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Abstract

In this paper we study how to reformulate knapsack sets and simple mixed integer sets in order
to obtain provably tight, polynomially large formulations.

1 Introduction

In this paper we consider 0/1 knapsack sets and certain simple fixed-charge network flow sets. The
study of such sets is relevant in that a popular approach for solving general mixed-integer programs
consists of selecting a subset of constraints with particular structure (such as a single-node fixed-
charge flow problem) and tightening that part of the formulation through the use, for example,
of classical cutting-plane families (see e.g. [16], [13]). A question of interest is in what sense the
resulting stronger formulation is provably good.

Motivated by questions posed in [20], and extending the study initiated in [3], we show how the
use of appropriate disjunctions [1] leads to provably tight, yet polynomially large, formulations for
several simple sets. Unlike the use of familiar disjunctive cuts ([2], [18] and [9], [11]) the disjunctions
we employ are ‘combinatorial’, or ’structural’, that is to say, they depend on the structure of the
problem at hand. Previous work [6] has shown how structural disjunctions can lead to provably
good approximations of combinatorial polyhedra (also see [14], [4], [5], [19]); we expect that many
other results of this type are possible.

1.0.1 Minimum knapsack

In Section 2 we consider the “minimum” 0/1 knapsack problem,

KMIN : vZ = min
N∑
j=1

cjxj ,

s.t.
N∑
j=1

wjxj ≥ b, (1)

x ∈ {0 , 1}N , (2)

where cj > 0 and 0 < wj ≤ b for 1 ≤ j ≤ N . We denote by v∗ the value of the LP relaxation of
KMIN .

In [8], Carr, Fleischer, Leung and Phillips consider the so-called knapsack-cover inequalities, which
are different from cover inequalities. Let A ⊆ {1, . . . , N} and write b(A) = b −

∑
j∈Awj . The
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knapsack-cover inequality corresponding to A is
∑

j /∈A min{wj , b(A)}xj ≥ b(A). Since knapsack-
covers are valid inequalities, a lower bound for vZ is provided by v(2), where

v(2) = min
N∑
j=1

cjxj ,

s.t.
∑
j /∈A

min{wj , b(A)}xj ≥ b(A), ∀A (3)

0 ≤ xj ≤ 1, ∀ 1 ≤ j ≤ N. (4)

In [8] it is shown that v(2) ≥ vZ/2, and that using the ellipsoid method [12] one can obtain in
polynomial time a fractional vector satisfying (1), (3) and (4), of cost at most v(2), and which can
be rounded to an integral solution feasible for KMIN while at most doubling the cost. Thus this
provides a polynomial-size relaxation for KMIN with a multiplicative gap of at most 2. Further-
more, they provide an algorithm not relying on the ellipsoid method such that for any 0 < ε < 1
one can estimate v(2) within a multiplicative factor of 1 + ε in time polynomial in N and ε−1.
Carnes and Shmoys [7] present a primal-dual, 2-approximation algorithm for KMIN that relies
on knapsack-cover inequalities, and extend their techniques to other problems, such as capacitated
single-item lot-sizing.

In this paper we show how a simple disjunction provides a polynomially large linear programming
relaxation to KMIN whose value v̄ satisfies vZ < 2v̄. In fact, we show

Theorem 1.1 For each 0 < ε < 1 there is a linear programming relaxation to KMIN with
O
(

(1/ε)O(1/ε2)N2
)

variables and constraints, whose value v(ε) satisfies vZ < (1 + ε)v(ε).

1.0.2 Single-node, fixed-charge sets

In Section 3 we consider an optimization problem of the form

FXN : vZ = min
n∑
j=1

(fjxj + cjyj) ,∑
j∈δ+

yj −
∑
j∈δ−

yj = b, (5)

0 ≤ yj ≤ uj xj ∀1 ≤ j ≤ n, (6)

xj = 0 or 1, ∀1 ≤ j ≤ n. (7)

Here, the sets δ+, δ− partition the indices 1 ≤ j ≤ n. We assume that c, f, u are nonnegative
vectors. Many practical problems arising in logistics, network design, finance, and other applications
frequently include such “one-node” fixed-charge flow systems as subproblems. As a result, these
systems have been a motivating factor for several classical families of valid inequalities for mixed-
integer programs (see [15]). We have:

Theorem 1.2 Let 0 < ε < 1. There is a linear programming relaxation F(ε) to FXN with
O
(

(1/ε)O(1/ε2) n3
)

variables and constraints, such that from any extreme point solution to F(ε) we
can obtain a mixed-integer solution for FXN while increasing cost by at most a factor of (1 + ε).
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1.0.3 Maximum knapsack

In Section 4 we consider the “maximum” 0/1 knapsack problem,

KMAX : vZ = max
N∑
j=1

pjxj ,

s.t.
N∑
j=1

wjxj ≤ b, (8)

x ∈ {0 , 1}N , (9)

where pj > 0 and 0 < wj ≤ b for 1 ≤ j ≤ N . We denote by v∗ the value of the LP relaxation of
KMAX . A simple observation is that v∗ ≤ 2vZ (see Section 1.2). A relevant question is at what
cost and to what degree can this bound be improved.

