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Abstract. When uncontrollable resources fluctuate, Optimum Power Flow (OPF), routinely
used by the electric power industry to re-dispatch hourly controllable generation (coal, gas and hy-
dro plants) over control areas of transmission networks, can result in grid instability, and, potentially,
cascading outages. This risk arises because OPF dispatch is computed without awareness of major
uncertainty, in particular fluctuations in renewable output. As a result, grid operation under OPF
with renewable variability can lead to frequent conditions where power line flow ratings are signifi-
cantly exceeded. Such a condition, which is borne by simulations of real grids, would likely resulting
in automatic line tripping to protect lines from thermal stress, a risky and undesirable outcome
which compromises stability. Smart grid goals include a commitment to large penetration of highly
fluctuating renewables, thus calling to reconsider current practices, in particular the use of standard
OPF. Our Chance Constrained (CC) OPF corrects the problem and mitigates dangerous renewable
fluctuations with minimal changes in the current operational procedure. Assuming availability of
a reliable wind forecast parameterizing the distribution function of the uncertain generation, our
CC-OPF satisfies all the constraints with high probability while simultaneously minimizing the cost
of economic re-dispatch. CC-OPF allows efficient implementation, e.g. solving a typical instance
over the 2746-bus Polish network in 20 seconds on a standard laptop.
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The power grid, one of the greatest engineering achievements of the 20th century,
delivers social development and resulting political stability of billions of people around
the globe through control sophistication and careful long-term planning, with only
very rare disruptions.

However, the grid is under growing stress and the premise of secure electrical
power may become less certain. Despite massive investments large-scale power out-
ages occur unpredictably and with increasing frequency. Automatic grid control and
regulations achieve robustness of operation as under normal fluctuations, in particu-
lar under approximately predicted inter-day demand trends, or even single points of
failure, such as the failure of a generator or tripping of a single line. However, larger,
unexpected events can prove difficult to overcome. A case could be made that power
grids could have greater reliance on physical models and on data-driven algorithms.
Despite remarkable sophistication, in particular highly efficient distributed frequency
and voltage controls, very often, should an unusual condition arise, current grid oper-
ation relies on human input. Additionally, only some real-time data is actually used
by the grid to respond to evolving conditions.

A benefit of a cost-effective migration toward a more algorithmic-driven grid
concerns the effective integration of renewables. This issue is critical because large-
scale introduction of renewables brings with it the risk of large, random variability –
a condition that the current grid was not developed to accommodate.

This issue becomes clear when we considering so-called Optimal Power Flow
(OPF) or economic dispatch, used to set generator output in typically 15-minute
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Fig. 0.1. Bonneville Power Administration [13] shown in outline under 9% wind penetration,
where green dots mark actual wind farms. We set standard deviation to be 0.3 of the mean for each
wind source. Our CC-OPF (with 1% of overload set as allowable) resolved the case successfully (no
overloads) and was computed in seconds, while the standard OPF showed 8 overloaded lines, all
marked in color. Lines shown orange are at 4% chance of overload. There are two dark red lines
which are at 50% of the overload while other (dark orange) lines show values of overload around
10%.

windows (more frequently in some cases). OPF sets generator outputs so as to meet
demand at minimum cost, under operating limitations of generators and transmission
lines. Estimates of the typical loads for the upcoming time window are employed in
this computation. This scheme can fail, dramatically, when renewables are part of the
generation mix and (exogenous) fluctuations in renewable output become large. By
“failure” we mean, in particular, not accounting for instances where a combination of
generator and renewable outputs conspire to produce power flows that significantly
exceed power line ratings. When a line’s rating is exceeded, the line becomes more
likely to trip (be taken out of service) compromising the integrity and stability of
the grid. To correct for this scenario an additional scheme, based on direct line flow
measurements and requiring a human operator in the loop, is employed as a part of
the current operational routine – after receiving a warning, the operator may initiate
an emergency action, possibly disconnecting the overheated line.

Under the forthcoming high wind power penetration, significantly more frequent
line overloads are likely, making the current operational paradigm clearly unsustain-



D. Bienstock, M. Chertkov, S. Harnett 3

able. If several key lines become tripped a grid would very likely become unstable and
possibly experience a cascading failure, with large losses in serviced demand. This is
not an idle assumption, since firm commitments to major renewable penetration are
in place throughout the world. For example, 20% renewable penetration by 2030 is a
decree in the U.S. [24], and similar plans are to be implemented in Europe, see e.g.
discussions in [19, 21, 29]. At the same time, operational margins (between typical
power flows and line ratings) are decreasing and expected to decrease in part due
to deregulation and difficulties in expanding transmission capacity [19]. A possible
failure scenario is illustrated in Fig. 0.1 using as example the U.S. Pacific Northwest
regional grid data (2866 lines, 2209 buses, 176 generators and 18 wind sources), where
lines highlighted in red are jeopardized (flow becomes too high) with unacceptably
high probability by fluctuating wind resources positioned along the Columbia river
basin (green dots marking existing wind farms).

We propose a solution that requires, as the only additional investment, accurate
wind forecasts; but no change in machinery or significant operational procedures.
Instead, we propose to mitigate risk using an efficient algorithmic modification of the
OPF approach. In computational experiments our algorithm solves realistic examples
with thousands of buses and lines (such as the U.S. Pacific Northwest case) in a matter
of seconds, and is thus only slightly slower than standard economic dispatch methods
even on large-scale case.

It is natural to assess the risk of an event such as a line overload in terms of prob-
abilities, because of the non-deterministic behavior of e.g. wind; thus our proposed
approach relies on mathematical optimization and risk analysis. In a system under
stochastic risk, an extremely large variety of events that could pose danger might
emerge. Recent works [17, 18, 1] suggest that focusing on instantons, or most-likely
(dangerous) events, provides a practicable route to risk control and assessment. How-
ever, there may be far too many comparably probable instantons, and furthermore,
we need a computationally efficient methodology that not only identifies dangerous,
relatively probable events, but also mitigates them.

This paper suggests a new approach that searches for the most probable real-
izations of line overloads under renewable generation, and corrects such situations
through control actions, simultaneously and efficiently in one step. Our approach
relies on “Chance-Constrained” (CC) optimization [42]. Broadly speaking, CC op-
timization problems are optimization problems under uncertainty, with constraints
stating that the probability of a certain random event is kept smaller than a target
value.

We model each bus that houses a power source subject to randomness to include a
random power injection. Our reformulation of standard OPF so minimizes the average
cost of generation over the random power injections, while specifying a mechanism by
which (standard, i.e. controllable) generators compensate in real-time for renewable
power fluctuations so as to guarantee low probability that any line will exceed its
rating. This last constraint is naturally formulated as a chance constraint – we term
our approach Chance-Constrained OPF, or CC-OPF.

This paper is organized as follows. In Section 1 we motivate and present the
various mathematical models used to describe how the grid operates, as well as our
proposed methodology. We explain how to solve the models in Section 2. We then
present, in Section 3 a number of examples to demonstrate the speed and usefulness
of our approach. Section 4 summarizes the results and discusses the path forward.

1. Formulating Chance-Constrained Optimum Power Flow Models.
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1.1. Transmission Grids: Controls and Limits. In this paper we consider
transmission grids which operate at high voltages so as to convey power economically,
with minimal losses, over large distances. In contrast distribution systems are typically
residential, lower voltage grids used to provide power to individual consumers. From
the point of view of wind-power generation, smooth operation of transmission systems
is key since reliable wind sources are frequently located far away from consumption.

Transmission systems balance consumption/load and generation using a complex
strategy that spans three different time scales (see e.g. [4]). At any point in time, gen-
erators produce power at a previously computed base level; power is generated (and
transmitted) in the Alternating Current (AC) form. An essential stability ingredients
is that all generators operate at a common frequency (e.g. 60 Hz in North America).
In real time, changes in loads are registered at generators through (opposing) changes
in frequency. Consider the case of a sudden load increase. In that case generator
frequency will start to drop. The so-called primary frequency control, normally im-
plemented on some gas and hydro plants, will react so as to stop frequency drift, by
having each responding generator convey more power to the system, proportionally
to the frequency change. This reaction is swift and local, leading to stabilization
of frequency across the system, however not necessarily at the nominal 60Hz value.
The task of the secondary, or Automatic Generation Control (AGC), is to undertake
the adjustment of generation levels to return frequency to the nominal value.1 The
OPF algorithm typically runs as frequently as every 15 minutes providing information
for AGC, which ultimately undertakes the adjustment of generation levels to achieve
optimal (or close to optimal) control. The OPF time-window thus represents the
shortest time scale where actual off-line and network wide optimal computations are
employed.

1.2. OPF – Standard Generation Dispatch. As discussed above OPF [33,
36, 4] is used to reset generator output levels over a control area of the transmission
grid (for example over the Bonneville Power Administration (BPA) grid shown in
Fig. 0.1). In order to describe OPF we will employ power engineering terms such as
“bus” to refer to a graph-theoretic vertex and “line” to refer to an edge. The set of
all buses will be denoted by V, the set of lines, E and the set of buses that house gen-
erators, G. We let n = |V|. A line joining buses i and j is denoted by {i, j} indicating
an unordered pair. We assume that the underlying graph is connected, without loss
of generality.

The generic OPF problem can be stated as follows:
• The goal is to determine the vector p ∈ R

G, where for i ∈ G, pi is the output
of generator i, so as to minimize an objective function c(p). This function is,
usually, a convex, separable quadratic function of p:

c(p) =
∑

i∈G

ci(pi),

where each ci is convex quadratic.
• The problem is endowed by three types of constraints: power flow, line limit

and generation bound constraints.

1AGC is based on SCADA communications, which is receiving an updated signal every 4s or so,
however, the actual control action is computed based on integration of the SCADA communicated
signal over a longer window of several minutes.
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Generation bounds are simple box constraints on the individual pi. Thermal line
limits place an upper bound on the power flows in each line. Power flow constraints,
in their most general form, are Kirchoff’s circuit laws stated in terms of voltages
(potentials) and power flows. In this context, for each bus i ∈ V its voltage Ui is
defined as vie

jθi , where vi and θi are the voltage magnitude and phase angle at bus i.
Voltages can be used to derive expressions for other physical quantities, in particular
power, obtaining in the simplest case a system of quadratic equations on the voltage
real and imaginary coordinates. See e.g. [36, 4].

