∑

i ωj , that is, the total power generated equals the average production of
the generators minus any additional wind power above the average case.

This affine control scheme creates the possibility of requiring a generator to pro-
duce power beyond its limits. With unbounded wind, this possibility is inevitable,
though we can restrict it to occur with arbitrarily small probability, which we will do

3See [20], for some empirical validation.
4Note that the fitting approach of [12, 32] does not differentiate between typical and atypical

events and assumes that the main body and the tail should be modeled using a simple distribution
with only one or two fitting parameters. Generally this assumption is not justified as the physical
origin of the typical and anomalous contributions of the wind, contributing to the main body and
the tail of the distribution respectively, are rather different. Gaussian fit (of the tail) – or more
accurately, faster than exponential decay of probability in the tail for relatively short-time (under
one hour) forecast – would be reasonably consistent with phenomenological modeling of turbulence
generating these fluctuations.
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with additional chance constraints for all controllable generators, ∀g ∈ G,

P (pmin
g ≤ p̄g − αg

∑

j∈W

wj ≤ pmax
g ) > 1 − ǫg. (1.18)

1.7. CC-OPF: Brief Discussion of Solution Methodology. Our method-
ology applies and develops general ideas of [41] to the power engineering setting of
generation re-dispatch under uncertainty. In Section 2.1 we will provide a generic
formulation of our chance-constrained OPF problem that is valid under the assump-
tion of linear power flow laws and statistical independence of wind fluctuations at
different sites, while using control law (1.17) to specify standard generation response
to wind fluctuations. Under the additional assumption of Gaussianity, this generic
formulation is reduced to a specific deterministic optimization problem of Section
2.2. Moreover this deterministic optimization over p and α is a convex optimization
problem, more precisely, a Second-Order Cone Program (SOCP) [13, 28], allowing
an efficient computational implementation discussed in detail in Section 2.3. We will
term this SOCP, which assumes point estimates for the wind distributions, the nom-
inal problem. As indicated above, we also discuss how the SOCP formulation can
be extended to account for data-related uncertainty in the parameters of the Gaus-
sian distributions in Section 2.4, obtaining a robust version of the chance-constrained
optimization problem.

Let us emphasize that many of our assumptions leading to the computational
efficient nominal formulation are not restrictive and allow natural generalizations. In
particular, using techniques from [41], it is possible to relax the phenomenologically
reasonable but approximately validated assumption of wind source Gaussianity (vali-
dated according to actual measurements of wind, see [12, 32] and references therein).
For example, using only the mean and variance of output at each wind farm, one
can use Chebyshev’s inequality to obtain a similar though more conservative formu-
lation. And following [41] we can also obtain convex approximations to (1.14) which
are tighter than Chebyshev’s inequality, for a large number of empirical distribu-
tions discussed in the literature. The data-robust version of our algorithm provides
a methodologically sound (and computationally efficient) means to protect against
data and model errors; moreover we will perform (below) out-of-sample experiments
involving the controls computed with the nominal approach; first to investigate the
effect of parameter estimation errors in the Gaussian case, and, second, to gauge the
impact of non-Gaussian wind distributions.

2. Solving the Models.

2.1. Chance-constrained optimal power flow: formal expression. Fol-
lowing the W.1 and W.2 notations, Eqs. (1.17) explain the affine control, given that
the αi are decision variables in our CC-OPF, additional to the standard p̄i decision
variables already used in the standard OPF (1.8). For i /∈ W write µi = 0, thereby
obtaining a vector µ ∈ R

n. Likewise, extend p̄ and α to vectors in R
n by writing

p̄i = αi = 0 whenever i /∈ G.

Definition. We say that the pair p̄, α is viable if the generator outputs under control
law (1.17), together with the uncertain outputs, always exactly match total demand.

The following simple result characterizes this condition as well as other basic proper-
ties of the affine control. Here and below, e ∈ R

n is the vector of all 1’s.
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Lemma 2.1. Under the control law (1.17) the net output of bus i equals

p̄i + µi − di + ω − αi(e
T ω), (2.1)

and thus the (stochastic) power flow equations can be written as

Bθ = p̄ + µ − d + ω − (eT ω)α. (2.2)

Consequently, the pair p̄, α is viable if and only if

∑

i∈V

(p̄i + µi − di) = 0. (2.3)

Proof. Eq. (2.1) follows by definition of the p̄, µ, d vectors and the control law. Thus
Eq. (2.2) holds. By Lemma 1.1 from Eq. (2.2) one gets that p̄, α is viable iff

0 =

n
∑

i=1

(p̄i − (eT ω)αi + µi + ωi − di)

=
∑

i

(p̄i + µi − di), (2.4)

since by construction
∑

i αi = 1.

Remark. Equation (2.3) can be interpreted as stating the condition that expected
total generation must equal total demand; however the Lemma contains a rigorous
proof of this fact.

As remarked before, any (n − 1) × (n − 1) matrix obtained by striking out the
same column and row of B is invertible. For convenience of notation we will assume
that bus n is neither a generator nor a wind farm bus, that is to say, n /∈ G ∪W, and
we denote by B̂ the submatrix obtained from B by removing row and column n, and
write

B̆ =

(

B̂−1 0
0 0

)

. (2.5)

Further, by Lemma 1.1 we can assume without loss of generality that θn = 0. The
following simple result will be used in the sequel.

Lemma 2.2. Suppose the pair p̄, α is viable. Then under the control law (1.17) a
vector of (stochastic) phase angles is

θ = θ̄ + B̆(ω − (eT ω)α), where (2.6)

θ̄ = B̆(p̄ + µ − d). (2.7)

As a consequence,

Eωθ = θ̄, (2.8)

and given any line (i, j),

Eωfij = βij(θ̄i − θ̄j). (2.9)
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Furthermore, each quantity θi or fij is an affine function of the random variables
ωi.
Proof. For convenience we rewrite system (2.2): Bθ = p̄ + µ − d + ω − (eT ω)α.
Since p̄, α is viable, this system is always feasible, and since the sum of rows of B
is zero, its last row is redundant. Therefore Eq. (2.6) follows since θn = 0, and
Eq. (2.8) holds since ω has zero mean. Since fij = βij(θi −θj) for all (i, j), Eq. (2.9)
holds. From this fact and Eq. (2.6) it follows that θ and f are affine functions of ω.

Using this result we can now give an initial formulation to our chance-constrained
problem; with discussion following.