In [20] Van Vyve and Wolsey ask whether, given an instance of KMAX , and 0 < ε ≤ 1, there is
a formulation of the form Ax+A′x′ ≤ b′, such that

(a) For each vector x ∈ {0 , 1}N with
∑N

j=1wjxj ≤ b there exists x′ such that Ax+A′x′ ≤ b′,

(b) The number of variables x′ and rows of A and A′ is polynomial in N and/or ε−1, and

(c) For every w ∈ RN+ ,

max
{
wTx : Ax+A′x′ ≤ b′

}
≤ (1 + ε)vZ .

In [3] we provided a partial answer to this question: there is a formulation satisfying (a)-(c) which
has polynomially many variables and constraints for each fixed ε (also see [19]). This formulation
amounts to a multi-term disjunction, which, although polynomial, is complex from a practical per-
spective. Related results are described in [10].

The result in [3] motivates several questions, in particular:

1. Is there a formulation achieving (a)-(c) but restricted to the original space of variables?

2. How about achieving (c), but restricting to the original space of variables and allowing expo-
nentially many constraints, so long as these are polynomially separable?

3. In fact, what can be achieved in polynomial time? Is there a “simple” relaxation involving
polynomially separable inequalities, whose value v̂ satisfies v̂/vZ < θ for some θ < 2?

We note that Van Vyve [19] has shown that the formulation that incorporates all valid inequalities
with integer coefficients with values in {0, 1, . . . , dN/εe} proves an LP/IP ratio at most 1 + ε, for
any 0 < ε < 1 (an open problem is whether one can separate in polynomial time over such a system
of inequalities). As a counterpart to this result, we can ask the following question. Suppose we pick
a fixed integer k > 0, and we strengthen the LP relaxation of KMAX with all valid inequalities of
the form

∑
j αjxj ≤ β, where the αj take values in {0, 1, . . . , k}. Is it true that the value of the

resulting linear program is at most
(1 + f(k))vZ ,

where f(k)→ 0 as k → +∞? The answer to this question is (perhaps, not surprisingly) negative.
We show that for each k > 0, if N is large enough there is an example of KMAX where, after
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adding all valid inequalities with left-hand coefficients in {0, 1, . . . , k}, the value of the linear pro-
gram remains arbitrarily close to 2vZ . In fact, this result holds even with k = N1−π with π > 0
arbitrarily small. This is discussed in Section 4.1. At the same time, in Section 4.2 we show that
using a single (polynomially separable) disjunction, one obtains a relaxation whose value is at most(

1 +
√

19−2
3

)
vZ . Thus, question 3 above does have a positive answer.

However, the disjunction used in Section 4.2 depends on the structure of the objective coefficients
pj and is therefore not quite in the “a priori strengthening” spirit of the question of Van Vyve and
Wolsey. Further, the examples in Section 4.1 have “large” constraint coefficients, that is to say we
have wj ≈ b for some j. One might consider such examples “artificial” and wonder what happens
if we insist that the ratios wj/b be bounded strictly away from 1.

These issues are taken up in Section 4.3. Given a subset S ⊆ {1, 2, . . . , N} with wi +wj > b for
each pair of distinct indices i, j ∈ S, the clique inequality [15]∑

j∈S
xj ≤ 1

is valid for KMAX . It can be seen that one can separate over the clique inequalities in polynomial
time; in fact there is at most a linear number of maximal cliques. Let vω denote the value of
the linear program obtained by augmenting the continuous relaxation of KMAX with all clique
inequalities. In Section 4.3 we prove:

Theorem 1.3 For each constant 0 ≤ ψ < 1 there exists ε = ε(ψ) > 0 satisfying the following
property. For N large enough, if wj ≤ ψb for 1 ≤ j ≤ N , then vω ≤ (2− ε)vZ .

1.1 Remarks on disjunctive representations of convex hulls

Here we present some standard concepts related to disjunctions. See [1].

Definition 1.4 Let P = {x ∈ RN : Ax ≤ b} be a polyhedron. The homogenized version of P is
the cone P̆ .= {(x, α) ∈ RN × R+ : Ax− αb ≤ 0}.

Definition 1.5 Let P i ⊆ RN , 1 ≤ i ≤ m, be polyhedra. The sum of the P i is the polyhedron∑
i P

i .= {x ∈ RN : ∃xi ∈ P i, 1 ≤ i ≤ m, with x =
∑m

i=1 x
i}.

Remark: Suppose that for 1 ≤ i ≤ m, P i = {x ∈ RN : Aix ≤ bi}, and P̆ i is the homogenized
version of P i. Then the sum of the P̆ i is the cone consisting of all (x, α) ∈ RN × R+ such that for
1 ≤ i ≤ m there exists xi ∈ RN and αi ≥ 0 with:

Aixi ≤ αib, αi ≥ 0, 1 ≤ i ≤ m (10)

(x, α) =
∑
i

(xi, αi). (11)

If we insist that α = 1, we obtain conv(
⋃
i P

i). Thus there is a representation for conv(
⋃
i P

i)
involving the N + 1 constraints (11) (in addition to (10), used to represent the P̆ i).
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1.2 Remarks on solutions to knapsack LPs

Consider an instance of the maximum knapsack problem max{pTx : wTx ≤ b, x ∈ {0 , 1}N}.
Let x∗ be an extreme point optimal solution for the continuous relaxation of the problem. Then,
assuming p1/w1 ≥ p2/w2 . . . ≥ pN/wN , x∗ has the following structure: there is an index k s.t.
x∗j = 1 for 1 ≤ j < k; x∗k = w−1

k (b −
∑k−1

j=1 wjxj), and x∗j = 0 for j > k. The index k is such
that 0 < x∗k ≤ 1. In fact in every extreme point there is at most one fractional coordinate. This
fact amounts to folklore; similar versions apply to the minimum knapsack problem and related
problems.