The AC power flow equations can constitute an obstacle to solvability of OPF
(from a technical standpoint, they give rise to nonconvexities). In transmission system
analysis a linear set of equations that gives an approximate representation of angles
and real power flows is commonly used, the so-called “DC-approximation”. In this
approximation (a) all voltages are assumed fixed and re-scaled to unity; (b) phase
differences between neighboring nodes are assumed small, ∀{i, j} ∈ E : |θi−θj| ≪ 1,
(c) thermal losses are ignored (reactance dominates resistance for all lines). Then,
the (real) power flow fij from i to j over line {i, j}, with line susceptance βij (= βji)
is related linearly to the respective phase difference,

fij = βij(θi − θj). (1.1)

Note that fji = −fij so that the notation is consistent. For convenience of notation
we will extend the vector p to include an entry for every bus i ∈ V with the proviso

that pi = 0 whenever i /∈ G. Likewise, denote by d ∈ R
|V|
+ the vector of (possibly zero)

demands and by θ ∈ R
|V| the vector of phase angles. Then, a vector f of power flows

is feasible if and only if
∑

j:{i,j}∈E

fij = pi − di, for each bus i, (1.2)

and in view of equation (1.1), this can be restated as

θi

∑

j:{i,j}∈E

βij −
∑

j:{i,j}∈E

βijθj = pi − di, for each bus i. (1.3)

In matrix form this equation can be rewritten as follows:

Bθ = p − d. (1.4)

where the n × n matrix B is a weighted-Laplacian defined as follows:

∀i, j : Bij =







−βij , {i, j} ∈ E
∑

k;{k,j}∈E
βkj , i = j

0, otherwise
, (1.5)

(1.6)

For future reference, we state some well known properties of Laplacians and the power
flow system (1.4).

Lemma 1.1. The sum of rows of B is zero and under the connectedness assump-
tion for the underlying graph the rank of B equals n−1. Thus system (1.4) is feasible
in θ if and only if

∑

i

pi =
∑

i

di. (1.7)
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In other words: under the DC model the power flow Eqs. (1.4) are feasible precisely
when total generation equals total demand. Moreover, if Eqs. (1.4) are feasible, then
for any index 1 ≤ j ≤ n there is a solution with θj = 0.

In summary, the standard DC-formulation OPF problem can be stated as the
following constrained optimization problem:

OPF: min
p,θ

c(p), s.t. (1.8)

Bθ = p − d, (1.9)

∀i ∈ G : pmin
i ≤ pi ≤ pmax

i , (1.10)

∀{i, j} ∈ E : |βij(θi − θj)| ≤ fmax
ij , (1.11)

Note that the pmin
i , pmax

i quantities can be used to enforce the convention pi = 0 for
each i /∈ G; if i ∈ G then pmin

i , pmax
i are lower and upper generation bounds which

are generator-specific. Constraint (1.11) is the line limit constraint for {i, j}; fmax
ij

represents the line limit (typically a thermal limit), which is assumed to be strictly
enforced. This conservative condition will be relaxed in the sequel.

Problem (1.8) is a convex quadratic program, easily solved using modern opti-
mization tools. The vector d of demands is fixed in this problem and is obtained
through estimation. In practice, however, demand will fluctuate around d; gener-
ators then respond by adjusting their output (from the OPF-computed quantities)
proportionally to the overall fluctuation as discussed above. This scheme works well
in current practice, as demands do not substantially fluctuate on the time scale for
which OPF applies.

1.3. Chance constrained OPF: motivation. To motivate our approach we
outline how generator output is modulated, in real time, in response to demand fluc-
tuations. Suppose we have computed, using OPF, the output pi for each generator i
assuming constant demands d. Let d̂(t) be the vector of real-time demands at time t.
Then so-called “frequency control”, or more properly, primary and secondary controls
in combination will achieve (altogether, on the scale of minutes) the following outputs
to quantities p̂i(t)

p̂i(t) = pi − ρi

∑

j

(dj − d̂j(t)) for each i ∈ G. (1.12)

In this equation, the quantities ρi ≥ 0 are fixed and satisfy

∑

i

ρi = 1.

Thus, from (1.12) we obtain

∑

i

p̂i(t) =
∑

i

pi −
∑

j

(dj − d̂j(t)) =
∑

j

d̂j(t),

from Eq. (1.7), in other words, demands are met. The quantities ρi ≥ 0 are generator
dependent but essentially chosen far in advance and without regard to short-term
demand forecasts.

Thus, in effect, generator outputs are set in hierarchical fashion – using OPF to
compute a base level, with real-time adjustments as per (1.12) which is furthermore
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risk-unaware. This scheme has worked in the past because of the slow time scales of
change in uncontrolled resources (mainly loads). That is to say, frequency control and
load changes are well-separated. A large error in the forecast or an under-estimation
of possible d for the next –e.g., fifteen minute– period may lead to an operational
problem (see e.g. the discussions in [14, 38]) because even though the vector p̂(t) is

sufficient to meet average demands, the θ̂(t) computed from

Bθ̂(t) = p̂(t) − d̂(t)

may give rise to real-time power flows

f̂ij(t)
.
= βij [θ̂i(t) − θ̂j(t)]

that violate constraints (1.11). Even the generator constraints (1.10) may fail to hold.
This has not been considered a handicap simply because any resulting line trips are
rare, primarily because the deviations d̂i(t) − di will be small in the time scale of
interest. In effect, the risk-unaware approach that assumes constant demands has
worked well.

This perspective changes when renewable power sources such as wind are incor-
porated. We assume that a subset W of the buses holds uncertain power sources
(wind farms); for each j ∈ W, write the amount of power generated by source j at
time t as µj + ωj(t), where µj is the forecast output of farm j in the time period of
interest. For ease of exposition, we will assume in what follows that G refers to the
set of buses holding controllable generators, i.e. G ∩ W = ∅. Renewable generation
can be incorporated into the OPF formulation (1.8)-(1.11) by simply setting pi = µi

for each i ∈ W. Assuming constant demands but fluctuating renewable generation,
the application of the frequency control yields the following analogue to (1.12):

p̂i(t) = pi − ρi

∑

j∈W

ωj(t) for each i ∈ G, (1.13)

e.g. if
∑

j∈W
ωj(t) > 0, that is to say, there is a net increase in wind output, then

(controllable) generator output will proportionally decrease.
Eq. (1.13) describes how generation will adjust to wind changes, under current

power engineering practice. The hazard embodied in this relationship is that the quan-
tities ωj(t) can be large resulting in stochastic changes in power flows, significant
enough to overload power lines. The risk of such overloads can be expected to increase
(see [19]); this is due to a projected increase of renewable penetration in the future,
accompanied by the decreasing gap between normal operation and limits set by line
capacities. Lowering of the thermal limits (the fmax

ij quantities in Eqs. (1.11)) can
succeed in deterministically preventing overloads, but it also forces excessively conser-
vative choices of the generation re-dispatch, potentially causing extreme volatility of
the electricity markets. See e.g. the discussion in [50] on abnormal price fluctuations
in markets that are heavily reliant on renewables.

1.4. Using chance constraints. Power lines do not fail (i.e., trip) instantly
when their flow thermal limits are exceeded. A line carrying flow that exceeds the
line’s thermal limit will gradually heat up and possibly sag, and through a variety of
processes (such as a contact), may then trip. The precise process is extremely difficult
to calibrate.2 Additionally, the rate at which a line overheats depends on its overload

2We refer the reader to [22] for discussions of line tripping during the 2003 Northeast U.S.-Canada
cascading failure.
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which may dynamically change (or even temporarily disappear) as flows adjust due to
external factors; in our case fluctuations in renewable outputs. What can be stated
with certainty is that the longer a line stays overheated, the higher the probability
that it will trip – to put it differently, if a line remains overheated over a duration
possibly measured in minutes, it will trip.

Even though an exact representation of line tripping seems difficult, we can how-
ever state a practicable alternative. Ideally, we would use a constraint of the form
“for each line, the fraction of the time that it exceeds its limit within a certain time
window is small”. Direct implementation of this constraint would require resolving
dynamics of the grid over the generator dispatch time window of interest. Instead we
propose the following static proxy of this ideal model, a chance constraint: we will
require that the probability that a given line exceeds its limit is small.

To formalize this notion, we assume:

W.1. For each i ∈ W, the (stochastic) amount of power generated by source i is of
the form µi + ωi, where

W.2. µi is constant, assumed known from the forecast, and ωi is a zero mean
independent random variable with known standard deviation σi.

Here and in what follows, we use bold face to indicate uncertain quantities. Let fij

be the flow on a given line {i, j}, and let 0 < ǫij be small. The chance constraint for
line {i, j}, is:

P (fij > fmax
ij ) < ǫij and P (fij < −fmax

ij ) < ǫij ∀ {i, j}. (1.14)

One could alternatively use

P (|fij | > fmax
ij ) < ǫij ∀ {i, j}, (1.15)

which is more conservative than (1.14). If (1.15) holds then so does (1.14), and if the
latter holds then P (|fij | > fmax

ij ) < 2ǫij . However, (1.14) proves more tractable, and
moreover we are interested in the regime where ǫij is fairly small; thus we estimate
that there is small practical difference between the two constraints; this will be verified
by our numerical experiments. Likewise, for a generator g we will require that

P (pg > pmax
g ) < ǫg and P (pg < pmin

g ) < ǫg. (1.16)

The parameter ǫg will be chosen extremely small, so that for all practical purposes all
generator outputs will be guaranteed to stay within respective bounds.

Chance constraints [46], [15], [39] are but one possible methodology for handling
uncertain data in optimization. Broadly speaking, this methodology fits within the
general field of stochastic optimization. Constraint (1.14) can be viewed as a “value-
at-risk” statement; the closely-related “conditional value at risk” concept provides a
(convex) alternative, which roughly stated constrains the expected overload of a line
to remain small, conditional on there being an overload (see [42] for definitions and
details).

One alternative model would insist on imposing the (much stronger) constraint

P (∃ line {i, j} s.t. |fij | > fmax
ij ) < ǫ, (1.17)

where 0 < ǫ < 1. Nemirovski and Shapiro [42] develop a general framework for
developing, under appropriate assumptions, a convex optimization problem with an
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approximate version of constraint (1.17), using methodology inspired by the theory
Large Deviations.

Reference [52] considers the standard OPF problem under stochastic demands,
using chance constraints to guarantee high probability that the system operates within
acceptable bounds. The problem is tackled using a simulation-based local optimiza-
tion system; with experiments using a 5-bus and a 30-bus example.

Another related study [49] describes a scenario-based system for reserve schedul-
ing with fluctuating wind generation, using chance constraints to limit line or gener-
ator overloads. This optimization is tackled via transformation to a convex problem
plus a heuristic scheme, with no convergence to global optimum of the nonlinear
problem guaranteed.

Chance constrained optimization has also been discussed recently in relation to
the Unit Commitment problem, which concerns discrete-time planning for operation
of large generation units on the scale of hours-to-months, so as to account for the
long-term wind-farm generation uncertainty [43, 51, 53].