CC-OPF: min Eω

[

c(p̄ − (eT ω)α)
]

(2.10)

s.t.
∑

i∈G

αi = 1, α ≥ 0, p̄ ≥ 0 (2.11)

∑

i∈V

(p̄i + µi − di) = 0 (2.12)

Bθ̄ = p̄ + µ − d, (2.13)

for all lines (i, j):

P
(

βij(θ̄i − θ̄j + [B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j ) > fmax
ij

)

< ǫij

(2.14)

P
(

βij(θ̄i − θ̄j + [B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j ) < −fmax
ij

)

< ǫij

(2.15)

for all generators g:

P
(

p̄g − (eT ω)αi > pmax
g

)

< ǫg and P
(

p̄g − (eT ω)αi < pmin
g

)

< ǫg. (2.16)

The variables in this formulation are p̄, α and θ̄. Constraint (2.11) simply states basic
conditions needed by the affine control. Constraint (2.12) is (2.3). Constraints (2.13),
(2.14) and (2.15) express our chance constraint, in view of Lemma 2.2.

The objective function is the expected cost incurred by the stochastic generation
vector

p = p̄ − (eT ω)α

over the varying wind power output w. In standard power engineering practice gen-
eration cost is convex, quadratic and separable, i.e. for any vector p, c(p) =

∑

i ci(pi)
where each ci is convex quadratic. Note that for any i ∈ G we have

p2
i = p̄2

i + (eT ω)2α2
i − 2eT ωp̄iαi,

from which we obtain, since the ωi have zero mean,

Ew(p2
i ) = p̄2

i + var(Ω)α2
i ,

where “var” denotes variance and Ω
.
=
∑

j ωj. It follows that the objective function
can be written as

Eωc(p) =
∑

i∈G

{

ci1

(

p̄2
i + var(Ω)α2

i

)

+ ci2p̄i + ci3

}

(2.17)
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where ci1 ≥ 0 for all i ∈ G. Consequently the objective function is convex quadratic,
as a function of p̄ and α.

The above formulation is the formal statement for our optimization problem.
Even though its objective is convex in cases of interest, the formulation is not in a
form that can be readily exploited by standard optimization algorithms. Below we
will provide an efficient approach to solve relevant classes of problems with the above
form; prior to that we need a technical result. We will employ the following notation:

• For j ∈ W, the variance of ωj is denoted by σ2
j .

• For 1 ≤ i, j ≤ n let πij denote the i, j entry of the matrix B̆ given above, that
is to say,

πij =

{

[B̂−1]ij , i < n,
0, otherwise.

, (2.18)

• Given α, for 1 ≤ i ≤ n write

δi
.
= [B̆α]i =

{

[B̂−1α]i, i < n,
0, otherwise.

(2.19)

Lemma 2.3. Assume that the ωi are independent random variables. Given α,
for any line (i, j),

var(fij ) = β2
ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2. (2.20)

Proof. Using fij = βij [θi − θj] and eq. (2.6) we have that

fij − Eωfij = βij([B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j) = (2.21)

= βij

(

[B̆ω]i − [B̆ω]j − (eT ω)δi + (eT ω)δj

)

= (2.22)

= βij

∑

k∈W

(πik − πjk − δi + δj)ωk, (2.23)

since by convention ωi = 0 for any i /∈ W. The result now follows.

Remark. Lemma 2.3 holds for any distribution of the ωi so long as independence is
assumed. Similar results are easily obtained for higher-order moments of the fij .

2.2. Formulating the chance-constrained problem as a conic program.
In deriving the above formulation (2.10)-(2.16) for CC-OPF we assumed that the
ωi random variables have zero mean. To obtain an efficient solution procedure we
will additionally assume that they are (a) pairwise independent and (b) normally
distributed. These assumptions were justified in Section 1.5. Under the assumptions,
however, since the fij are affine functions of the ωi (because the θ are, by eq. (2.6)),
it turns out that there is a simple restatement of the chance-constraints (2.14), (2.15)
and (2.16) in a computationally practicable form. See [41] for a general treatment
of linear inequalities with stochastic coefficients. For any real 0 < r < 1 we write
η(r) = φ−1(1 − r), where φ is the cdf of a standard normally distributed random
variable.

Lemma 2.4. Let p̄, α be viable. Assume that the ωi are normally distributed and
independent. Then:
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For any line (i, j), P (fij > fmax
ij ) < ǫij and P (−fij > fmax

ij ) < ǫij if and only if

βij |θ̄i − θ̄j | ≤ fmax
ij − η(ǫij)

[

β2
ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

(2.24)

where as before θ̄ = B̆(p̄ + µ − d) and δ = B̆α.

For any generator g, P
(

p̄g − (eT ω)αi > pmax
g

)

< ǫg and P
(

p̄g − (eT ω)αi < pmin
g

)

<
ǫg iff

pmin
g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ p̄g ≤ pmax
g − η(ǫg)

(

∑

k∈W

σ2
k

)1/2

. (2.25)

Proof. By Lemma 2.2, fij is an affine function of the ωi; under the assumption it
follows that fij is itself normally distributed. Thus, P (fij > fmax

ij ) < ǫij iff

Eωfij + η(ǫij) var(fij ) ≤ fmax
ij , (2.26)

and similarly, P (fij < −fmax
ij ) < ǫij iff

Eωfij − η(ǫij) var(fij ) ≥ −fmax
ij . (2.27)

Lemma 2.2 gives Eωfij = βij(θ̄i−θ̄j) while by Lemma 2.3, var(fij) = β2
ij

∑

k∈W
σ2

k(πik−
πjk − δi + δj)

2. Substituting these values into (2.26) and (2.27) yields (2.24). The
proof of (2.25) is similar.

Remarks Eq. (2.24) highlights the difference between e.g. our chance constraint for
lines, which requires that P (fij > fmax

ij ) < ǫij and that P (fij < −fmax
ij ) < ǫij , and

the stricter requirement that P (|fij | > fmax
ij ) < ǫij which amounts to

P (fij > fmax
ij ) + P (fij < −fmax

ij ) < ǫij . (2.28)

Unlike our requirement, which is captured by (2.24), the stricter condition (2.28) does
not admit a compact statement.

We can now present a formulation of our chance-constrained optimization as a
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convex optimization problem, on variables p̄, α, θ̄, δ and s:

min
∑

i∈G

{

ci1p̄
2
i +

(

∑

k

σ2
k

)

ci1α
2
i + ci2p̄i + ci3

}

(2.29)

for 1 ≤ i ≤ n − 1:

n−1
∑

j=1

B̂ij δj = αi (2.30)

for 1 ≤ i ≤ n − 1:

n−1
∑

j=1

B̂ij θ̄j − p̄i = µi − di (2.31)

∑

i

αi = 1, α ≥ 0, p̄ ≥ 0 (2.32)

p̄n = αn = δn = θ̄n = 0 (2.33)

βij |θ̄i − θ̄j | + βijη(ǫij) sij ≤ fmax
ij ∀ (i, j) (2.34)

[

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

− sij ≤ 0 ∀ (i, j) (2.35)

−p̄g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ −pmin
g ∀ g ∈ G (2.36)

p̄g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ pmax
g ∀ g ∈ G (2.37)

In this formulation, the variables sij are auxiliary and introduced to facilitate the
discussion below – since ηij ≥ 0 without loss of generality (2.35) will hold as an
equality. Constraints (2.35), (2.36) and (2.37) are second-order cone inequalities [13].
A problem of the above form is solvable in polynomial time using well-known methods
of convex optimization; several commercial software tools such as Cplex [21], Gurobi
[31], Mosek [39] and others are available. Constraint (2.30) is equivalent to δi =
[B̂−1α]i (as we did in (2.19)), however B̂−1 can be seen to be totally dense, whereas
B̂ is very sparse for typical grids. Constraint (2.35) can be relatively dense – the sum
has a term for each farm. However as a percentage of the total number of buses this
can be expected to be small.