In fact note that if we “round down” the vector x∗ in the preceding paragraph, we obtain a
0/1 vector feasible for the knapsack problem. And, since wk ≤ b, we obtain a different 0/1 vector
feasible for the knapsack problem by setting xk = 1 and xj = 0 for j 6= k. At least one of the two
0/1 vectors thus constructed achieves at least half the objective value of x∗ – in other words, if
wj ≤ b for all j then the LP/IP ratio is at most 2. Again, this seems to be a folklore fact.

2 Minimum knapsack problem

In this section we consider problem KMIN and prove Theorem 1.1. Our construction is inspired
by that in [21] and [5] in the context of the set-covering problem, and it relies on disjunctive
inequalities. Prior to our main proof, we will first show a simpler result in order to motivate our
approach. In what follows we will assume without loss of generality that

c1 ≥ c2 ≥ . . . ≥ cN . (12)

For 1 ≤ h ≤ N , let P h denote the polyhedron defined by:

N∑
j=1

wjxj ≥ b, (13)

x1 = x2 = · · · = xh−1 = 0, xh = 1, (14)
0 ≤ xj ≤ 1, h < j ≤ N. (15)

and write

M = conv
(
P 1 ∪ P 2 ∪ · · ·PN

)
, (16)

v̄ = min
{
cTx : x ∈M

}
. (17)

Note that M is the projection to RN of the feasible set for a system of O(N2) linear constraints in
O(N2) variables. We have that x ∈M for any 0/1 vector x that satisfies (13) and therefore v̄ ≤ vZ .

Lemma 2.1 vZ < 2v̄.

Proof. Let x̄ be a solution to the linear program (17). It follows that there exist reals λh such that

0 ≤ λh, (1 ≤ h ≤ N),
N∑
h=1

λh = 1,

and, for each 1 ≤ h ≤ N with λh > 0, a vector xh ∈ P h, such that

x̄ =
∑

h : λh>0

λh x
h.
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For 1 ≤ h ≤ N write

vh = min
{
cTx : x ∈ P h

}
. (18)

Suppose λh > 0. It is straightforward to see that there is an optimal solution to (18) with at
most one fractional variable. By rounding up this variable we obtain a feasible 0/1 solution to the
original min-knapsack problem. We therefore have by (12) and (14)

vZ − vh < ch ≤ cTxh, (19)

where the second inequality follows since xhh = 1 again by (14). Consequently, writing

Λ = {1 ≤ h ≤ n : λh > 0} ,

we have

vZ − v̄ =
∑
h∈Λ

λhv
Z −

∑
h∈Λ

λh c
Txh (20)

≤
∑
h∈Λ

λhv
Z −

∑
h∈Λ

λh v
h (21)

=
∑
h∈Λ

λh

(
vZ − vh

)
(22)

<
∑
h∈Λ

λh c
Txh = v̄. (23)

2.1 Proof of Theorem 1.1.

We begin with a technical result. Recall that we assume cj > 0 and 0 < wj ≤ b for 1 ≤ j ≤ N .

Lemma 2.2 Let H ≥ 1 be an integer. Suppose S ⊆ {1, 2, . . . , N}, and let 0 ≤ x̄j ≤ 1 (j ∈ S) be
given values. Let cmax = maxj∈S{cj}, cmin = minj∈S{cj}.

(a) Suppose first that ∑
j∈S

x̄j = H.

Then there exist 0/1 values x̂j (j ∈ S) such that∑
j∈S

wj x̂j ≥
∑
j∈S

wj x̄j , and (24)

∑
j∈S

cj x̂j ≤
(

1− 1
H

+
cmax

Hcmin

)∑
j∈S

cj x̄j . (25)

(b) Suppose next that ∑
j∈S

x̄j ≥ H. (26)
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Then there exist 0/1 values x̂j (j ∈ S) satisfying (24) and

∑
j∈S

cj x̂j ≤
(

1 +
cmax

Hcmin

)∑
j∈S

cj x̄j . (27)

Proof. (a) Let x̆ be an extreme point solution to the linear program

min
∑
j∈S

cjxj

s.t.
∑
j∈S

wjxj ≥
∑
j∈S

wj x̄j (28)

∑
j∈S

xj = H (29)

0 ≤ xj ≤ 1, ∀ j ∈ S. (30)

Consequently at most two of the values x̆j , j ∈ S, are fractional; but since H is integral either zero
or exactly two x̆j are fractional. Thus, we can assume that there are indices i, k ∈ S with

0 < x̆i < 1, 0 < x̆k < 1, and (31)
x̆i + x̆k = 1. (32)

Suppose wi ≥ wk. Then we can set x̂i = 1, x̂k = 0, and x̂j = x̆j for all other j, thereby obtaining
a 0/1 vector x̂ which satisfies (28) while increasing cost by at most

ci − ci(x̆i)− ck(x̆k) = (ci − ck)(1− x̆i) ≤ cmax − cmin.

Hence ∑
j∈S cj x̂j −

∑
j∈S cj x̆j∑

j∈S cj x̆j
≤ cmax − cmin∑

j∈S cj x̆j
≤ cmax − cmin

Hcmin
, (33)

as desired.