1.5. Uncertain power sources. In our model we assume independence of wind
power fluctuations at different sites; this is justified by the fact that the wind farms
are sufficiently far away from each other. For the typical OPF time span of 15 min
and typical wind speed of 10m/s, fluctuations of wind at the farms more than 10km
apart are not correlated.

We make additional simplifying assumptions that are approximately consistent
with our general physics understanding of fluctuations in atmospheric turbulence;
in particular we assume Gaussianity of ωi.

3 We will also assume that only a stan-
dard weather forecast (coarse-grained on minutes and kilometers) is available, and no
systematic spillage of wind in its transformation to power is applied4.

Additionally, under the Gaussian assumption, chance constraint (1.14) can be
captured using an optimization framework that proves particularly efficient. We will
also consider a data-robust version of our chance-constrained problem where the pa-
rameters for the Gaussian distributions are not precisely known. This allows both for
parameter mis-estimation and for model error, that is to say the implicit approxima-
tion of non-Gaussian distributions with Gaussians; our approach, detailed in Section
2.4, remains computationally sound in this robust setting.

Other fitting distributions considered in the wind-modeling literature, e.g. Weibull
distributions and logistic distributions [11, 32], will be discussed later in the text as
well.5 In particular, we will demonstrate on out-of-sample tests that the computation-
ally advantageous Gaussian modeling of uncertainty allows as well to model effects of
other distributions.

3Correlations of velocity within the correlation time of 15 min, roughly equivalent to the time span
between the two consecutive OPF, are approximately Gaussian. The assumption is not perfect, in
particular because it ignores significant up and down ramps possibly extending tails of the distribution
in the regime of really large deviations. Also see [11, 32] and references therein.

4See [19], for some empirical validation.
5Note that the fitting approach of [11, 32] does not differentiate between typical and atypical

events and assumes that the main body and the tail should be modeled using a simple distribution
with only one or two fitting parameters. Generally this assumption is not justified as the physical
origin of the typical and anomalous contributions of the wind, contributing to the main body and
the tail of the distribution respectively, are rather different. Gaussian fit (of the tail) – or more
accurately, faster than exponential decay of probability in the tail for relatively short-time (under
one hour) forecast – would be reasonably consistent with phenomenological modeling of turbulence
generating these fluctuations.
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1.6. Affine Control. Since the power injections at each bus are fluctuating, we
need a control scheme to ensure that generation is equal to demand at all times within
the time window of interest. We assume that all governors involved in the controls
respond to fluctuations in the generalized load (actual demand which is assumed
frozen minus stochastic wind resources) in a proportional way, however with possibly
different proportionality coefficients. Thus, we term the joint result of the primary
frequency control and secondary frequency control the affine control. The stochastic
version of Eq. (1.13) thus becomes

∀bus i ∈ G : pi = p̄i − αi

∑

j∈W

ωj . αi ≥ 0. (1.18)

Here the quantities p̄i ≥ 0 and αi ≥ 0 are design variables satisfying (among other
constraints)

∑

i∈G
αi = 1. Thus the generator output pi combines a fixed term p̄i and

a term which varies with wind, −αi

∑

j∈W
ωj . Observe that

∑

i pi =
∑

i p̄i −
∑

i ωj ,
that is, the total power generated equals the average production of the generators
minus any additional wind power above the average case. Allowing α to change does
not reflect current practice. We allow this degree of freedom because (a) control of
α is available, in principle; (b) we do not set any αi to a standard (fixed) value, but
instead leave it to the optimization to decide the optimal value. (In some cases it
may even be advantageous to allow negative αi but we decided not to consider such
a drastic change of current policy in this study.)

This affine control scheme creates the possibility of requiring a generator to pro-
duce power beyond its limits. With unbounded wind, this possibility is inevitable,
though we can restrict it to occur with arbitrarily small probability, which we will do
with additional chance constraints for all controllable generators, ∀g ∈ G,

P (pmin
g ≤ p̄g − αg

∑

j∈W

wj ≤ pmax
g ) > 1 − ǫg. (1.19)

1.7. CC-OPF: Brief Discussion of Solution Methodology. Our method-
ology applies and develops general ideas on chance-constrained optimization [42] to
the setting of OPF under uncertainty. In Section 2.1 we will provide a generic formu-
lation of our chance-constrained OPF problem that is valid under the assumption of
linear power flow laws and statistical independence of wind fluctuations at different
sites, while using control law (1.18) to specify standard generation response to wind
fluctuations. Under the additional assumption of Gaussianity, in Section 2.2 this for-
mulation is reduced to a deterministic convex optimization problem, more precisely, a
Second-Order Cone Program (SOCP) [12, 27]; an efficient computational implemen-
tation is discussed in Section 2.3. We will term this SOCP, which assumes known
values of the wind distribution parameters, the nominal problem. In Section 2.4 we
extended the formulation to account for data-related uncertainty in the parameters
of the Gaussian distributions.

Many of our assumptions are not restrictive and allow natural generalizations.
Using techniques from [42], one can relax the assumption of wind source Gaussianity.
For example, using only the mean and variance of output at each wind farm, one
can use Chebyshev’s inequality to obtain a similar though more conservative formu-
lation. And following [42] we can also obtain convex approximations to (1.14) which
are tighter than Chebyshev’s inequality, for a large number of empirical distribu-
tions discussed in the literature. The data-robust version of our algorithm provides
a methodologically sound (and computationally efficient) means to protect against
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data and model errors. Additionally out-of-sample experiments (below) involving the
controls computed with the nominal approach (first to investigate the effect of pa-
rameter estimation errors in the Gaussian case, and, second, to gauge the impact of
non-Gaussian wind distributions) indicate robustness.

2. Solving the Models.

2.1. Chance-constrained optimal power flow: formal expression. Fol-
lowing the W.1 and W.2 notations, Eqs. (1.18) explain the affine control, given that
the αi are decision variables in our CC-OPF, additional to the standard p̄i decision
variables already used in the standard OPF (1.8). For i /∈ W write µi = σi = 0 (so
that ωi = 0), thereby obtaining vectors µ, σ, ω ∈ R

n. Likewise, extend p̄ and α to
vectors in R

n by writing p̄i = αi = 0 whenever i /∈ G.

Definition. We say that the pair p̄, α is viable if the generator outputs under control
law (1.18), together with the uncertain outputs, always exactly match total demand.

The following simple result characterizes this condition as well as other basic proper-
ties of the affine control. Here and below, e ∈ R

n is the vector of all 1’s.

Lemma 2.1. Under the control law (1.18) the net output of bus i equals

p̄i + µi − di + ωi − αi(e
T ω), (2.1)

and thus the (stochastic) power flow equations can be written as

Bθ = p̄ + µ − d + ω − (eT ω)α. (2.2)

Consequently, the pair p̄, α is viable if and only if

∑

i∈V

(p̄i + µi − di) = 0, (2.3)

α ≥ 0 and
∑

i

αi = 1.

Proof. Eq. (2.1) follows by definition of the p̄, µ, d vectors and the control law. Thus
Eq. (2.2) holds. By Lemma 1.1 from Eq. (2.2) one gets that p̄, α is viable iff

0 =

n
∑

i=1

(p̄i − (eT ω)αi + µi + ωi − di)

=
∑

i

(p̄i + µi − di), (2.4)

since by construction
∑

i αi = 1.

Remark. Equation (2.3) can be interpreted as stating the condition that expected
total generation must equal total demand; however the Lemma contains a rigorous
proof of this fact.

As remarked before, any (n − 1) × (n − 1) matrix obtained by striking out the
same column and row of B is invertible. For convenience of notation we will assume
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that bus n is neither a generator nor a wind farm bus, that is to say, n /∈ G ∪W, and
we denote by B̂ the submatrix obtained from B by removing row and column n, and
write

B̆ =

(

B̂−1 0
0 0

)

. (2.5)

Further, by Lemma 1.1 we can assume without loss of generality that θn = 0. The
following simple result will be used in the sequel.

Lemma 2.2. Suppose the pair p̄, α is viable. Then under the control law (1.18) a
vector of (stochastic) phase angles is

θ = θ̄ + B̆(ω − (eT ω)α), where (2.6)

θ̄ = B̆(p̄ + µ − d). (2.7)

As a consequence,

Eωθ = θ̄, (2.8)

and given any line {i, j},

Eωfij = βij(θ̄i − θ̄j). (2.9)

Furthermore, each quantity θi or fij is an affine function of the random variables
ωi.
Proof. For convenience we rewrite system (2.2): Bθ = p̄ + µ − d + ω − (eT ω)α.
Since p̄, α is viable, this system is always feasible, and since the sum of rows of B
is zero, its last row is redundant. Therefore Eq. (2.6) follows since θn = 0, and
Eq. (2.8) holds since ω has zero mean. Since fij = βij(θi−θj) for all {i, j}, Eq. (2.9)
holds. From this fact and Eq. (2.6) it follows that θ and f are affine functions of ω.

Using this result we can now give an initial formulation to our chance-constrained
problem; with discussion following.

CC-OPF: min Eω

[

c(p̄ − (eT ω)α)
]

(2.10)

s.t.
∑

i∈G

αi = 1, α ≥ 0, p̄ ≥ 0 (2.11)

∑

i∈V

(p̄i + µi − di) = 0 (2.12)

Bθ̄ = p̄ + µ − d, (2.13)

for all lines {i, j}:
P
(

βij(θ̄i − θ̄j + [B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j ) > fmax
ij

)

< ǫij

(2.14)

P
(

βij(θ̄i − θ̄j + [B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j ) < −fmax
ij

)

< ǫij

(2.15)

for all generators g:

P
(

p̄g − (eT ω)αi > pmax
g

)

< ǫg and P
(

p̄g − (eT ω)αi < pmin
g

)

< ǫg. (2.16)
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The variables in this formulation are p̄, α and θ̄. Constraint (2.11) simply states basic
conditions needed by the affine control. Constraint (2.12) is (2.3). Constraints (2.13),
(2.14) and (2.15) express our chance constraint, in view of Lemma 2.2.

The objective function is the expected cost incurred by the stochastic generation
vector

p = p̄ − (eT ω)α

over the varying wind power output w. In standard power engineering practice gen-
eration cost is convex, quadratic and separable, i.e. for any vector p, c(p) =

∑

i ci(pi)
where each ci is convex quadratic. Note that for any i ∈ G we have

p2
i = p̄2

i + (eT ω)2α2
i − 2eT ωp̄iαi,

from which we obtain, since the ωi have zero mean,

Ew(p2
i ) = p̄2

i + var(Ω)α2
i ,

where “var” denotes variance and Ω
.
=
∑

j ωj. It follows that the objective function
can be written as

Eωc(p) =
∑

i∈G

{

ci1

(

p̄2
i + var(Ω)α2

i

)

+ ci2p̄i + ci3

}

(2.17)

where ci1 ≥ 0 for all i ∈ G. Consequently the objective function is convex quadratic,
as a function of p̄ and α.