2.3. Solving the conic program. Even though optimization theory guarantees
that the above problem is efficiently solvable, experimental testing shows that in the
case of large grids (thousands of lines) the problem proves challenging. For example,
in the Polish 2003-2004 winter peak case5, we have 2746 buses, 3514 lines and 8
wind farms, and Cplex [21] reports (after pre-solving) 36625 variables and 38507
constraints, of which 6242 are conic. On this problem, a recent version of Cplex on
a (current) 8-core workstation ran for 3392 seconds (on 16 parallel threads, making
use of “hyperthreading”) and was unable to produce a feasible solution. On the same
problem Gurobi reported “numerical trouble” after 31.1 cpu seconds, and stopped.

5Available with MATPOWER [51]
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In fact, all of the commercial solvers [21, 31, 39] we experimented with reported
numerical difficulties with problems of this size. Anecdotal evidence indicates that
the primary cause for these difficulties is not simply the size, but also to a large degree
numerics in particular poor conditioning due to the entries in the matrix B. These
are susceptances, which are inverses of reactances, and often take values in a wide
range.

To address this issue we implemented an effective algorithm for solving problem
(2.29)-(2.37). For brevity we will focus on constraints (2.35) ((2.36) and (2.37) are
similarly handled). For a line (i, j) define

Cij(δ)
.
=

(

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

)1/2

.

Constraint (2.35) can thus be written as Cij(δ) ≤ sij . For completeness, we state the
following result:

Lemma 2.5. Constraint (2.35) is equivalent to the infinite set of linear inequalities

Cij(δ̂) +
∂Cij(δ̂)

∂δi
(δi − δ̂i) +

∂Cij(δ̂)

∂δj
(δi − δ̂i) ≤ sij , ∀ δ̂ ∈ R

n (2.38)

Constraints (2.38) express the outer envelope of the set described by (2.35) [13].
Any vector δ ∈ Rn which satisfies (2.35) (for a given choice of sij) is guaranteed to
satisfy (2.38). Thus a a finite subset of the inequalities (2.38), used instead of (2.35),
will give rise to a relaxation of the optimization problem and thus a lower bound on
the optimal objective value. Given Lemma 2.5 there are two ways to proceed, both
motivated by the observation that at δ∗ ∈ R

n, the most constraint inequality from
among the set (2.38) is that obtained by choosing δ̂ = δ∗.

First, one can use inequalities (2.38) as cutting-planes in the context of the ellip-
soid method [30], obtaining a polynomial-time algorithm. A different way to proceed
yields a numerically practicable algorithm. For brevity, we will omit treatment of the
generator conic constraints (2.36), (2.37) (which are similarly handled). Denote by
F (p̄, α) the objective function in Eq. (2.29).

Procedure 2.6. CUTTING-PLANE ALGORITHM
Initialization: The linear “master” system A(p̄, α, δ, θ, s)T ≥ b is defined to
include constraints (2.30)-(2.34).

Iterate:

(1) Solve min{F (p̄, α) : A(p̄, α, δ, θ, s)T ≥ b}. Let (p̄∗, α∗, δ∗, θ∗, s∗) be
an optimal solution.

(2) If all conic constraints are satisfied up to numerical tolerance by
(p̄∗, α∗, δ∗, θ∗, s∗), Stop.

(3) If all chance constraints are satisfied up to numerical tolerance by
(p̄∗, α∗), Stop.

(4) Otherwise, add to the master system the outer inequality (2.38) aris-
ing from that constraint (2.35) which is most violated.
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As the algorithm iterates the master system represents a valid relaxation of the
conic program (2.30)-(2.35); thus the objective value of the solution computed in
Step 1 is a valid lower bound on the value of problem. Each problem solved in Step
1 is a linearly constrained, convex quadratic program. Computational experiments
involving large-scale realistic cases show that the algorithm is robust and rapidly
converges to an optimum.

Note that Step 3 is not redundant. The stopping condition in Step 2 may fail
because the variance estimates are incorrect (too small), nevertheless the pair (p̄∗, α∗)
may already satisfy the chance constraints. Checking that it does, for a given line
(i, j), is straightforward since the flow fij is normally distributed (as noted in Lemma
2.4) and its mean and variance can be directly computed from (p̄∗, α∗).

In our implementation termination is declared in Step 2 or Sep 3 when the cor-
responding constraint violation is less than 10−6. Table 2.1 displays typical perfor-
mance of the cutting-plane algorithm on (comparatively more difficult) large problem
instances. In the Table, ’Polish1’-’Polish3’ are the three Polish cases included in MAT-
POWER [51] (in Polish1 we increased loads by 30%). All Polish cases have uniform
random costs on [0.5, 2.0] for each generator and ten arbitrarily chosen wind sources.
The average wind power penetration for the four cases is 8.8%, 3.0%, 1.9%, and 1.5%.
’Iterations’ is the number of linearly-constrained subproblems solved before the algo-
rithm converges. ’Barrier iterations’ is the total number of iterations of the barrier
algorithm in CPLEX over all subproblems, and ’Time’ is the total (wallclock) time
required by the algorithm. For each case, line tolerances are set to two standard devi-
ations and generator tolerances three standard deviations. These instances all prove
unsolvable if directly tackled by CPLEX or Gurobi.

Table 2.1

Performance of cutting-plane method on a number of large cases.

Case Buses Generators Lines Time (s) Iterations Barrier iterations

BPA 2209 176 2866 5.51 2 256
Polish1 2383 327 2896 13.64 13 535
Polish2 2746 388 3514 30.16 25 1431
Polish3 3120 349 3693 25.45 23 508

Table 2.2 provides additional, typical numerical performance for the cutting-plane
algorithm on an instance of the Polish grid model. Each row of Table 2.2 shows that
maximum relative error and objective value at the end of several iterations. The
total run-time was 25 seconds. Note the “flatness” of the objective. This makes
the problem nontrivial – the challenge is to find a feasible solution (with respect
to the chance constraints); at the onset of the algorithm the computed solution is
quite infeasible and it is this attribute that is quickly improved by the cutting-plane
algorithm.