(b) Proceeding in a way similar to (a) (using, instead of (29),
∑

j∈S xj ≥ H), it can be assumed
that either zero, one or two of the x̆j (j ∈ S) are fractional. If two are fractional the result is
implied by (a). If there is only one fractional x̆j then rounding up x̆ provides a 0/1 vector x̂ that
is feasible while increasing the cost by at most cmax. Hence∑

j∈S cj x̂j −
∑

j∈S cj x̆j∑
j∈S cj x̆j

≤ cmax

H cmin
, (34)

as desired.

Let 0 < ε < 1. Define K as the smallest integer such that (1+ ε)−K ≤ ε. Without loss of generality,
ε is small enough that K ≈ log(1/ε)/ε. Write J = d1 + 1/εe.

In what follows we still assume the ordering (12).

Definition 2.3 A signature is an integral K-vector σ such that 0 ≤ σi ≤ J for i = 1, 2, . . . ,K.
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Let 1 ≤ h ≤ N . For k = 1, 2, . . . ,K, let

Sh,k =
{
j : ch(1 + ε)−(k−1) ≥ cj > ch(1 + ε)−k and j > h

}
.

[Note: the “and” is redundant when k > 1.] For each 1 ≤ h ≤ N , and each signature σ, define

P h,σ = { x ∈ [0, 1]N :
N∑
j=1

wjxj ≥ b, (35)

x1 = x2 = · · · = xh−1 = 0, xh = 1, (36)

∑
j∈Sh,k

xj = σk, ∀k such that σk < J, (37)

∑
j∈Sh,k

xj ≥ J, ∀k such that σk = J (38)

}.

Note: the sets Sh,k partition the variables xj whose cost cj lie between ch and εch; all variables in
each set have “nearly” the same cost. In the set P h,σ the signature σ counts the number of xj that
take value 1 in each Sh,k. Thus every feasible solution for KMIN belongs to some P h,σ.

Lemma 2.4 For each h and σ with P h,σ 6= ∅, there is a 0/1 vector x̂h,σ feasible for KMIN such
that cT x̂h,σ ≤ (1 + ε) min

{
cTx : x ∈ P h,σ

}
. As a result, vZ ≤ (1 + ε) min

{
cTx : x ∈ P h,σ

}
.

Proof. Let x̄ ∈ P h,σ. Set cmax = maxj∈Sh,k{cj}, cmin = minj∈Sh,k{cj}, and define x̂h,σ as follows.
First, for each k such that σk > 0, we obtain the values x̂h,σj for each j ∈ Sh,k by applying Lemma
2.2 with S = Sh,k; note that when σk < J , then we have

1− 1
σk

+
cmax

σkcmin
≤
(

1− 1
σk

)
cmax

cmin
+

cmax

σkcmin
=

cmax

cmin
≤ 1 + ε,

by construction of the sets Sh,k. And if σk = J , we also have(
1 +

cmax

J cmin

)
≤ 1 + ε, (39)

by our choice for J . If on the other hand σk = 0 we set x̂h,σj = 0 for every j ∈ Sh,k.

Finally, define T h = {j : cj ≤ (1 + ε)−Kch}. Thus the Sh,k, together with T h, partition 1, · · · , n.
The problem

min
∑
j∈Th

cjxj (40)

s.t.
∑
j∈Th

wjxj ≥
∑
j∈Th

wj x̄j (41)

0 ≤ xj ≤ 1, ∀ j ∈ T h, (42)
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is a knapsack problem, and hence it has an optimal solution y with at most one fractional variable.
We set x̂h,σj = dxje for each j ∈ T h; thereby increasing cost (from y) by less than (1+ε)−Kch ≤ ε ch
by definition of K.

In summary,

cT x̂h,σ − cT x̄ =
∑

k :σk>0

 ∑
j∈Sh,k

cj x̂
h,σ
j −

∑
j∈Sh,k

cj x̄j

 +
∑
j∈Th

cj(x̂
h,σ
j − x̄j) (43)

≤ ε
∑

k :σk>0

∑
j∈Sh,k

cj x̄j + ε ch (44)

≤ ε cT x̄. (45)

Here, (44) follows from Lemma 2.2, and by definition of the sets Sh,k, and (45) follows from the
fact that x̄h = 1, by definition of P h,σ.

Consider the polyhedron

Q = conv

⋃
h,σ

P h,σ

 . (46)

Note that there are at most (J + 1)K N = O
(

(1/ε)O(1/ε2)N
)

polyhedra P h,σ, and that each P h,σ

is described by a system with O(K + N) constraints in N variables. Thus, Q is the projection to
RN of the feasible set for a system with at most

O

((
1
ε

)O(1/ε2)

N2

)
constraints in O

((
1
ε

)O(1/ε2)

N2

)
variables. (47)

Furthermore, any 0/1 vector x that is feasible for the knapsack problem satisfies x ∈ P h,σ for some
h and σ; in other words, Q constitutes a valid relaxation to the knapsack problem.

Lemma 2.5 vZ ≤ (1 + ε) min{cTx : x ∈ Q}.