The above formulation is the formal statement for our optimization problem.
Even though its objective is convex in cases of interest, the formulation is not in a
form that can be readily exploited by standard optimization algorithms. Below we
will provide an efficient approach to solve relevant classes of problems with the above
form; prior to that we need a technical result. We will employ the following notation:

• For j ∈ W, the variance of ωj is denoted by σ2
j .

• For 1 ≤ i, j ≤ n let πij denote the i, j entry of the matrix B̆ given above, that
is to say,

πij =

{

[B̂−1]ij , i < n,
0, otherwise.

, (2.18)

• Given α, for 1 ≤ i ≤ n write

δi
.
= [B̆α]i =

{
∑n−1

1=j πijαj , i < n,

0, otherwise.
(2.19)

Lemma 2.3. Assume that the ωi are independent random variables. Given α,
for any line {i, j},

var(fij ) = β2
ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2. (2.20)

Proof. Using fij = βij [θi − θj] and eq. (2.6) we have that

fij − Eωfij = βij([B̆(ω − (eT ω)α)]i − [B̆(ω − (eT ω)α)]j) = (2.21)

= βij

(

[B̆ω]i − [B̆ω]j − (eT ω)δi + (eT ω)δj

)

= (2.22)

= βij

∑

k∈W

(πik − πjk − δi + δj)ωk, (2.23)
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since by convention ωi = 0 for any i /∈ W. The result now follows.

Remark. Lemma 2.3 holds for any distribution of the ωi so long as independence is
assumed. Similar results are easily obtained for higher-order moments of the fij .

2.2. Formulating the chance-constrained problem as a conic program.
In deriving the above formulation (2.10)-(2.16) for CC-OPF we assumed that the
ωi random variables have zero mean. To obtain an efficient solution procedure we
will additionally assume that they are (a) statistically independent and (b) normally
distributed. These assumptions were justified in Section 1.5. Under the assumptions,
however, since the fij are affine functions of the ωi (because the θ are, by eq. (2.6)),
it turns out that there is a simple restatement of the chance-constraints (2.14), (2.15)
and (2.16) in a computationally practicable form. See [42] for a general treatment
of linear inequalities with stochastic coefficients. For any real 0 < r < 1 we write
η(r) = φ−1(1 − r), where φ is the cdf of a standard normally distributed random
variable.

Lemma 2.4. Let p̄, α be viable. Assume that the ωi are normally distributed and
independent. Then:

For any line {i, j}, P (fij > fmax
ij ) < ǫij and P (−fij > fmax

ij ) < ǫij if and only if

βij |θ̄i − θ̄j | ≤ fmax
ij − η(ǫij)

[

β2
ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

(2.24)

where as before θ̄ = B̆(p̄ + µ − d) and δ = B̆α.

For any generator g, P
(

p̄g − (eT ω)αi > pmax
g

)

< ǫg and P
(

p̄g − (eT ω)αi < pmin
g

)

<
ǫg iff

pmin
g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ p̄g ≤ pmax
g − η(ǫg)

(

∑

k∈W

σ2
k

)1/2

. (2.25)

Proof. By Lemma 2.2, fij is an affine function of the ωi; under the assumption it
follows that fij is itself normally distributed. Thus, P (fij > fmax

ij ) < ǫij iff

Eωfij + η(ǫij) var(fij ) ≤ fmax
ij , (2.26)

and similarly, P (fij < −fmax
ij ) < ǫij iff

Eωfij − η(ǫij) var(fij ) ≥ −fmax
ij . (2.27)

Lemma 2.2 gives Eωfij = βij(θ̄i−θ̄j) while by Lemma 2.3, var(fij) = β2
ij

∑

k∈W
σ2

k(πik−
πjk − δi + δj)

2. Substituting these values into (2.26) and (2.27) yields (2.24). The
proof of (2.25) is similar.

Remarks Eq. (2.24) highlights the difference between e.g. our chance constraint for
lines, which requires that P (fij > fmax

ij ) < ǫij and that P (fij < −fmax
ij ) < ǫij , and

the stricter requirement that P (|fij | > fmax
ij ) < ǫij which amounts to

P (fij > fmax
ij ) + P (fij < −fmax

ij ) < ǫij . (2.28)
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Unlike our requirement, which is captured by (2.24), the stricter condition (2.28) does
not admit a compact statement.

We can now present a formulation of our chance-constrained optimization as a convex
optimization problem, on variables p̄, α, θ̄, δ and s. We will assume in what follows
that for all lines {i, j}, ǫij < 1/2, so that η(ǫij) > 0.

min
∑

i∈G

{

ci1p̄
2
i +

(

∑

k

σ2
k

)

ci1α
2
i + ci2p̄i + ci3

}

(2.29)

for 1 ≤ i ≤ n − 1:

n−1
∑

j=1

B̂ij δj = αi (2.30)

for 1 ≤ i ≤ n − 1:

n−1
∑

j=1

B̂ij θ̄j − p̄i = µi − di (2.31)

∑

i

αi = 1, α ≥ 0, p̄ ≥ 0 (2.32)

p̄n = αn = δn = θ̄n = 0 (2.33)

βij |θ̄i − θ̄j | + βijη(ǫij) sij ≤ fmax
ij ∀ {i, j} (2.34)

[

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

]1/2

− sij ≤ 0 ∀ {i, j} (2.35)

−p̄g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ −pmin
g ∀ g ∈ G (2.36)

p̄g + η(ǫg)

(

∑

k∈W

σ2
k

)1/2

≤ pmax
g ∀ g ∈ G (2.37)

In this formulation, the variables sij are auxiliary and introduced to facilitate the
discussion below – since ηij ≥ 0 without loss of generality (2.35) will hold as an
equality. Constraints (2.35), (2.36) and (2.37) are second-order cone inequalities [12].
A problem of the above form is solvable in polynomial time using well-known methods
of convex optimization; several commercial software tools such as Cplex [20], Gurobi
[31], Mosek [40] and others are available. Constraint (2.30) is equivalent to δi =
∑n−1

1=j πijαj (as we did in (2.19)), however the πij can be seen to be all nonzero,

whereas B̂ is very sparse for typical grids. Constraint (2.35) can be relatively dense
– the sum has a term for each farm. However as a percentage of the total number of
buses this can be expected to be small.

2.3. Solving the conic program. Even though optimization theory guarantees
that the above problem is efficiently solvable, experimental testing shows that in the
case of large grids (thousands of lines) the problem proves challenging. For example,
in the Polish 2003-2004 winter peak case6, we have 2746 buses, 3514 lines and 8

6Available with MATPOWER [54]
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wind farms, and Cplex [20] reports (after pre-solving) 36625 variables and 38507
constraints, of which 6242 are conic. On this problem, a recent version of Cplex on
a (current) 8-core workstation ran for 3392 seconds (on 16 parallel threads, making
use of “hyperthreading”) and was unable to produce a feasible solution. On the same
problem Gurobi reported “numerical trouble” after 31.1 cpu seconds, and stopped.

In fact, all of the commercial solvers [20, 31, 40] we experimented with reported
numerical difficulties with problems of this size. Anecdotal evidence indicates that
the primary cause for these difficulties is not simply the size, but also to a large degree
numerics in particular poor conditioning due to the entries in the matrix B. These
are susceptances, which are inverses of reactances, and often take values in a wide
range.

To address this issue we implemented an effective algorithm for solving problem
(2.29)-(2.37). For brevity we will focus on constraints (2.35) ((2.36) and (2.37) are
similarly handled). For a line {i, j} define

Cij(δ)
.
=

(

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2

)1/2

.

Constraint (2.35) can thus be written as Cij(δ) ≤ sij . For completeness, we state the
following result:

Lemma 2.5. Constraint (2.35) is equivalent to the infinite set of linear inequalities

Cij(δ̂) +
∂Cij(δ̂)

∂δi
(δi − δ̂i) +

∂Cij(δ̂)

∂δj
(δj − δ̂j) ≤ sij , ∀ δ̂ ∈ R

n (2.38)

Constraints (2.38) express the outer envelope of the set described by (2.35) [12].
Any vector δ ∈ R

n which satisfies (2.35) (for a given choice of sij) is guaranteed to
satisfy (2.38). Thus a a finite subset of the inequalities (2.38), used instead of (2.35),
will give rise to a relaxation of the optimization problem and thus a lower bound on
the optimal objective value. Given Lemma 2.5 there are two ways to proceed, both
motivated by the observation that at δ∗ ∈ R

n, the most constraining inequality from
among the set (2.38) (that is to say, the one whose left-hand side is largest) is that

obtained by choosing δ̂ = δ∗.

First, one can use inequalities (2.38) as cutting-planes in the context of the ellip-
soid method [30], obtaining a polynomial-time algorithm. A different way to proceed
yields a numerically practicable algorithm. For a classical reference, see [34]. For
brevity, we will omit treatment of the generator conic constraints (2.36), (2.37) (which
are similarly handled). Denote by F (p̄, α) the objective function in Eq. (2.29).
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Procedure 2.6. CUTTING-PLANE ALGORITHM
Initialization: The linear “master” system A(p̄, α, δ, θ, s)T ≥ b is defined to
include constraints (2.30)-(2.34).

Iterate:

(1) Solve min{F (p̄, α) : A(p̄, α, δ, θ, s)T ≥ b}. Let (p̄∗, α∗, δ∗, θ∗, s∗) be
an optimal solution.

(2) If all conic constraints are satisfied up to numerical tolerance by
(p̄∗, α∗, δ∗, θ∗, s∗), Stop.

(3) If all chance constraints are satisfied up to numerical tolerance by
(p̄∗, α∗), Stop.

(4) Otherwise, add to the master system the outer inequality (2.38) aris-
ing from that constraint (2.35) which is most violated.

As the algorithm iterates the master system represents a valid relaxation of the conic
program (2.30)-(2.35); thus the objective value of the solution computed in Step 1 is a
valid lower bound on the value of problem. Each problem solved in Step 1 is a linearly
constrained, convex quadratic program. Computational experiments involving large-
scale realistic cases show that the algorithm is robust and rapidly converges to an
optimum.