We note the (typical) small number of iterations needed to attain numerical con-
vergence. Thus at termination only a very small number of conic constraints (2.35)
have been incorporated into the master system. This validates the expectation that
only a small fraction of the conic constraints in CC-OPF are active at optimality. The
cutting-plane algorithm can be viewed as a procedure that opportunistically discovers
these constraints.
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Table 2.2

Typical convergence behavior of cutting-plane algorithm on a large instance.

Iteration Max rel. error Objective
1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

2.4. Data-robust chance constraints. Above we developed a formulation for
our chance-constrained OPF problem as the conic program (2.29)-(2.37). This ap-
proach assumed exact estimates for the mean µi and the variance σ2

i of each wind
source ωi. In practice however the estimates at hand might be imprecise6; con-
sequently jeopardizing the usefulness of our conic program, henceforth termed the
nominal chance-constrained problem. In particular, the performance of the control
computed by the conic program might conceivably be sensitive to even small changes
in the data. We will deal with this issue in two complimentary ways.

2.4.1. Out-of-sample analysis. Our first approach is the out-of-sample tests,
implemented experimentally in Section 3.7. We assume that the µi and σ2

i have been
mis-estimated and explore the robustness of the affine control with respect to the
estimation errors. The experiments of Section 3.7 show that the degradation of the
chance constraints is small when small data errors are experienced. This empirical
observation has a rigorous explanation discussed below.

Our chance constraints are represented by convex inequalities, for example in
the case of P (fij > fmax

ij ) < ǫij and P (fij < −fmax
ij ) < ǫij we used e.g. (2.34)

and (2.35). Suppose that we have solved the chance-constrained problem assuming
(incorrect) expectations µi and variances σ2

i (i ∈ W). Let µ̃i and σ̃2
i (i ∈ W) be the

exact (or realized) values. With some abuse of notation, we will write ξ (resp., ξ̃) for
the incorrect (exact) distribution. For a given line (i, j), write:

mij = Eξfij = βij([B̆(p̄ + µ − d)]j − [B̆(p̄ + µ − d)]j), (2.39)

σ2
ij = varξfij = β2

ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2. (2.40)

and similarly,

m̃ij = E
ξ̃
fij = βij([B̆(p̄ + µ̃ − d)]j − [B̆(p̄ + µ̃ − d)]j), (2.41)

σ̃2
ij = varξ̃fij = β2

ij

∑

k∈W

σ̃2
k(πik − πjk − δi + δj)

2. (2.42)

Using (2.41) and (2.42) we see that the “true” probability P (fij > fmax
ij ) is that

value ǫ̃ such that

m̃ij + η(ǫ̃)σ̃ij = uij . (2.43)

We wish to evaluate how much larger this (realized) value ǫ̃ is compared with the
target value ǫij which was the goal in the chance-constrained computation. We will

6In particular since they would effectively be computed in real time.
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do this assuming that the estimation errors are small, more precisely, there exist
nonnegative constants M and V such that

∀i ∈ W, |µ̃i − µi| < Mµi and |σ̃2
i − σ2

i | < V 2σ2
i . (2.44)

Considering Eq. (2.43), we see that for data errors of a given magnitude, ǫ̃ is maximized
when m̃ij and σ̃ij are maximized. Further, considering Eqs. (2.41) and Eqs. (2.42)
we see that to first order m̃ij ≤ mij + O(M), and that σ̃2

ij ≤ (1 + V 2)σ2
ij . From these

two observations and eq. (2.43) we obtain

ǫ̃ =
1√
2π

∫ +∞

η(ǫ̃)

e−x2/2dx = ǫij +
1√
2π

∫ η(ǫij)

η(ǫ̃)

e−x2/2dx

= ǫij +
1√
2π

e−
η(ǫij )2

2 [η(ǫij) − η(ǫ̃)] + smaller order errors. (2.45)

The quantity in brackets in the right-hand side of (2.45) equals

η(ǫij) −
uij − mij

σ̃ij
+

m̃ij − mij

σ̃ij
< (2.46)

η(ǫij)

(

1 − 1√
1 + V 2

)

+
m̃ij − mij

σ̃ij
< (2.47)

η(ǫij)O(V ) +
O(M)

σij
. (2.48)

Using (2.45) and (2.48) we obtain that ǫ̃ = ǫij+O(V )+O(M), where the “O” notation
“hides” solution-dependent constants.

2.4.2. Efficiently solvable data-robust formulations. As the preceding anal-
ysis makes clear, the constants M and V may need to be quite small, for example if
the σij are small. We thus seek a better guarantee of robustness. This justifies our
second approach discussed below – to develop a version of CC-OPF which is method-
ologically guaranteed to be insensitive to data errors. This approach puts CC-OPF
within the scope of robust optimization; to be more precise we will be solving an
ambiguous chance-constrained problem in the language of [26].

We will write each µi in the form µ̄i + ri, where the µ̄i are point estimates of
the µi and the ri are “errors” which are constrained to lie in some fixed set M with
0 ∈ M. Likewise, we assume that there is a set S ⊆ RW including 0, such that each
σ2

i is of the form σ̄2
i + vi where the vector of errors vi belongs to S. As an example

for how to construct M or S, one can use the following set parameterized by values
0 < γi and 0 < Γ:

U(γ, Γ) =

{

r ∈ R
W : |ri| ≤ γi ∀i ∈ W,

∑

i∈W

|ri|
γi

≤ Γ

}

. (2.49)

This set was introduced in [7]. Another candidate is the ellipsoidal set

E(A, b) =
{

r ∈ R
W : rT Ar ≤ b

}

, (2.50)

where A ∈ R
W×W is positive-definite and b ≥ 0 is a real; see [3], [1]. We can now

formally proceed as follows:
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Definitions. Let the estimates µ̄, σ̄2 and the sets M and S be given.

1. Let D = D(µ̄, M, σ̄2, S) be the set of vectors of random variables such that for each
pair π ∈ M and v ∈ S there is an element ξ ∈ D with coordinate-wise mean µ̄ + π
and variance σ̄2 + s.
2. A pair p̄, α is called robust with respect to the pair M, S, if for each line (i, j)

max
ξ∈D

P (fij > fmax
ij ) < ǫij , and (2.51)

max
ξ∈D

P (fij < −fmax
ij ) < ǫij . (2.52)

Our task will be to replace, in our optimization problem formulation, the chance
constraint (1.14) with one asking for robustness as in Eqs. (2.51)-(2.52)7. If the
uncertainty sets M and S consist of a single point estimate each, then we recover the
nominal chance-constrained problem we discussed above. As M or S become larger,
the robust approach becomes more insensitive to estimation errors, albeit at the cost
of becoming more conservative. Thus, a reasonable balance should be attained by
choosing M and S small but of positive measure, thereby preventing trivial sensitivity
of the control to changes in the data.