Proof. Let x̃ ∈ Q. Then there exist reals λh,σ (for each 1 ≤ h ≤ N and signature σ) such that

0 ≤ λh,σ, ∀ h and σ, and
∑
h

∑
σ

λh,σ = 1,

and, for each h and σ with λh,σ > 0, a vector xh,σ ∈ P h,σ, such that

x̃ =
∑

h,σ : λh,σ>0

λh,σ x
h,σ.
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Let Λ = {(h, σ) : λh,σ > 0}. Then

vZ − cT x̃ =
∑

(h,σ)∈Λ

λh,σ v
Z −

∑
(h,σ)∈Λ

λh,σ c
Txh,σ (48)

=
∑

(h,σ)∈Λ

λh,σ

(
vZ − cTxh,σ

)
(49)

≤
∑

(h,σ)∈Λ

λh,σ

(
ε cTxh,σ

)
(by Lemma 2.4) (50)

= ε cT x̃, (51)

as desired.

3 Single node, fixed-charge sets

In this section we consider problem as FXN given in the introduction; for convenience its formu-
lation is repeated here:

vZ = min
n∑
j=1

(fjxj + cjyj) , (52)

∑
j ∈ δ+

yj −
∑
j ∈ δ−

yj = b, (53)

0 ≤ yj ≤ uj xj ∀j, (54)
xj = 0 or 1, ∀j. (55)

For 1 ≤ j ≤ n, write κj = fj + cjuj . We assume that the arcs have been labeled so that

κj ≥ κj+1, for 1 ≤ j < n.

As discussed in the introduction, we assume that the vectors c, u, f are all nonnegative. We
say that a vector (x, y) is efficient if it is a mixed-integer extreme-point feasible solution to FXN
and yj > 0 whenever xj = 1, for 1 ≤ j ≤ n. Note that under the assumption f ≥ 0, any feasible
instance of FXN has an efficient optimal solution.

In the following discussion, Lemmas 3.1 and 3.2 are used to set up the disjunctions that we will
use to prove Theorem 1.2. Suppose (x, y) is feasible for FXN . An arc j with xj = 1 is 1-tight if
yj = ujxj ; and if xj = 1 but 0 < yj < ujxj we say j is slack. The following result is routine.

Lemma 3.1 In any extreme point solution to (53)-(55) there is at most one slack arc.

Denote by Π the set of integer pairs (i, h) with i 6= h, and 0 ≤ i ≤ n, 1 ≤ h ≤ n + 1. For each
(i, h) ∈ Π, consider the polyhedron Di,h ⊆ Rn

+ × Rn
+ given by:∑

j ∈ δ+
yj −

∑
j ∈ δ−

yj = b, (56)

yj = xj = 0, ∀ j 6= i with 1 ≤ j < h, (57)
if 1 ≤ i then xi = 1 and 0 ≤ yi ≤ ui, (58)
if h ≤ n then xh = 1 and 0 ≤ xj ≤ 1, yj = ujxj , ∀j with h ≤ j ≤ n and j 6= i. (59)
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As a consequence of Lemma 3.1 we have:

Lemma 3.2 Let (x̂, ŷ) be an efficient optimal solution to FXN . Then there exists a pair (i, h) ∈ Π
such that (x̂, ŷ) ∈ Di,h.

Proof. If (x̂, ŷ) = (0, 0) then set i = 0 and h = n+1. Otherwise, we have x̂ 6= 0. If there is a unique
index j with x̂j = 1, then set i = j and h = n + 1, and we are done. Otherwise there is at least
one 1-tight arc (because of efficiency and Lemma 3.1); let h be the minimum index of a 1-tight arc.
Set i to the index of the slack arc, if such an arc exists, and set i = 0 otherwise.

Remarks on the set Di,h:

(a) If i = 0 and h = n + 1, then by (57) we have yj = xj = 0 for all j; thus the polyhedron is
empty unless b = 0.

(b) If 1 ≤ i and h = n + 1, then yj = xj = 0 ∀j 6= i; thus in order to satisfy (56) yi must take
value b (if i ∈ δ+) or −b (if i ∈ δ−).

(c) Consider a mixed-integer point (x, y) ∈ Di,h. If h ≤ n then h is 1-tight. If i ≥ 1, then i can
be slack. If h ≤ n and either (1) i = 0, or (2) i not 1-tight and 1 ≤ i < h, or (3) h < i, then
h is the minimum index of a 1-tight arc.

(d) In constructing Di,h, the only variables not fixed are yi (if 1 ≤ i) and yj , xj , for h < j ≤ n
with j 6= i. In the second case we have yj = ujxj . Thus, Di,h may be restated as the set of
solutions to a system of the form

ρiyi +
∑

j ∈ δ+\i : j>h

ujxj −
∑

j ∈ δ−\i : j>h

ujxj = b− ρhuh, (60)

0 ≤ yi ≤ ui, (61)
0 ≤ xj ≤ 1, h < j ≤ n and j 6= i. (62)

Here, the term ρiyi is omitted if i = 0, and otherwise ρi = 1 if i ∈ δ+ and ρi = −1 if i ∈ δ−;
similarly with ρh.

Now we turn to solving FXN . If b = 0, then x = y = 0 is optimal for FXN since we assume
f, c ≥ 0, so in what follows we will assume b 6= 0. Let 0 < ε < 1. In order to obtain a formulation
for FXN with MIP/LP ratio at most 1 + ε, we apply the technique used in Section 2.1.