Note that Step 3 is not redundant. Recall that our formulation includes the
variables sij ; each such variable is lower bounded (via equation (2.35)) by the variance
of flow on line {i, j}. However in the cutting-plane algorithm we do not make explicit
use of equation (2.35) – indeed, we progressively approximate it by means of cutting
planes. At a typical intermediate iteration the current solution will still fail to satisfy
(2.35), i.e. we may have, for some line (or lines) {i, j},

[

∑

k∈W

σ2
k(πik − πjk − δ∗i + δ∗j )2

]1/2

> s∗ij , (2.39)

(where “*” indicates the current values of the variables) which would normally in-
dicate that the algorithm has not terminated because condition (2.35) has not been
adequately represented by the cutting-planes. However, in later stages of the algo-
rithm it may be the case that (2.39) holds for some lines, and yet the pair (p̄∗, α∗)
already satisfies the chance constraints for all lines. This situation will arise if in the
current solution some of the s∗ij quantities are artificially low, that is to say, they could
be increased so as to match the right-hand side of (2.39) without jeopardizing feasibil-
ity of the rest of the solution, that is to say, constraint (2.34). The underlying dynamic
is that the conic constraints (2.35) are still somewhat loosely (outer-)approximated
by a set of linear inequalities, resulting in a range of possible values for a particular
variable sij . One such value will be picked by the underlying QP solver; and as just
argued this value may be artificially low. A direct way to check that (p̄∗, α∗) satisfies
the chance constraint for a given line {i, j}, is straightforward – the flows fij are
normally distributed (as noted in Lemma 2.4) and their means and variances can be
directly computed from (p̄∗, α∗), and so we can directly compute the probability that,
under (p̄∗, α∗), any given fij exceeds its corresponding line limit (additionally, this
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procedure computes said probability, a useful output parameter). If (p̄∗, α∗) indeed
satisfies all chance constraints it is optimal, since it attains a cost that matches a lower
bound to the overall problem (i.e. it attains the value of the current cutting-plane
relaxation).

In our implementation termination is declared in Step 2 or Sep 3 when the cor-
responding constraint violation is less than 10−6. Table 2.1 displays typical perfor-
mance of the cutting-plane algorithm on (comparatively more difficult) large problem
instances. In the Table, ’Polish1’-’Polish3’ are the three Polish cases included in MAT-
POWER [54] (in Polish1 we increased loads by 30%). All Polish cases have uniform
random costs on [0.5, 2.0] for each generator and ten arbitrarily chosen wind sources.
The average wind power penetration for the four cases is 8.8%, 3.0%, 1.9%, and 1.5%.
’Iterations’ is the number of linearly-constrained subproblems solved before the algo-
rithm converges. ’Barrier iterations’ is the total number of iterations of the barrier
algorithm in CPLEX over all subproblems, and ’Time’ is the total (wallclock) time
required by the algorithm. Line tolerances are set to two standard deviations and
generator tolerances three standard deviations (tail probabilities 0.0228 and 0.00135,
respectively). These instances all prove unsolvable if directly tackled by CPLEX or
Gurobi. A more challenging test involving the Polish grid is reported in Section 3.6.

Table 2.1

Performance of cutting-plane method on a number of large cases.

Case Buses Generators Lines Time (s) Iterations Barrier iterations

BPA 2209 176 2866 5.51 2 256
Polish1 2383 327 2896 13.64 13 535
Polish2 2746 388 3514 30.16 25 1431
Polish3 3120 349 3693 25.45 23 508

Table 2.2 provides additional, typical numerical performance for the cutting-plane
algorithm on an instance of the Polish grid model. Each row of Table 2.2 shows the
maximum relative error and objective value at the end of several iterations. The
total run-time was 25 seconds. Note the “flatness” of the objective. This makes
the problem nontrivial – the challenge is to find a feasible solution (with respect
to the chance constraints); at the onset of the algorithm the computed solution is
quite infeasible and it is this attribute that is quickly improved by the cutting-plane
algorithm.

Table 2.2

Typical convergence behavior of cutting-plane algorithm on a large instance.

Iteration Max rel. error Objective
1 1.2e-1 7.0933e6
4 1.3e-3 7.0934e6
7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6
12 8.9e-7 7.0965e6

We note the (typical) small number of iterations needed to attain numerical con-
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vergence. Thus at termination only a very small number of conic constraints (2.35)
have been incorporated into the master system. This validates the expectation that
only a small fraction of the conic constraints in CC-OPF are active at optimality. The
cutting-plane algorithm can be viewed as a procedure that opportunistically discovers
these constraints.

2.4. Data-robust chance constraints. Above we developed a formulation for
our chance-constrained OPF problem as the conic program (2.29)-(2.37). This ap-
proach assumed exact estimates for the mean µi and the variance σ2

i of each wind
source ωi. In practice however the estimates at hand might be imprecise7; con-
sequently jeopardizing the usefulness of our conic program, henceforth termed the
nominal chance-constrained problem. In particular, the performance of the control
computed by the conic program might conceivably be sensitive to even small changes
in the data. We will deal with this issue in two complimentary ways.

2.4.1. Out-of-sample analysis. Our first approach is the out-of-sample tests,
implemented experimentally in Section 3.5. We assume that the µi and σ2

i have been
mis-estimated and explore the robustness of the affine control with respect to the
estimation errors. The experiments of Section 3.5 show that the degradation of the
chance constraints is small when small data errors are experienced. This empirical
observation has a rigorous explanation discussed below.

Our chance constraints are represented by convex inequalities, for example in
the case of P (fij > fmax

ij ) < ǫij and P (fij < −fmax
ij ) < ǫij we used e.g. (2.34)

and (2.35). Suppose that we have solved the chance-constrained problem assuming
(incorrect) expectations µi and variances σ2

i (i ∈ W). Let µ̃i and σ̃2
i (i ∈ W) be the

exact (or realized) values. With some abuse of notation, we will write ξ (resp., ξ̃) for
the incorrect (exact) distribution. For a given line {i, j}, write:

mij = Eξfij = βij([B̆(p̄ + µ − d)]j − [B̆(p̄ + µ − d)]j), (2.40)

σ2
ij = varξfij = β2

ij

∑

k∈W

σ2
k(πik − πjk − δi + δj)

2. (2.41)

and similarly,

m̃ij = E
ξ̃
fij = βij([B̆(p̄ + µ̃ − d)]j − [B̆(p̄ + µ̃ − d)]j), (2.42)

σ̃2
ij = varξ̃fij = β2

ij

∑

k∈W

σ̃2
k(πik − πjk − δi + δj)

2. (2.43)

Using (2.42) and (2.43) we see that the “true” probability P (fij > fmax
ij ) is that

value ǫ̃ such that

m̃ij + η(ǫ̃)σ̃ij = fmax
ij . (2.44)

We wish to evaluate how much larger this (realized) value ǫ̃ is compared with the
target value ǫij which was the goal in the chance-constrained computation. We will
do this assuming that the estimation errors are small, more precisely, there exist
nonnegative constants M and V such that

∀i ∈ W, |µ̃i − µi| < Mµi and |σ̃2
i − σ2

i | < V 2σ2
i . (2.45)

7In particular since they would effectively be computed in real time.
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Considering Eq. (2.44), we see that for data errors of a given magnitude, ǫ̃ is maximized
when m̃ij and σ̃ij are maximized. Further, considering Eqs. (2.42) and Eqs. (2.43)
we see that to first order m̃ij ≤ mij + O(M), and that σ̃2

ij ≤ (1 + V 2)σ2
ij . From these

two observations and eq. (2.44) we obtain

ǫ̃ =
1√
2π

∫ +∞

η(ǫ̃)

e−x2/2dx = ǫij +
1√
2π

∫ η(ǫij)

η(ǫ̃)

e−x2/2dx

= ǫij +
1√
2π

e−
η(ǫij )2

2 [η(ǫij) − η(ǫ̃)] + smaller order errors. (2.46)

The quantity in brackets in the right-hand side of (2.46) equals

η(ǫij) −
fmax

ij − mij

σ̃ij
+

m̃ij − mij

σ̃ij
< (2.47)

η(ǫij)

(

1 − 1√
1 + V 2

)

+
m̃ij − mij

σ̃ij
< (2.48)

η(ǫij)O(V ) +
O(M)

σij
. (2.49)

Using (2.46) and (2.49) we obtain that ǫ̃ = ǫij + [η(ǫij)O(V )+O(M)]e−
η(ǫij )2

2 , where
the “O” notation contains solution-dependent constants.

2.4.2. Efficiently solvable data-robust formulations. As the preceding anal-
ysis makes clear, the constants M and V may need to be quite small, for example if
the σij are small. We thus seek a better guarantee of robustness. This justifies our
second approach discussed below – to develop a version of CC-OPF which is method-
ologically guaranteed to be insensitive to data errors. This approach puts CC-OPF
within the scope of robust optimization; to be more precise we will be solving an
ambiguous chance-constrained problem in the language of [26].

We will write each µi in the form µ̄i + ri, where the µ̄i are point estimates of
the µi and the ri are “errors” which are constrained to lie in some fixed set M with
0 ∈ M. Likewise, we assume that there is a set S ⊆ R

|W| including 0, such that each
σ2

i is of the form σ̄2
i + vi where the vector of errors vi belongs to S. As an example

for how to construct M or S, one can use the following set parameterized by values
0 < γi and 0 < Γ:

U(γ, Γ) =

{

r ∈ R
W : |ri| ≤ γi ∀i ∈ W,

∑

i∈W

|ri|
γi

≤ Γ

}

. (2.50)

This set was introduced in [6]. Another candidate is the ellipsoidal set

E(A, b) =
{

r ∈ R
|W| : rT Ar ≤ b

}

, (2.51)

where A ∈ R
|W×W| is positive-definite and b ≥ 0 is a real; see [2], [28]. We can now

formally proceed as follows:

Definitions. Let the estimates µ̄, σ̄2 and the sets M and S be given.
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1. For each pair r ∈ M and v ∈ S we will consider a random variable ξ = ξ(r, v)
with coordinate-wise mean µ(ξ) = µ̄ + r and variance σ2(ξ) = σ̄2 + v. We term ξ a
realization, and we denote by D = D(µ̄, M, σ̄2, S) be the set all realizations.
2. A pair p̄, α is called robust with respect to the pair M, S, if for each line {i, j}

max
ξ∈D

Pξ(fij > fmax
ij ) < ǫij , and (2.52)

max
ξ∈D

Pξ(fij < −fmax
ij ) < ǫij , (2.53)

where we denote by Pξ the probability function under realization ξ.
Our task will be to replace, in our optimization problem formulation, the chance

constraint (1.14) with one asking for robustness as in Eqs. (2.52)-(2.53)8. If the
uncertainty sets M and S consist of a single point estimate each, then we recover the
nominal chance-constrained problem we discussed above. As M or S become larger,
the robust approach becomes more insensitive to estimation errors, albeit at the cost
of becoming more conservative. Thus, a reasonable balance should be attained by
choosing M and S small but of positive measure, thereby preventing trivial sensitivity
of the control to changes in the data.

To indicate our approach, we focus on one of the statements for our chance con-
straint for lines.