To indicate our approach, we focus on one of the statements for our chance con-
straint for lines. Using Lemma 2.4, the robustness criterion (2.51) applied to a line
(i, j) requires

βij max
ξ∈D







(θ̄i − θ̄j) + η(ǫij)

[

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2






≤ fmax
ij . (2.53)

We can see that (2.53) consists of a (possibly infinite) set of convex constraints; thus
the data-robust chance-constrained problem is a convex problem. However we need to
exploit this fact in a computationally favorable manner. To motivate our approach, we
will first show that a methodology based on traditional robust optimization techniques
will (likely) not succeed at this task. We will then describe our method.

Considering the expression in brackets in the left-hand side of Eq. (2.53) we recall

that θ̄ = θ̄(µ) = B̆(p̄ + µ− d) depends on the uncertainty set M, in fact we can write

θ̄ = B̆(p̄ + µ̄ − d) + B̆r = θ̄(µ̄) + B̆r, (2.54)

where r ∈ M. Also, the π are constants, and δ = B̆α which is deterministic though
dependent on our decision variables α. In summary, constraint (2.53) can be rewritten
as

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βij max
r∈M

{

eT
ijB̆r

}

+

η(ǫij)βij

[

∑

k∈W

σ̄2
k(πik − πjk − δi + δj)

2 + max
v∈S

{

∑

k∈W

vk(πik − πjk − δi + δj)
2

}]1/2

≤ fmax
ij . (2.55)

where eT
ij ∈ R

n is the vector with a +1 entry in position i, a -1 entry in position j and
0 elsewhere. Note that if in the left-hand side of (2.55) we ignore second term and

7And likewise with the generator chance-constraints (2.36), (2.37).
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the second term inside the square brackets, we obtain the nominal (i.e. non-robust)
version of chance-constraint (2.51); see Eqs. (2.34), (2.35). A similar constraint is
obtained from Eqs. (2.52).

Constraint (2.55) can be incorporated into a formulation provided we can appro-
priately represent the two maxima. Here, note that

mij
.
= max

r∈M

{

eT
ijB̆r

}

, (2.56)

is independent of all variables and can be solved beforehand for all lines (i, j); when
M is of the form U(γ, Γ) given above this is a linear programming problem and when
M = E(A, b) the task amounts to finding a point in the boundary of an ellipsoid
with normal parallel to a given vector and thus requires solving a linear system of
equations. We will likewise define a quantity mji using eji instead of eij .

It is the second maximization that presents some challenges.
Lemma 2.7. Suppose S = U(γ, Γ), and suppose a vector δ ∈ Rn is given. Then

max
v∈S

{

∑

k∈W

vk(πik − πjk − δi + δj)
2

}

= min Γa +
∑

k∈W

γkbk

s.t. a + bk ≥ (πik − πjk − δi + δj)
2 ∀ k ∈ W,

bk ≥ 0 ∀ k ∈ W; a ≥ 0.

Proof sketch. Since (πik − πjk − δi + δj)
2 ≥ 0 without loss of generality in the maxi-

mum we will have that vk ≥ 0 for all k. Strong linear programming duality now gives
the result.

The use of linear programming duality as in Lemma 2.7 is key in the context of
sets of the form U(γ, Γ). In the case of an ellipsoidal set E(A, b) as in (2.50) there is
an analogue to Lemma 2.7 that instead uses the S-Lemma [13], [1]. In the standard
robust optimization approach, Lemma 2.7 would be leveraged to produce a result of
the following type:

Lemma 2.8. Suppose S = U(γ, Γ). The data-robust chance-constrained problem
is obtained by replacing for each line (i, j) constraints (2.34), (2.35) of the nominal
formulation with

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βijmij + βijη(ǫij) sij ≤ fmax
ij (2.57)

βij(θ̄(µ̄)j − θ̄(µ̄)i) + βijmji + βijη(ǫij) sij ≤ fmax
ij (2.58)

[

∑

k∈W

σ̄2
k(πik − πjk − δi + δj)

2 + Γa{i,j} +
∑

k∈W

b
{i,j}
k

]1/2

≤ sij (2.59)

(πik − πjk − δi + δj)
2 − a{i,j} − b

{i,j}
k ≤ 0 ∀k ∈ W (2.60)

b
{i,j}
k ≥ 0 ∀k ∈ W; a{i,j} ≥ 0. (2.61)

Here, si,j , a{i,j} and b
{i,j}
k (k ∈ W) are additional variables. Proof sketch. Without

loss of generality at the optimum the a{i,j} and b
{i,j}
k are chosen so as to minimize

the left-hand side of (2.59) subject to all other variables held fixed, thereby obtaining
the “min” in Lemma 2.7.

Lemma 2.8 points out the difficulty that the standard robust optimization ap-
proach would engender in the context of our problem. First, the number of con-
straints (2.59) and (2.60) is large: it equals |E|(1 + |W|) and thus in the case of a
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large transmission system it could approach many tens of thousands (or more). Thus,
even though we obtain a compact formulation (i.e., of polynomial size) it is likely to
be proven too large for present-day solvers. But there is a second and more funda-
mental problem: constraint (2.59) is not convex. This is a significant methodological
difficulty. A similar set of hurdles arises when using uncertainty sets E(A, b).

2.4.3. Efficient solution of the data-robust problem using cutting planes.
To derive an algorithm for the data-robust chance-constrained problem that (a) has
some theoretical justification and (b) can prove numerically tractable, we return to
inequality (2.55), and note that if we replace the set S with a finite subset S̃ ⊆ S we
obtain a valid relaxation. In other words

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βijmij + βijη(ǫij) sij ≤ fmax
ij (2.62)

βij(θ̄(µ̄)j − θ̄(µ̄)i) + βijmji + βijη(ǫij) sij ≤ fmax
ij (2.63)

max
v∈S̃

[

∑

k∈W

(σ̄2
k + vk)(πik − πjk − δi + δj)

2

]1/2

≤ sij (2.64)

constitutes a valid relaxation of the chance constraints (2.34), (2.35) of the nominal
formulation for each line (i, j) for any given finite S̃ ⊆ S. This observation can be
used to formally obtain a polynomial-time algorithm for the data-robust problem in
the cases of interest. For a given v ∈ S̃ let V v

i,j(δ) denote the expression inside the
“max” in (2.64). For completeness, we state the following:

Lemma 2.9. In the case of uncertainty sets of the form U(γ, Γ) or E(A, b) the
data-robust chance-constrained problem can be solved in polynomial time.
Proof. Suppose we are given quantities δ̂i for each i ∈ V and ŝij for each line (i, j).
Then as argued before, if S is of the form U(γ, Γ) or E(A, b) one can check in polyno-
mial time whether maxv∈S

{

V v
i,j(δ)

}

≤ ŝij . If the condition is violated for v̄ ∈ S then
trivially

Lv̄
ij(δ̂) +

∂Lv̄
ij(δ̂)

∂δi
(δi − δ̂i) +

∂Lv̄
ij(δ̂)

∂δj
(δi − δ̂i) ≤ sij , (2.65)

is violated at δ̂, ŝ. Since (2.65) is valid for the data-robust chance-constrained problem
(by convexity) the result follows by relying on the ellipsoid method.