As before, we define K as the smallest integer such that (1+ε)−K ≤ ε and J = d1+1/εe. Given
a pair (i, h) ∈ Π with h ≤ n, then for k = 1, 2, . . . ,K let

Si,h,k =
{
j : κh(1 + ε)−(k−1) ≥ κj > κh(1 + ε)−k with j > h and j 6= i

}
. (63)

For each pair (i, h) ∈ Π with h ≤ n and each signature σ (as per Definition 2.3) define the poly-
hedron Di,h,σ as the intersection of Di,h with the set of vectors satisfying the following constraints:∑

j∈Si,h,k
xj = σk, ∀k such that σk < J, (64)

∑
j∈Si,h,k

xj ≥ J, ∀k such that σk = J. (65)
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Lemma 3.3 For each (h, i) ∈ Π with h ≤ n and σ with Di,h,σ 6= ∅, there is a vector (x̂i,h,σ, ŷi,h,σ)
feasible for FXN such that cT x̂i,h,σ + fT ŷi,h,σ ≤ (1 + ε) min

{
cTx+ fT y : (x, y) ∈ Di,h,σ

}
.

Proof: Let (x̄, ȳ) be an optimal extreme point solution to min
{
cTx+ fT y : (x, y) ∈ Di,h,σ

}
. Con-

sider an index k with 0 < σk < J (the case of an index k with σk ≥ J is similarly handled and will
be skipped). We will show how to obtain {(x̂j , ŷj) : j ∈ Si,h,k} satisfying

x̂j = 0 or 1, 0 ≤ ŷj ≤ uj x̂j , ∀ j ∈ Si,h,k (66)

∑
j ∈ δ+∩Si,h,k

ŷj −
∑

j ∈ δ−∩Si,h,k
ŷj = b̄k

.=
∑

j ∈ δ+∩Si,h,k
ȳj −

∑
j ∈ δ−∩Si,h,k

ȳj , (67)

∑
j∈Si,h,k

(cj ŷj + fj x̂j) ≤ (1 + ε)
∑

j∈Si,h,k
(cj ȳj + fj x̄j). (68)

This will yield the Lemma, since the sets Si,h,k partition {j : j > h and j 6= i}.

As per Remark (d) above (see equations (60)-(62)) it follows that {x̄j : j ∈ Si,h,k} must be an
extreme point of a set of the form∑

j ∈ δ+∩Si,h,k
ujxj −

∑
j ∈ δ−∩Si,h,k

ujxj = b̆k, (69)

∑
j∈Si,h,k

xj = σk, (70)

0 ≤ xj ≤ 1 ∀ j ∈ Si,h,k, (71)

for appropriate b̆k. Thus x̄ is either integral, or there exist indices p 6= q in Si,h,k with 0 < x̄p < 1,
0 < x̄q < 1 and x̄p + x̄q = 1.

Assume first that p ∈ δ+ and q ∈ δ−. Also assume that ȳq ≤ ȳp (the other case is symmetric).
Then, setting

x̂p ← 1, ŷp ← ȳp − ȳq, (72)
x̂q ← 0, ŷq ← 0, (73)

and (ŷj , x̂j) = (ŷj , x̂j) for all other indices j ∈ Si,h,k, we satisfy (66) and (67). Moreover, the cost
change is (using c ≥ 0 and (59))

fp(1− x̄p)− cpȳq − fqx̄q − cqȳq < κp(1− x̄p)− κqx̄q = (κp − κq)(1− x̄p) (74)
< (κp − κq) (75)
≤ κh(1 + ε)−kε (by (63)) (76)

≤ ε σ−1
k

∑
j∈Si,h,k

κj x̄j (by (63) and (64)) (77)

= ε σ−1
k

∑
j∈Si,h,k

(cj ȳj + fj x̄j), (78)

which is (68), as desired.
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Assume next that p, q ∈ δ+ or p, q ∈ δ−. Without loss of generality, assume that up ≥ uq. Then
we set

x̂p ← 1, ŷp ← ȳp + ȳq, (79)
x̂q ← 0, ŷq ← 0. (80)

This satisfies (66), because ȳq = uqx̄q = uq(1 − x̄p) ≤ up(1 − x̄p). Now an analysis similar to that
leading to equation (78) proves (68).

In summary, as a corollary to Lemma 3.3, we obtain

Corollary 3.4 If vZ ≤ (1 + ε) min
{
cTx+ fT y : (x, y) ∈ conv

(⋃
i,h,σD

i,h,σ
)}

.

To complete this section, we note that each system Di,h requires O(n) constraints and variables;
furthermore there are O(n2) such systems. Thus, overall, we need O

(
(1/ε)O(1/ε2) n3

)
variables and

constraints so as to formulate conv
(⋃

i,h,σD
i,h,σ

)
, as claimed in Theorem 1.2.

4 Maximum knapsack

In this section we will present the results on the maximum knapsack problem. First we will show
that using valid inequalities with “small” coefficients then the LP/IP ratio can remain arbitrarily
close to 2. Then we we will discuss our use of disjunctions, and finally we will provide our analysis
of clique inequalities in the case that the coefficients wj are not “large”.

4.1 Valid inequalities with small coefficients

Lemma 4.1 Let 0 < δ < π < 1. Consider the knapsack instance with N = n+ 1 where

p1 = p2 = . . . = pn = 1, pn+1 = n, (81)
w1 = w2 = . . . = wn = 1, wn+1 = n2 − bn1−π+δc, (82)
b = n2. (83)

Consider the point x̂ with x̂j = 1 − n−δ for 1 ≤ j ≤ n + 1. Then for n large enough, x̂ is feasible
for the continuous relaxation of KMAX and satisfies each valid inequality

n+1∑
j=1

αjxj ≤ β (84)

for the knapsack polytope defined by (81)-(83), where αj ∈ {0, 1, . . . , bn1−πc} for 1 ≤ j ≤ n+ 1.