Consider a particular realization ξ ∈ D and denote by θ̄(ξ) the vector of average
phase angles under ξ (below we will provide an expression for this vector). Robustness
criterion (2.52) applied to a given line {i, j}, requires that the chance constraint
Pξ(fij > fmax

ij ) < ǫij hold. By Lemma 2.4 this statement can be equivalently phrased
as

βij







θ̄i(ξ) − θ̄j(ξ) + η(ǫij)

[

∑

k∈W

σ2
k(ξ)(πik − πjk − δi + δj)

2

]1/2






≤ fmax
ij .

(2.54)

It follows that robustness criterion (2.52) can be succinctly stated as:

βij max
ξ∈D







θ̄i(ξ) − θ̄j(ξ) + η(ǫij)

[

∑

k∈W

σ2
k(ξ)(πik − πjk − δi + δj)

2

]1/2






≤ fmax
ij .

(2.55)

We can see that (2.55) consists of a (possibly infinite) set of convex constraints;
thus the data-robust chance-constrained problem is a convex problem. However we
need to exploit this fact in a computationally favorable manner. Toward this end,
our next task is to obtain a more convenient restatement for (2.54). Given a specific
ξ ∈ D, recall that by definition we have

µ(ξ) = µ̄ + r and σ2(ξ) = σ̄2 + v (2.56)

for some r ∈ M and v ∈ S. Hence

θ̄(ξ) = B̆(p̄ + µ(ξ) − d) = B̆(p̄ + µ̄ − d) + B̆r = θ̄(µ̄) + B̆r. (2.57)

8And likewise with the generator chance-constraints (2.36), (2.37).
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Thus, we see that (2.54) can be equivalently rewritten as:

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βije
T
ijB̆r +

η(ǫij)βij

[

∑

k∈W

σ̄2
k(πik − πjk − δi + δj)

2 +
∑

k∈W

vk(πik − πjk − δi + δj)
2

]1/2

≤ fmax
ij . (2.58)

Here, eT
ij ∈ R

n is the vector with a +1 entry in position i, a -1 entry in position j
and 0 elsewhere. In order for (2.52) to hold, (2.58) must hold for all ξ ∈ D, in other
words, it must hold for all pairs (r, v) with r ∈ M and v ∈ S. It follows that criterion
(2.52) can be stated as:

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βij max
r∈M

{

eT
ijB̆r

}

+

η(ǫij)βij

[

∑

k∈W

σ̄2
k(πik − πjk − δi + δj)

2 + max
v∈S

{

∑

k∈W

vk(πik − πjk − δi + δj)
2

}]1/2

≤ fmax
ij . (2.59)

Note that if in the left-hand side of (2.59) we ignore the term involving r and
the second term inside the square brackets, we obtain the nominal (i.e. non-robust)
version of chance-constraint (2.52); see Eqs. (2.34), (2.35). A similar constraint (with
the θ̄ terms switched in sign) is obtained from Eqs. (2.53).

Considering eq. (2.59), we see that the maximum over M is independent of all
decision variables and can be computed in advance. In what follows we write, for each
line {i, j}

Rij
.
= max

r∈M

{

eT
ijB̆r

}

. (2.60)

The second maximum in (2.59) presents a challenge. In a traditional robust optimiza-
tion approach the next task would be to represent that maximum with an equivalent,
compact (i.e. moderate-size) system of equivalent convex constraints. Such a trans-
formation would rely on linear programming duality in the case of the uncertainty
model U(γ, Γ), and on the conic duality or the S-Lemma [12], [28] in the case of
the ellipsoidal model E(A, b). However, it can be shown that in the case of (2.59)
such an approach will fail – it will produce a large formulation, which is additionally
non-convex. We refer the reader to the Appendix for a complete discussion. We next
describe an alternate approach that proves efficient.

2.4.3. Efficient solution of the data-robust problem using cutting planes.
To derive an algorithm for the data-robust chance-constrained problem that (a) has
some theoretical justification and (b) can prove numerically tractable, we note that if
we replace the set S with a finite subset S̃ ⊆ S we obtain a valid relaxation for the op-
timization problem. In other words the system made-up of the following constraints,
for each line {i, j},

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βijRij + βijη(ǫij) sij ≤ fmax
ij (2.61)

βij(θ̄(µ̄)j − θ̄(µ̄)i) − βijRij + βijη(ǫij) sij ≤ fmax
ij (2.62)

[

∑

k∈W

(σ̄2
k + vk)(πik − πjk − δi + δj)

2

]1/2

≤ sij ∀ v ∈ S (2.63)
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constitutes a valid relaxation of the chance constraints (2.34), (2.35) of the nominal
formulation for each line {i, j} for any given finite S̃ ⊆ S. This observation can be
used to formally obtain a polynomial-time algorithm for the data-robust problem in
the cases of interest. For a given v ∈ S let

Lv
ij(δ)

.
=

(

∑

k∈W

(σ̄2
k + vk)(πik − πjk − δi + δj)

2

)1/2

(i.e., the expression inside the “max” in (2.63).) For completeness, we state the
following:

Lemma 2.7. In the case of uncertainty sets of the form U(γ, Γ) or E(A, b) the
data-robust chance-constrained problem can be solved in polynomial time.
Proof. Suppose we are given quantities δ̂i for each i ∈ V and ŝij for each line {i, j}.
Then as argued before, if S is of the form U(γ, Γ) or E(A, b) one can check in polyno-
mial time whether maxv∈S

{

Lv
i,j(δ)

}

≤ ŝij . If the condition is violated for v̄ ∈ S then
trivially

Lv̄
ij(δ̂) +

∂Lv̄
ij(δ̂)

∂δi
(δi − δ̂i) +

∂Lv̄
ij(δ̂)

∂δj
(δi − δ̂i) ≤ sij , (2.64)

is violated at δ̂, ŝ. Since (2.64) is valid for the data-robust chance-constrained problem
(by convexity) the result follows by relying on the ellipsoid method [30].

Lemma 2.7 describes a formally “good” algorithm. For computational purposes
we would instead rely on a cutting-plane algorithm much like Algorithm 2.6 developed
in Section 2.3. Details are provided in the Appendix.

3. Experiments/Results. Here we will describe qualitative aspects of our affine
control on small systems; in particular we focus on the contrast between standard OPF
(meaning here and below standard DC OPF) and nominal CC-OPF, on problematic
features that can arise because of fluctuating wind sources and on out-of-sample test-
ing of the CC-OPF solution, including the analysis of non-Gaussian distributions.
Some of our tests involve the BPA grid and Polish Grid, which are large; we present
additional sets of tests to address the scalability of our solution methodology to the
large cases. Additional experiments are provided in the Appendix, Section 6.3.

Above (see Eq. (1.8)) we introduced the so-called standard OPF method for
setting traditional generator output levels. When renewables are present, the natural
extension of this approach would make use of some fixed estimate of output (e.g., mean
output) and to handle fluctuations in renewable output through the same method used
to deal with changes in load: ramping output of traditional generators up or down
in proportion to the net increase or decrease in renewable output. This feature could
seamlessly be handled using today’s control structure, with each generator’s output
adjusted at a fixed (preset) rate. For the sake of simplicity, in the experiments below
we assume that all ramping rates are equal.

Different assumptions on these fixed rates will likely produce different numeri-
cal results; however, this general approach entails an inherent weakness. The key
point here is that mean generator output levels as well as in particular the ramp-
ing rates would be chosen without considering the stochastic nature of the renewable
output levels. Our experiments are designed to highlight the limitations of this “risk-
unaware” approach. In contrast, our CC-OPF produces control parameters (the p̄
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and the α) that are risk-aware and, implicitly, also topology-aware – in the sense of
network proximity to wind farms.

As a technical point, we note that generator adjustment under standard OPF
can be viewed as a special case of our affine control mechanism, but with fixed α
values. Above, (Lemmas 2.2 and 2.3) we have provided expressions for the mean and
standard deviation of the flow on any given line, under the independence assumption
for the ωi. It follows that under the Gaussianity assumption, for any given vectors p̄
and α we can compute the probability that any given line {i, j} is overloaded (both
under CC-OPF and standard OPF): if z is a standard normal variable, and a > 0,
Prob(z > a) = .5 ∗ (1 − erf(z/

√
2)), where erf is the error function.

3.1. Failure of standard OPF. We first consider the IEEE 118-bus model with
a quadratic cost function, and four sources of wind power added at arbitrary buses
to meet 5% of demand in the case of average wind. The standard OPF solution is
safely within the thermal capacity limits for all lines in the system. Then we account
for fluctuations in wind assuming Gaussian and site-independent fluctuations with
standard deviations set to 30% of the respective means. The results, which are shown
in Fig. 3.1, illustrate that under standard OPF five lines (marked in red) frequently
become overloaded, exceeding their limits 8% or more of the time. This situation
translates into an unacceptably high risk of failure for any of the five red lines. This
problem occurs for grids of all sizes; similar results hold on the 2746-bus Polish grid
(from MATPOWER [54]. In this case, after scaling up all loads by 10% to simulate
a more highly stressed system, we added wind power to ten buses for a total of 2%
penetration. The standard solution results in six lines exceeding their limits over 45%
of the time, and in one line over 10% of the time. For an additional and similar
experiment using the Polish grid see Section 3.6.

3.2. Cost of reliability under high wind penetration. If we stay within
current operational paradigm, congestion of transmission lines may force temporary
shutdown of wind farms even during times of high wind. Our methodology suggests, as
an alternative solution to curtailment of wind power, an appropriate reconfiguration
of standard generators. If successful, this solution can use the available wind power
without curtailment, and thus result in cheaper operating costs.

As a (crude) proxy for curtailment, we perform the following experiment, which
considers different levels of renewable penetration. Here, the mean power outputs of
the wind sources are kept in a fixed proportion to one another and proportionally
scaled so as to vary total amount of penetration, and likewise with the standard
deviations. First, we run our CC-OPF under a high penetration level (e.g., 30%).
Under this penetration level, the standard OPF solution yields very high probability
of line overloads. In order to obtain a comparison with CC-OPF, we increase line limits
by 10% while simultaneously reducing wind penetration (i.e., curtail wind) so that
under the standard OPF solution line overloads are reduced to an acceptable level.
Assuming zero cost for wind power, the difference in cost for the high-penetration
CC-OPF solution and the low-penetration standard solution represents the savings
produced by our model (generously, given the 10% line limit increase).