Lemma 2.9 describes a formally “good” algorithm. For computational purposes
we instead would rely on a cutting-plane algorithm much like Algorithm 2.6, developed
in Section 2.3 so as to handle the nominal chance-constrained problem. In the data-
robust setting the algorithm is almost identical, except that given quantities δ̂i for
each i ∈ V and ŝij for each line (i, j) we proceed as in the proof of Lemma 2.9 by

finding a v ∈ S that proves most stringent for the pair δ̂, ŝ and then add to the master
formulation constraint (2.65). Details are left to the reader.

3. Experiments/Results. Here we will describe qualitative aspects of our affine
control on small systems; in particular we focus on the contrast between standard
OPF and nominal CC-OPF, on problematic features that can arise because of fluctu-
ating wind sources and on out-of-sample testing of the CC-OPF solution, including
the analysis of non-Gaussian distributions. Some of our tests involve the BPA grid
and Polish Grid, which are large; we present additional set of tests to address the
scalability of our solution methodology to the large cases.
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3.1. Failure of standard OPF. Above (see Eq. (1.8)) we introduced the so-
called standard OPF method for setting traditional generator output levels. When
renewables are present, the natural extension of this approach would make use of some
fixed estimate of output (e.g., mean output) and to handle fluctuations in renewable
output through the same method used to deal with changes in load: ramping output
of traditional generators up or down in proportion to the net increase or decrease
in renewable output. This feature could seamlessly be handled using today’s control
structure, with each generator’s output adjusted at a fixed (preset) rate. For the sake
of simplicity, in the experiments below we assume that all ramping rates are equal.

Different assumptions on these fixed rates will likely produce different numeri-
cal results; however, this general approach entails an inherent weakness. The key
point here is that mean generator output levels as well as in particular the ramp-
ing rates would be chosen without considering the stochastic nature of the renewable
output levels. Our experiments are designed to highlight the limitations of this “risk-
unaware” approach. In contrast, our CC-OPF produces control parameters (the p̄
and the α) that are risk-aware and, implicitly, also topology-aware – in the sense of
network proximity to wind farms.

We first consider the IEEE 118-bus model with a quadratic cost function, and
four sources of wind power added at arbitrary buses to meet 5% of demand in the case
of average wind. The standard OPF solution is safely within the thermal capacity
limits for all lines in the system. Then we account for fluctuations in wind assuming
Gaussian and site-independent fluctuations with standard deviations set to 30% of
the respective means. The results, which are shown in Fig. 3.1, illustrate that under
standard OPF five lines (marked in red) frequently become overloaded, exceeding
their limits 8% or more of the time. This situation translates into an unacceptably
high risk of failure for any of the five red lines. This problem occurs for grids of all
sizes; in Fig. 3.2 we show similar results on a 2746-bus Polish grid. In this case, after
scaling up all loads by 10% to simulate a more highly stressed system, we added wind
power to ten buses for a total of 2% penetration. The standard solution results in
six lines exceeding their limits over 45% of the time, and in one line over 10% of the
time. For an additional and similar experiment using the Polish grid see Section 3.8.

3.2. Cost of reliability under high wind penetration. The New York Times
article “Wind Energy Bumps Into Power Grid’s Limits” [48] discusses how transmis-
sion line congestion has forced temporary shutdown of wind farms even during times
of high wind. Our methodology suggests, as an alternative solution to curtailment
of wind power, an appropriate reconfiguration of standard generators. If successful,
this solution can use the available wind power without curtailment, and thus result
in cheaper operating costs.

As a (crude) proxy for curtailment, we perform the following experiment, which
considers different levels of renewable penetration. Here, the mean power outputs of
the wind sources are kept in a fixed proportion to one another and proportionally
scaled so as to vary total amount of penetration, and likewise with the standard
deviations. First, we run our CC-OPF under a high penetration level. Second, we
add a 10% buffer to the line limits and reduce wind penetration (i.e., curtail) so that
under the standard OPF solution line overloads are reduced to an acceptable level.
Assuming zero cost for wind power, the difference in cost for the high-penetration CC-
OPF solution and the low-penetration standard solution are the savings produced by
our model (generously, given the buffers).

For the 39-bus case, our CC-OPF solution is feasible under 30% of wind penetra-
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Fig. 3.1. 118-bus case with four wind farms (green dots; brown are generators, black are loads).
Shown is the standard OPF solution against the average wind case with penetration of 5%. Standard
deviations of the wind are set to 30% of the respective average cases. Lines in red exceed their limit
8% or more of the time.

Fig. 3.2. Failure of the standard OPF shown for partial (left) and full (right) snapshot of the
standard OPF solution on Polish grid from MATPOWER [51]. Color coding and conditions of the
experiment are equivalent to these of Fig. 3.1.
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Fig. 3.3. 39-bus case under standard solution. Even with a 10% buffer on the line flow limits,
five lines exceed their limit over 5% of the time with 30% penetration (left). The penetration must
be decreased to 5% before the lines are relieved, but at great cost (right). The CC-OPF model is
feasible for 30% penetration at a cost of 264,000. The standard solution at 5% penetration costs
1,275,020 – almost 5 times as much.

tion, but the standard solution has 5 lines with excessive overloads, even when solved
with the 10% buffer. Reducing the penetration to 5% relieves the lines, but more
than quadruples(!) the cost over the CC-OPF solution. See Figure 3.3. Note that
this approach does not only show the advantage of the CC-OPF over standard OPF
but also provides a quantitative measure of the advantage, thus placing a well-defined
price tag on reliability.

3.3. Non-locality. We have established that under fluctuating power genera-
tion, some lines may exceed their flow limits an unacceptable fraction of the time. Is
there a simple solution to this problem, for instance, by carefully adjusting (a poste-
riori of the standard OPF) the outputs of the generators near the violated lines? The
answer is no. Power systems exhibit significant non-local behavior. Consider Fig. 3.4.
In this example, the major differences in generator outputs between the standard
OPF solution and our CC-OPF model’s solution are not obviously associated with
the different line violations. In general, it seems that it would be difficult to by-pass
CC-OPF and make small local adjustments to relieve the stressed lines. On the posi-
tive side, even though CC-OPF is not local and requires a centralized computation, it
is also only slightly more difficult than the standard OPF in terms of implementation.

3.4. Increasing penetration. Current planning for the power system in the
United States calls for 30% of wind energy penetration by 2030 [24]. Investments
necessary to achieve this ambitious target may focus on both software (improving
operations) and hardware (building new lines, sub-stations, etc), with the former
obviously representing a much less expensive and thus economically attractive option.
Our CC-OPF solution contributes toward this option. A natural question that arises
concerns the maximum level of penetration one can safely achieve by upgrading from
the standard OPF to our CC-OPF.