Proof. The first assertion follows because

n(1− n−δ) + (n2 − bn1−π+δc)(1− n−δ) < n+ n2 − n2−δ < n2, (85)

for n large enough, since δ < 1. To prove the second, consider an inequality (84), and let B denote
the sum of the bn1−π+δc largest αj chosen among the indices 1 ≤ j ≤ n. Then, without loss of
generality,

β = max


n∑
j=1

αj , B + αn+1

 .
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If fewer than n1−π+δ coefficients αj with 1 ≤ j ≤ n are positive then
∑n+1

j=1 αj x̂j < B + αn+1 and
we are done. In the other case

n+1∑
j=1

αj x̂j <
n∑
j=1

αj

(
1− n−δ

)
+ n1−π ≤

n∑
j=1

αj − n−δn1−π+δ + n1−π =
n∑
j=1

αj ,

as desired.

4.2 Using disjunctions

Let r =
√

19−2
3 . In this section we describe a simple disjunction which is guaranteed to result in an

LP value at most (1 + r)vZ ≈ 1.79vZ . Without loss of generality, assume that the optimal solution
to the continuous relaxation of KMAX has value 2. Thus, vZ ≥ 1.

Suppose pj ≥ 2/(1 + r) for some j; since wj ≤ b the solution with xj = 1 and xi = 0 for all i 6= j is
feasible and we are done. We assume therefore that pj < 2/(1 + r) for all j. Define

Ω = {j : pj ≥ r} , and w̃ = min{wj : j ∈ Ω}.

Let j∗ ∈ Ω be such that wj∗ = w̃ (if Ω = ∅ j∗ will be irrelevant). We have that

KMAX ⊆ conv(L2 ∪ L1 ∪ L0 ), (86)

where Li, 0 ≤ i ≤ 2 are the following convex polyhedra. First, L2 is the set of solutions to the
system:

N∑
j=1

wjxj ≤ b, (87)

∑
j∈Ω

xj ≥ 2, (88)

0 ≤ xj ≤ 1, ∀ j. (89)

Similarly, L1 is the set of solutions to the system:

N∑
j=1

wjxj ≤ b, (90)

∑
j∈Ω

xj = 1, (91)

xj = 0, ∀ j /∈ Ω with wj + w̃ > b, (92)
0 ≤ xj ≤ 1, ∀ j. (93)

Finally, L0 is the set of solutions to the system:

N∑
j=1

wjxj ≤ b, (94)

xj = 0 ∀ j ∈ Ω, (95)
0 ≤ xj ≤ 1, ∀ j. (96)
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It is clear that (86) holds. Further, we can separate from conv(L2 ∪ L1 ∪ L0 ) in polynomial time.
Now, if L2 6= ∅, there exist distinct i(1), i(2) ∈ Ω with wi(1) + wi(2) ≤ b (e.g. the two indices in Ω
with smallest wj). In that case, vZ ≥ 2r, and so the LP to IP ratio is at most

2
2r
≤ 1 + r. (97)

In what follows we will assume L2 = ∅, and show that

max

∑
j

pjxj : x ∈ Lk
 ≤ (1 + r)vZ for k = 0, 1, (98)

as desired.
Consider first k = 1. Let x̂ be an optimal solution to max

{∑
j pjxj : x ∈ L1

}
, and suppose that∑

j pj x̂j > 1 + r (if not, we are done since vZ ≥ 1). Since∑
j∈Ω

pj x̂j ≤ max
j∈Ω

pj (99)

(by (91)), and ∑
j∈Ω

wj x̂j ≥ w̃ (100)

(by (91) and the definition of w̃), we have, writing Γ = {j /∈ Ω, : wj + w̃ ≤ b}, and using (92),∑
j∈Γ

pj x̂j ≥ 1 + r − 2
1 + r

, and (101)

∑
j∈Γ

wj x̂j ≤ b− w̃. (102)

Hence there is a set S ⊆ Γ with ∑
j∈S

pj ≥
1
2

(
1 + r − 2

1 + r

)
, and (103)

∑
j∈S

wj ≤ b− w̃. (104)

Therefore, setting xj = 1 if j ∈ S ∪ {j∗}, and xj = 0 otherwise, yields a feasible solution to the
knapsack problem with value at least

1
2

(
1 + r − 2

1 + r

)
+ r ≥ 2

1 + r
(105)

as a simple calculation shows, as desired.

Next we consider L0. Clearly, max
{∑

j pjxj : x ∈ L0
}

is simply the continuous relaxation of a
knapsack problem. As pointed out in Section 1.2, there is an optimal solution x̃ to this problem
with the following structure: for some set S, x̃j = 1 for all j ∈ S; 0 < xk < 1 for at most one
additional index k (note that k /∈ Ω, by (95)), and xj = 0 otherwise. Hence, the value of the
relaxation is strictly less than

vZ + max
j /∈Ω
{pj} < vZ + r ≤ (1 + r)vZ ,

as desired.
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4.3 Knapsacks with small coefficients

In this section we prove Theorem 1.3. Let 0 ≤ ψ < 1 be given. Consider the linear programming
relaxation of KMAX ,

v∗ = max
N∑
j=1

pjxj ,

s.t.