For the 39-bus case, our CC-OPF solution is feasible under 30% of wind penetra-
tion, but the standard solution has 5 lines with excessive overloads, even when solved
with the 10% buffer. Reducing the penetration to 5% relieves the lines, but more
than quadruples(!) the cost over the CC-OPF solution. See Figure 3.2. Note that
this approach does not only show the advantage of the CC-OPF over standard OPF
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Fig. 3.1. 118-bus case with four wind farms (green dots; brown are generators, black are loads).
Shown is the standard OPF solution against the average wind case with penetration of 5%. Standard
deviations of the wind are set to 30% of the respective average cases. Lines in red exceed their limit
8% or more of the time.

but also provides a quantitative measure of the advantage, thus placing a well-defined
price tag on reliability.

3.3. Non-locality. We have established that under fluctuating power genera-
tion, some lines may exceed their flow limits an unacceptable fraction of the time. Is
there a simple solution to this problem, for instance, by carefully adjusting (a poste-
riori of the standard OPF) the outputs of the generators near the violated lines? The
answer is no. Power systems exhibit significant non-local behavior. Consider Fig. 3.3.
In this example, the major differences in generator outputs between the standard
OPF solution and our CC-OPF model’s solution are not obviously associated with
the different line violations. In general, it seems that it would be difficult to by-pass
CC-OPF and make small local adjustments to relieve the stressed lines. On the posi-
tive side, even though CC-OPF is not local and requires a centralized computation, it
is also only slightly more difficult than the standard OPF in terms of implementation.

3.4. Increasing penetration. Current planning for the power system in the
United States calls for 30% of wind energy penetration by 2030 [24]. Investments
necessary to achieve this ambitious target may focus on both software (improving
operations) and hardware (building new lines, sub-stations, etc), with the former
obviously representing a much less expensive and thus economically attractive option.
Our CC-OPF solution contributes toward this option. A natural question that arises
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Fig. 3.2. 39-bus case under standard solution. Even with a 10% buffer on the line flow limits,
five lines exceed their limit over 5% of the time with 30% penetration (left). The penetration must
be decreased to 5% before the lines are relieved, but at great cost (right). The CC-OPF model is
feasible for 30% penetration at a cost of 264,000. The standard solution at 5% penetration costs
1,275,020 – almost 5 times as much.

Fig. 3.3. 39-bus case. Red lines indicate high probability of flow exceeding the limit under
the standard OPF solution. Generators are shades of blue, with darker shades indicating greater
absolute difference between the chance-constrained solution and the standard solution.

concerns the maximum level of penetration one can safely achieve by upgrading from
the standard OPF to our CC-OPF.

To answer the question we consider the 39-bus New England system (from [54])
case with four wind generators added, and line flow limits scaled by .7 to simulate a
heavily loaded system. The quadratic cost terms are set to rand(0,1) + .5. We fix the
four wind generator average outputs in a ratio of 5/6/7/8 and standard deviations at
30% of the mean. We first solve our model using ǫ = .02 for each line and assuming
zero wind power, and then increase total wind output until the optimization problem
becomes infeasible. See Figure 3.4. This experiment illustrates that at least for
the model considered, the 30% of wind penetration with rather strict probabilistic
guarantees enforced by our CC-OPF may be feasible, but in fact lies rather close to
the dangerous threshold. To push penetration beyond the threshold is impossible
without upgrading lines and investing in other (not related to wind farms themselves)
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Fig. 3.4. 39-bus case with four wind farms (green dots; brown are generators, black are loads).
Lines in red are at the maximum of ǫ = .02 chance of exceeding their limit. The three cases shown
are left to right .1%, 8%, and 30% average wind penetration. With penetration beyond 30% the
problem becomes infeasible.

Fig. 3.5. 30-bus case with three wind farms. The case on the left supports only up to 10%
penetration before becoming infeasible, while the one on the right is feasible for up to 55% penetration.

hardware.

3.5. Out-of-sample tests. We now study the performance of the control com-
puted using nominal CC-OPF when there are errors in the underlying distribution of
wind power. We consider two types of errors: (1) the true distribution is non-Gaussian
but our Gaussian fit is “close” in an appropriate sense, and (2) the true distribution
is Gaussian but with different mean or standard deviation. The experiments in this
section use as data set the BPA grid, which as noted before has 2209 buses and 2866
lines, and collected wind data; altogether constituting a realistic test-case.

We first consider the non-Gaussian case, using the following probability distribu-
tions, all with fatter tails than Gaussian: (1) Laplace, (2) logistic, (3) Weibull (three
different shapes), (4) t location-scale with 2.5 degrees of freedom, (5) Cauchy. For the
Laplace and logistic distributions, we simply match the mean and standard deviation.
For the Weibull distribution, we consider shape parameters k = 1.2, 2, 4 and choose
the scale parameter to match the standard deviations. We then translate to match
means. For the t distribution, we fix 2.5 degrees of freedom and then choose the loca-
tion and scale to match mean and standard deviation. For the Cauchy distribution,
we set the location parameter to the mean and choose the scale parameter so as to
match the 95th percentiles.

We use our model and solve under the Gaussian assumption, seeking a solution
which results in no line violations for cases within two standard deviations of the mean,
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Distribution Max. prob. violation

Normal 0.0227
Laplace 0.0297
logistic 0.0132
Weibull, k = 1.2 0.0457
Weibull, k = 2 0.0355
Weibull, k = 4 0.0216
t location-scale, ν = 2.5 0.0165
Cauchy 0.0276

Fig. 3.6. Maximum probability of overload for out-of-sample tests. These are a result of Monte
Carlo testing with 10,000 samples on the BPA case, solved under the Gaussian assumption and
desired maximum chance of overload at 2.27%.
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Fig. 3.7. BPA case solved with average penetration at 8% and standard deviations set to 30% of
mean. The maximum probability of line overload desired is 2.27%, which is achieved with 0 forecast
error on the graph. Actual wind power means are then scaled according to the x-axis and maximum
probability of line overload is recalculated (blue). The same is then done for standard deviations
(green).

i.e. a maximum of about 2.27% chance of exceeding the limit. We then perform Monte
Carlo tests drawing from the above distributions to determine the actual rates of
violation. See Figure 3.6. The worst-performer is the highly-asymmetric (and perhaps
unreasonable) Weibull with shape parameter 1.2, which approximately doubles the
desired maximum chance of overload. Somewhat surprisingly, the fat-tailed logistic
and Student’s t distributions result in a maximum chance of overload significantly
less than desired, suggesting that our model is too conservative in these cases.

Next we consider the Gaussian case with errors. We solve with nominal values
for the mean and standard deviation of wind power. We then consider the rate of
violation after scaling all means and standard deviations (separately) . While the
solution is sensitive to errors in the mean forecast, the sensitivity is well-behaved.
With a desired safety level of ǫ = 2.27% for each line, an error in the mean of 25%
results in a maximum 15% chance of exceeding the limit. The solution is quite robust
to errors in the standard deviation forecast, with a 25% error resulting in less than
6% chance of overload. See Figure 3.7.

3.6. Scalability. As an additional experiment illustrating scalability of the ap-
proach we studied the Polish national grid (obtained from MATPOWER as explained
above) under simulated 20% renewable penetration spread over 50 wind farms, co-
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located with the 50 largest generators. This co-location should lessen the risk as-
sociated with renewable fluctuation (which should be partially “absorbed” by the
co-located generators). For this experiment we used η parameters of 3.0 both for
lines and generators, which translates to ǫij (and ǫg) values of roughly 1.350 × 10−3.
Figure 3.8 studies the resulting risk exposure under standard OPF and CC-OPF. The
chart shows the number of lines that attain several levels of overload probability. The
performance of standard OPF is unacceptable: it would lead to frequent tripping of
at least four lines. In contrast, under CC-OPF there is a drastic reduction in overload
probabilities – the system is stable. Moreover, this is attained with a minor increase
in cost (less than five percent) while the computational time, on the standard laptop
on which these experiments are performed, is on the order of 30 seconds. Varying the
risk control parameters η results in running times of the same order of magnitude.
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# of lines
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Fig. 3.8. Number of lines that are overloaded with given probability values in simulation of 2746
bus Polish power grid with 20% wind penetration distributed over 50 wind farms. Under standard
OPF, two lines are overloaded half of the time, and two lines are overloaded more than ten percent of
the time, constituting a situation with unacceptable systemic risk. Under chance-constrained OPF,
the largest overload probability is fifty times smaller than in the case of standard OPF. Moreover,
the cost increase is by less than five percent.

4. Discussions. This manuscript suggests a new approach to incorporating un-
certainty in the standard OPF setting routinely used in the power industry to set
generation during a time window, or period (typically 15 min to one hour duration).
When uncertainty associated with renewable generation is quantified in terms of the
probability distribution of output during the next period, we incorporate it through
chance constraints - probabilistic conditions which require that any line of the sys-
tem will not be overloaded for all but a small fraction of time (at most one minute
per hour, for example). Additionally, the modeling accounts for local frequency re-
sponse of controllable generators to renewable changes. The key technical result of
this manuscript is that the resulting optimization problem, CC-OPF, can be stated as
a convex, deterministic optimization problem. This result also relies on plausible as-
sumptions regarding the exogenous uncertainty and linearity of the underlying power
flow approximations/equations. In fact, our CC-OPF is a convex (conic) optimization
problem, which we solve very efficiently, even on realistic large-scale instances, using
a sequential linear cutting plane algorithm.

This efficient CC-OPF algorithm becomes an instrument of our (numerical) ex-
periments which were performed on a number of standard (and nonstandard) power
grid data sets. Our experimental results are summarized as follows:

• We observe that CC-OPF delivers feasible results where standard OPF, run
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for the average forecast, would fail in the sense that many lines would be
overloaded an unacceptably large portion of time.

• Not only is CC-OPF safer than standard OPF, but it also results in cheaper
operation. This is demonstrated by considering the optimal cost of CC-OPF
under sufficiently high wind penetration solution (where standard OPF would
fail) and the low penetration solution (corresponding to the highest possible
penetration where standard OPF would not fail).

• We discover that solutions produced by CC-OPF deviate significantly from
what amounts to a naive adjustment of the standard OPF obtained by cor-
recting dispatch just at those generators which are close to overloaded lines.

• We test the level of wind penetration which can be tolerated without upgrad-
ing lines. This experiment illustrates that, at least for the model tested, the
30% of wind penetration with rather strict probabilistic guarantees enforced
by our CC-OPF may be feasible; but much lower wind penetration remains
feasible under the standard approach.

• We experiment with location of wind farms and discover strong sensitivity of
the maximum level of penetration on the choice of location - optimal choice
of wind farm location is critical for achieving the ambitious goal of high
renewable penetration.

• Analyzing fluctuations of line flows within CC-OPF solution admissible under
high wind penetration, we discover that these fluctuations may be significant,
in particular resulting in reversal of power flows over some of the lines. This
observation suggests that flow reversals and other qualitative changes of power
flows, which are extremely rare in the grid of today, will become significantly
much more frequent (typical) in the grid of tomorrow.