To answer the question we consider the 39-bus New England system (from [51])
case with four wind generators added, and line flow limits scaled by .7 to simulate a
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Fig. 3.4. 39-bus case. Red lines indicate high probability of flow exceeding the limit under
the standard OPF solution. Generators are shades of blue, with darker shades indicating greater
absolute difference between the chance-constrained solution and the standard solution.

heavily loaded system. The quadratic cost terms are set to rand(0,1) + .5. We fix the
four wind generator average outputs in a ratio of 5/6/7/8 and standard deviations at
30% of the mean. We first solve our model using ǫ = .02 for each line and assuming
zero wind power, and then increase total wind output until the optimization problem
becomes infeasible. See Figure 3.5. This experiment illustrates that at least for
the model considered, the 30% of wind penetration with rather strict probabilistic
guarantees enforced by our CC-OPF may be feasible, but in fact lies rather close to
the dangerous threshold. To push penetration beyond the threshold is impossible
without upgrading lines and investing in other (not related to wind farms themselves)
hardware.

3.5. Changing locations for wind farms. In this example we consider the
effect of changing locations of wind farms. We take the MATPOWER 30-bus case
with line capacities scaled by .75 and add three wind farms with average power output
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Fig. 3.5. 39-bus case with four wind farms (green dots; brown are generators, black are loads).
Lines in red are at the maximum of ǫ = .02 chance of exceeding their limit. The three cases shown
are left to right .1%, 8%, and 30% average wind penetration. With penetration beyond 30% the
problem becomes infeasible.

Fig. 3.6. 30-bus case with three wind farms. The case on the left supports only up to 10%
penetration before becoming infeasible, while the one on the right is feasible for up to 55% penetration.

in a ratio of 2/3/4 and standard deviations at 30% of the average. Two choices of
locations are shown in figure 3.6. The first remains feasible for penetration up to 10%
while the second can withstand up to 55% penetration. This experiment shows that
choosing location of the wind farms is critical for achieving the ambitious goal of high
renewable penetration.

3.6. Reversal of line flows. Here we consider the 9-bus case with two wind
sources and 25% average penetration and standard deviations set to 30% of the av-
erage case and analyze the following two somewhat rare but still admissible wind
configurations: (1) wind source (a) produces its average amount of power and source
(b) three standard deviations below average; (2) the reverse of the case (1). This
results in a substantial reversal of flow on a particular line shown in Figure 3.7. This
example suggests that when evaluating and planning for grids with high-penetration
of renewables one needs to be aware of potentially fast and significant structural re-
arrangements of power flows. Flow reversals and other qualitative changes of power
flows, which are extremely rare in the grid of today, will become significantly much
more frequent (typical) in the grid of tomorrow.
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9.7
16.21

Fig. 3.7. 9-bus case, 25% average penetration from two wind sources. With shifting winds, the
flow on the orange line changes direction with a large absolute difference.

3.7. Out-of-sample tests. We now study the performance of the control com-
puted using nominal CC-OPF when there are errors in the underlying distribution of
wind power. We consider two types of errors: (1) the true distribution is non-Gaussian
but our Gaussian fit is “close” in an appropriate sense, and (2) the true distribution
is Gaussian but with different mean or standard deviation. The experiments in this
section use as data set the BPA grid, which as noted before has 2209 buses and 2866
lines, and collected wind data; altogether constituting a realistic test-case.

We first consider the non-Gaussian case, using the following probability distribu-
tions, all with fatter tails than Gaussian: (1) Laplace, (2) logistic, (3) Weibull (three
different shapes), (4) t location-scale with 2.5 degrees of freedom, (5) Cauchy. For the
Laplace and logistic distributions, we simply match the mean and standard deviation.
For the Weibull distribution, we consider shape parameters k = 1.2, 2, 4 and choose
the scale parameter to match the standard deviations. We then translate to match
means. For the t distribution, we fix 2.5 degrees of freedom and then choose the loca-
tion and scale to match mean and standard deviation. For the Cauchy distribution,
we set the location parameter to the mean and choose the scale parameter so as to
match the 95th percentiles.

We use our model and solve under the Gaussian assumption, seeking a solution
which results in no line violations for cases within two standard deviations of the mean,
i.e. a maximum of about 2.27% chance of exceeding the limit. We then perform Monte
Carlo tests drawing from the above distributions to determine the actual rates of
violation. See Figure 3.8. The worst-performer is the highly-asymmetric (and perhaps
unreasonable) Weibull with shape parameter 1.2, which approximately doubles the
desired maximum chance of overload. Somewhat surprisingly, the fat-tailed logistic
and Student’s t distributions result in a maximum chance of overload significantly
less than desired, suggesting that our model is too conservative in these cases.

Next we consider the Gaussian case with errors. We solve with nominal values
for the mean and standard deviation of wind power. We then consider the rate of
violation after scaling all means and standard deviations (separately) . While the
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Distribution Max. prob. violation

Normal 0.0227
Laplace 0.0297
logistic 0.0132
Weibull, k = 1.2 0.0457
Weibull, k = 2 0.0355
Weibull, k = 4 0.0216
t location-scale, ν = 2.5 0.0165
Cauchy 0.0276

Fig. 3.8. Maximum probability of overload for out-of-sample tests. These are a result of Monte
Carlo testing with 10,000 samples on the BPA case, solved under the Gaussian assumption and
desired maximum chance of overload at 2.27%.
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Fig. 3.9. BPA case solved with average penetration at 8% and standard deviations set to 30% of
mean. The maximum probability of line overload desired is 2.27%, which is achieved with 0 forecast
error on the graph. Actual wind power means are then scaled according to the x-axis and maximum
probability of line overload is recalculated (blue). The same is then done for standard deviations
(green).

solution is sensitive to errors in the mean forecast, the sensitivity is well-behaved.
With a desired safety level of ǫ = 2.27% for each line, an error in the mean of 25%
results in a maximum 15% chance of exceeding the limit. The solution is quite robust
to errors in the standard deviation forecast, with a 25% error resulting in less than
6% chance of overload. See Figure 3.9.

3.8. Scalability. As an additional experiment illustrating scalability of the ap-
proach we studied the Polish national grid (obtained from MATPOWER as explained
above) under simulated 20 % renewable penetration spread over 18 wind farms, co-
located with the 18 largest generators. This co-location should lessen the risk as-
sociated with renewable fluctuation (which should be partially “absorbed” by the
co-located generators). Figure 3.10 studies the resulting risk exposure under stan-
dard OPF. The chart shows the number of lines that attain several levels of overload
probability. The situation in the chart is unacceptable: it would lead to frequent
tripping of at least four lines.

In contrast, Figure 3.11 shows the performance attained by the chance-constrained
OPF in the same setting as that of Figure 3.10. Notice the drastic reduction in
overload probabilities – the system is stable. Moreover, this is attained with a minor
increase in cost (less than one percent) while the computational time is on the order
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of 10 seconds.

1 2 3 40

0.011

0.019

0.029

0.051

0.087

  Probability
Overload

# of lines

Standard OPF

0.5

0.32

Fig. 3.10. Figure shows number of lines that are overloaded with given probability values in
simulation of 2746 bus Polish power grid using standard OPF with 20% wind penetration distributed
over 18 wind farms. In particular, two lines are overloaded half of the time, and one line is over-
loaded one-third of the time, constituting a situation with unacceptable systemic risk.

1 3 40

  Probability
Overload

# of lines

0.0017

0.0016

0.0021

0.002

0.0019

0.0018

Chance−constrained OPF

2

0.0024

Fig. 3.11. Same as Figure 3.10, but under chance-constrained OPF. Notice that the largest
overload probability is 200 times smaller than in the case of standard OPF. Moreover, the cost
increase is by less than one percent

4. Discussions. This manuscript suggests a new approach to incorporating un-
certainty in the standard OPF setting routinely used in the power industry to set
generation during a time window, or period (typically 15 min to one hour duration).
When uncertainty associated with renewable generation is quantified in terms of the
probability distribution of output during the next period, we incorporate it through
chance constraints - probabilistic conditions which require that any line of the sys-
tem will not be overloaded for all but a small fraction of time (at most one minute
per hour, for example). Additionally, the modeling accounts for local frequency re-
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sponse of controllable generators to renewable changes. The key technical result of
this manuscript is that the resulting optimization problem, CC-OPF, can be stated as
a convex, deterministic optimization problem. This result also relies on plausible as-
sumptions regarding the exogenous uncertainty and linearity of the underlying power
flow approximations/equations. In fact, our CC-OPF is a convex (conic) optimization
problem, which we solve very efficiently, even on realistic large-scale instances, using
a sequential linear cutting plane algorithm.

This efficient CC-OPF algorithm becomes an instrument of our (numerical) ex-
periments which were performed on a number of standard (and nonstandard) power
grid data sets. Our experimental results are summarized as follows:

• We observe that CC-OPF delivers feasible results where standard OPF, run
for the average forecast, would fail in the sense that many lines would be
overloaded an unacceptably large portion of time.

• Not only is CC-OPF safer than standard OPF, but it also results in cheaper
operation. This is demonstrated by considering the optimal cost of CC-OPF
under sufficiently high wind penetration solution (where standard OPF would
fail) and the low penetration solution (corresponding to the highest possible
penetration where standard OPF would not fail).

• We discover that solutions produced by CC-OPF deviate significantly from
what amounts to a the naive adjustment of the standard OPF obtained by
correcting dispatch just at those generators which are close to overloaded
lines.

• We test the level of wind penetration which can be tolerated without upgrad-
ing lines. This experiment illustrates that, at least for the model tested, the
30% of wind penetration with rather strict probabilistic guarantees enforced
by our CC-OPF may be feasible; but much lower wind penetration remains
feasible under the standard approach.

• We experiment with location of wind farms and discover strong sensitivity of
the maximum level of penetration on the choice of location - optimal choice
of wind farm location is critical for achieving the ambitious goal of high
renewable penetration.

• Analyzing fluctuations of line flows within CC-OPF solution admissible under
high wind penetration, we discover that these fluctuations may be significant,
in particular resulting in reversal of power flows over some of the lines. This
observation suggests that flow reversals and other qualitative changes of power
flows, which are extremely rare in the grid of today, will become significantly
much more frequent (typical) in the grid of tomorrow.

• We studied an out-of-sample test consisted in applying CC-OPF (modeling
exogenous fluctuations as Gaussian) to other distributions. Overall these tests
suggest that with a proper calibration of the effective Gaussian distribution
our CC-OPF delivers a rather good performance. One finds that the worst
CC-OPF performance is observed for the most asymmetric distributions.

• We also presented a computationally sound data-robust version of the CC-
OPF where the parameters for the Gaussian distributions are assumed un-
known, but lying in a window. This allows for parameter mis-estimation, for
model error, and it is also suggests a way to deal in a tractable way with
non-Gaussian fluctuations.

The nature of the problem discussed in the manuscript – principal design of a
new paradigm for computationally efficient generation re-dispatch that accounts for
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wind fluctuations – inevitably required incorporation of a number of assumptions and
approximations. In particular, we made simplifying assumptions about static forecasts
and general validity of power flow linearization. We have also focused solely on failures
associated with line congestion ignoring other possible difficulties, for example those
associated with loss of synchronicity and voltage variations. However, we would like
to emphasize that all of these assumptions made (admittedly natural for a first attack
on the problem) also allow generalization within the approach just sketched:

• Accounting for time evolving forecast/loads/etc. Wind forecast, expressed in
terms of the mean and standard deviation at the wind farm sites, changes
on the scales comparable to duration of the generation re-dispatch interval.
Loads may also change at these time scales. When the slowly evolving, but
still not constant, wind and load forecasts are available we may keep the
quasi-static power flow description and incorporate this slow evolution in
time into the chance constrained scheme. These changes will simply result in
generalizing the conic formulation (2.29)-(2.37) by splitting what used to be
a single time interval into sub-intervals and allowing the regular generation to
be re-dispatched and parallel coefficients to be adjusted more often. Ramping
rate constraints on the controllable generation may naturally be accounted
in the temporal optimization scheme as well.

• Accounting for nonlinearity in power flows. Evolution of the base case inval-
idates the linearization (DC-style) hypothesis. However, if variations around
one base case becomes significant one may simply adjust the linearization pro-
cedure doing it not once (as in the case considered in the manuscript) but as
often as needed. Slow adjustment of the base case may also be included into
the dynamical procedure mentioned one item above. Additionally, some inter-
esting new methodologies for handling nonlinearities have recently emerged,
see [36].

• Accounting for synchronization bounds. Loss of synchronicity and resulting
disintegration of the grid is probably the most acute contingency which can
possibly take place in a power system. The prediction of those conditions
under which the power grid will lose synchronicity is a difficult nonlinear and
dynamic problem. However, as shown recently in [23], one can formulate an
accurate linear and static necessary condition for the loss of synchronicity.
A chance-constrained version of the linear synchronization conditions can be
incorporated seamlessly in our CC-OPF framework.

Finally, we see many opportunities in utilizing the CC-OPF (possibly modified) as
an elementary unit or an integral part of even more complex problems, such as com-
bined unit commitment (scheduling large power plants normally days, weeks or even
months ahead) [47] with CC-OPF, planning grid expansion [4] while accounting for
cost operation under uncertainty, or incorporating CC-OPF in mitigating emergency
of possible cascades of outages [17, 40, 44, 43, 9, 10, 25, 6]. In this context, it would
be advantageous to speed up our already very efficient CC-OPF even further. See,
for example, [11], [8]. A different methodology, relying on distributed algorithms, can
be found in [34].
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