• We studied an out-of-sample test consisted in applying CC-OPF (modeling
exogenous fluctuations as Gaussian) to other distributions. Overall these tests
suggest that with a proper calibration of the effective Gaussian distribution
our CC-OPF delivers a rather good performance. One finds that the worst
CC-OPF performance is observed for the most asymmetric distributions.

• We also presented a computationally sound data-robust version of the CC-
OPF where the parameters for the Gaussian distributions are assumed un-
known, but lying in a window. This allows for parameter mis-estimation,
for model error, and it is suggests a way to deal in a tractable way with
non-Gaussian fluctuations.

The nature of the problem discussed in the manuscript – the design of a new
paradigm for computationally efficient generation re-dispatch that accounts for wind
fluctuations – inevitably required incorporation of a number of assumptions and ap-
proximations. In particular, we made simplifying assumptions about static forecasts
and general validity of power flow linearization. We have also focused solely on fail-
ures associated with line congestion ignoring other possible difficulties, for example
those associated with loss of synchronicity and voltage variations. However, we would
like to emphasize that all of these assumptions (admittedly natural for a first attack
on the problem) also allow generalization within the approach just sketched:

• Accounting for time evolving forecast/loads/etc. Wind forecast, expressed in
terms of the mean and standard deviation at the wind farm sites, changes
on the scales comparable to duration of the generation re-dispatch interval.
Loads may also change at these time scales. When the slowly evolving, but
still not constant, wind and load forecasts are available we may keep the
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quasi-static power flow description and incorporate this slow evolution in
time into the chance constrained scheme. These changes will simply result in
generalizing the conic formulation (2.29)-(2.37) by splitting what used to be
a single time interval into sub-intervals and allowing the regular generation to
be re-dispatched and parallel coefficients to be adjusted more often. Ramping
rate constraints on the controllable generation may naturally be accounted
in the temporal optimization scheme as well.

• Accounting for nonlinearity in power flows. Evolution of the base case in-
validates the approximate linear model. However, one may simply adjust
the approximate linear models in a number of steps, therefore incorporating
it into the dynamical procedure mentioned one item above. Additionally,
some interesting new methodologies for handling nonlinearities have recently
emerged, see [37].

• Accounting for synchronization bounds. Loss of synchronicity and resulting
disintegration of the grid is probably the most acute contingency which can
possibly take place in a power system. The prediction of those conditions
under which the power grid will lose synchronicity is a difficult nonlinear and
dynamic problem. However, as shown recently in [23], one can formulate an
accurate linear and static necessary condition for the loss of synchronicity.
A chance-constrained version of the linear synchronization conditions can be
incorporated seamlessly in our CC-OPF framework.

Finally, we see many opportunities in utilizing the CC-OPF (possibly modified) as
an elementary unit or an integral part of even more complex problems, such as com-
bined unit commitment (scheduling large power plants normally days, weeks or even
months ahead) [51] with CC-OPF, planning grid expansion [3] while accounting for
cost operation under uncertainty, or incorporating CC-OPF in mitigating emergency
of possible cascades of outages [16, 41, 45, 44, 8, 9, 25, 5]. In this context, it would be
advantageous to speed up our already very efficient CC-OPF even further. See, for
example, [10], [7]. A different methodology, relying on distributed algorithms, can be
found in [35].
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6. Appendix.

6.1. Data-robust algorithm. Here we provide a description of our data-robust
approach for the CC-OPF problem discussed in Section 2.4.3. Our first task is to
incorporate constraint (2.59) into an efficient solution procedure. To motivate our
approach, we will first show that a methodology based on traditional robust opti-
mization techniques will (likely) not succeed at this task. We will then describe the
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method we rely on.
Constraint (2.59) can be incorporated into a formulation provided we can appro-

priately represent the two maxima. Here, note that

mij
.
= max

r∈M

{

eT
ijB̆r

}

, (6.1)

is independent of all variables and can be solved beforehand for all lines (i, j); when
M is of the form U(γ, Γ) given above this is a linear programming problem and when
M = E(A, b) the task amounts to finding a point in the boundary of an ellipsoid
with normal parallel to a given vector and thus requires solving a linear system of
equations. We will likewise define a quantity mji using eji instead of eij .

It is the second maximization that presents some challenges.
Lemma 6.1. Suppose S = U(γ, Γ), and suppose a vector δ ∈ Rn is given. Then

max
v∈S

{

∑

k∈W

vk(πik − πjk − δi + δj)
2

}

= min Γa +
∑

k∈W

γkbk

s.t.
1

γk
a + bk ≥ (πik − πjk − δi + δj)

2 ∀ k ∈ W,

bk ≥ 0 ∀ k ∈ W; a ≥ 0.

Proof. Since (πik − πjk − δi + δj)
2 ≥ 0 without loss of generality in the maximum we

will have that vk ≥ 0 for all k. Thus, we can rewrite the maximum as

max
∑

k∈W

vk(πik − πjk − δi + δj)
2

s.t.
∑

k∈W

1

γk
vk ≤ Γ (6.2)

vk ≤ γk ∀ k ∈ W, (6.3)

0 ≤ v. (6.4)

This is a linear program; denoting by a the dual variable for (6.2) and by bk that for
(6.3), strong linear programming duality now gives the result.

The use of linear programming duality as in Lemma 6.1 is key in the context of
sets of the form U(γ, Γ). In the case of an ellipsoidal set E(A, b) as in (2.51) there is
an analogue to Lemma 6.1 that instead uses the S-Lemma [12], [28]. In the standard
robust optimization approach, Lemma 6.1 would be leveraged to produce a result of
the following type:

Lemma 6.2. Suppose S = U(γ, Γ). The data-robust chance-constrained problem
is obtained by replacing for each line (i, j) constraints (2.34), (2.35) of the nominal
formulation with

βij(θ̄(µ̄)i − θ̄(µ̄)j) + βijmij + βijη(ǫij) sij ≤ fmax
ij (6.5)

βij(θ̄(µ̄)j − θ̄(µ̄)i) + βijmji + βijη(ǫij) sij ≤ fmax
ij (6.6)

[

∑

k∈W

σ̄2
k(πik − πjk − δi + δj)

2 + Γa{i,j} +
∑

k∈W

b
{i,j}
k

]1/2

≤ sij (6.7)

(πik − πjk − δi + δj)
2 − 1

γk
a{i,j} − b

{i,j}
k ≤ 0 ∀k ∈ W (6.8)

b
{i,j}
k ≥ 0 ∀k ∈ W; a{i,j} ≥ 0. (6.9)
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Here, si,j , a{i,j} and b
{i,j}
k (k ∈ W) are additional variables.

Proof sketch. Without loss of generality at the optimum the a{i,j} and b
{i,j}
k are

chosen so as to minimize the left-hand side of (6.7) subject to all other variables held
fixed, thereby obtaining the “min” in Lemma 6.1.

Lemma 6.2 points out the difficulty that the standard robust optimization ap-
proach would engender in the context of our problem. First, the number of constraints
(6.7) and (6.8) is large: it equals |E|(1+ |W|) and thus in the case of a large transmis-
sion system it could approach many tens of thousands (or more). Thus, even though
we obtain a compact formulation (i.e., of polynomial size) it is likely to be proven too
large for present-day solvers. But there is a second and more fundamental problem:
constraint (6.7) is not convex. This is a significant methodological difficulty. A similar
set of hurdles arises when using uncertainty sets E(A, b).

6.2. Cutting-plane algorithm for the data-robust problem. Here we de-
scribe a cutting-plane algorithm for the data-robust version of the CC-OPF problem,
akin to Algorithm 2.6 used in Section 2.3 to solve the nominal (known data) case.

In the following description for brevity we assume that only line-limit chance
constraints are incorporated (no generator-related chance constraints).

Procedure 6.3. CUTTING-PLANE ALGORITHM FOR DATA-ROBUST
PROBLEM

Initialization: The linear “master” system A(p̄, α, δ, θ, s)T ≥ b is defined to
include constraints (2.30)-(2.34). For each line (i, j) compute the Rij parameters
defined in (2.60).

Iterate:

(1) Solve min{F (p̄, α) : A(p̄, α, δ, θ, s)T ≥ b}. Let (p̄∗, α∗, δ∗, θ∗, s∗) be
an optimal solution.

(2) For each line (i, j) compute

V ∗
ij

.
= max

v∈S

{

∑

k∈W

vk(πik − πjk − δ∗i + δ∗j )2

}

,

with solution v̄ = v̄(δ∗) ∈ S.

(3) If, for each line {i, j},
[

V ∗
ij

]1/2 ≤ s∗ij , (within tolerance) Stop.

(4) Otherwise, add to the master system inequality (2.64).

Clearly the algorithm always maintains a valid (linear) relaxation to the data-robust
optimization problem – this follows because (2.64) is simply an outer approxima-
tion (tangent hyperplane) to one of the conic sets defined by (2.63). Thus, in addi-
tion, the stopping criterion in (3) is valid since it proves that the current solution
(p̄∗, α∗, δ∗, θ∗, s∗) is in fact feasible. And, morevoer, when the stopping criterion does
not apply, then clearly the cutting plane added in (4) does cut-off the current vector
δ∗. Finally, we point out that the optimization problem in (3) is a linear program
in the case of the polyhedral uncertainty set, and a linear objective, ellipsoidally
constrained program in the other case; both efficiently solvable.
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9.7
16.21

Fig. 6.1. 9-bus case, 25% average penetration from two wind sources. With shifting winds, the
flow on the orange line changes direction with a large absolute difference.

6.3. Additional experiments.

6.3.1. Changing locations for wind farms. In this example we consider the
effect of changing locations of wind farms. We take the MATPOWER 30-bus case
with line capacities scaled by .75 and add three wind farms with average power output
in a ratio of 2/3/4 and standard deviations at 30% of the average. Two choices of
locations are shown in figure 3.5. The first remains feasible for penetration up to 10%
while the second can withstand up to 55% penetration. This experiment shows that
choosing location of the wind farms is critical for achieving the ambitious goal of high
renewable penetration.

6.3.2. Reversal of line flows. Here we consider the 9-bus case with two wind
sources and 25% average penetration and standard deviations set to 30% of the av-
erage case and analyze the following two somewhat rare but still admissible wind
configurations: (1) wind source (a) produces its average amount of power and source
(b) three standard deviations below average; (2) the reverse of the case (1). This
results in a substantial reversal of flow on a particular line shown in Figure 6.1. This
example suggests that when evaluating and planning for grids with high-penetration
of renewables one needs to be aware of potentially fast and significant structural re-
arrangements of power flows. Flow reversals and other qualitative changes of power
flows, which are extremely rare in the grid of today, will become significantly much
more frequent (typical) in the grid of tomorrow.