N∑
j=1

wjxj ≤ b, (106)

x ∈ [0 , 1]N . (107)

We obtain an optimal solution x∗ to this linear program as in Section 1.2; this is repeated here for
convenience. Assume without loss of generality that p1/w1 ≥ p2/w2 ≥ . . . ≥ pN/wN . Then, for
some integer n ≥ 1, we have

x∗j = 1, for 1 ≤ j ≤ n,

x∗n+1 =
b−

∑n
j=1wj

wn+1
,

x∗j = 0, for n+ 1 < j ≤ N.

If x∗n+1 = 0 or 1 then vZ = v∗ and there is nothing left to prove. We will assume 0 < x∗n+1 < 1.

Write λ = max{ψ, 1/2} and κ = κ(ψ) = 2λ− 1; thus 0 ≤ κ < 1 and κ(1/2) = 0. We choose

ε = ε(ψ) = min
{

1− κ
4(1 + κ)

,
1

137

}
.

Note that 0 < ε < 1 − κ. Further, ε → 0+ as ψ → 1−, and monotonically so when ψ ≥ 1/2. In
other words, our upper bound on the LP/IP ratio is at most 2− 1/137 for ψ ≤ 1/2, and converges
monotonically from below to 2 as ψ approaches 1. This simply restates that the fact (observed
above) that “large” coefficients produce more difficult knapsacks.

Our proof of Theorem 1.3 will proceed in a number of steps. We will assume by contradiction that
vω > (2 − ε)vZ . Without loss of generality, we will assume that the pj have been scaled so that
v∗ = 2 (and thus vZ > 1). Likewise, we will assume the wj have been scaled so that b = 2. We next
prove some structural results (Lemma 4.2 through Lemma 4.5) that follow from these assumptions.

Lemma 4.2 (a) max{
∑n

j=1 pj , maxj{pj} } < 1 + ε. (b) min{
∑n

j=1 pj , pn+1 } > 1 − ε. (c)
x∗n+1 > 1− 2ε.

Proof. (a) Assume that pk ≥ 1 + ε for some k. The solution with xk = 1 and xj = 0 for all other j
is feasible, and thus

v∗

vZ
≤ 2

1 + ε
≤ 2− ε, (108)

(since 0 ≤ ε ≤ 1) a contradiction. Similarly,
∑n

j=1 pj < 1 + ε. To prove (b), note that

2 =
n∑
j=1

pj + x∗n+1 pn+1 <

n∑
j=1

pj + 1 + ε, (109)
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yielding the bound on
∑n

j=1 pj . The bound on pn+1 is similarly obtained from the first equation in
(109). This equation also yields

x∗n+1 =
2−

∑n
j=1 pj

pn+1
>

1− ε
1 + ε

> 1− 2ε, (110)

thereby proving (c).

Write ∆ = wn+1 − x∗n+1wn+1. By definition of κ, λb = 2λ = 1 + κ, so by Lemma 4.2(c), ∆ <
2ε wn+1 ≤ 2ελb = 2ε(1 + κ). Also, note that 2 =

∑n
j=1wj + x∗n+1wn+1, so

n∑
j=1

wj − ∆ = b− x∗n+1wn+1 − ∆ = b− wn+1 ≥ 0. (111)

Define

j∗ = min

 i :
i∑

j=1

wj ≥
n∑
j=1

wj − ∆

 .

Lemma 4.3 (a)
∑j∗−1

j=1 pj < 2ε. (b)
∑n

j=j∗+1 pj < 2ε.

Proof. (a) The vector x with x1 = . . . = xj∗−1 = 1, xn+1 = 1, and xj = 0 for all other j, is feasible,
by definition of j∗, which implies

∑j∗−1
j=1 pj + pn+1 < 1 + ε. Together with Lemma 4.2 this yields

the desired result. (b) The vector x with xj∗+1 = . . . = xn = 1, xn+1 = 1, and xj = 0 for all other
j, is feasible, because (since wn+1 ≤ λb = 1 + κ),

n∑
j=j∗+1

wj + wn+1 ≤ ∆ + wn+1 ≤ 2ε(1 + κ) + 1 + κ = (1 + κ)(1 + 2ε) ≤ 2, (112)

by definition of ε. Hence, we must have
∑n

j=j∗+1 pj + pn+1 < 1 + ε and we conclude as in (a).

Corollary 4.4 pj∗ ≥ 1− 5ε and wj∗ + wn+1 > 2.

Proof. Lemma 4.2 (b) and Lemma 4.3 yield the bound on pj∗ . If wj∗ + wn+1 ≤ 2 then

v∗

vZ
≤ 2

2− 6ε
< 2− ε,

a contradiction.

Lemma 4.5 (a) wn+1 > 1− ε. (b) wj∗ < 1 + 3ε.

Proof. (a) By our indexing of variables in non-increasing order of values pj/wj ,

p1 + . . .+ pn
w1 + . . . wn

≥ pn+1

wn+1
, (113)

and thus, since b = 2,

wn+1 ≥
1− ε
1 + ε

(w1 + . . .+ wn) >
1− ε
1 + ε

(2− wn+1), (114)

from which the result follows.
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(b) This follows from

wj∗ ≤ w1 + . . .+ wn = 2− x∗n+1wn+1 < 2− (1− 2ε)(1− ε) < 1 + 3ε.

In what follows we consider an arbitrary vector x̂ that satisfies
∑

j wj x̂j ≤ b, all clique inequalities,
and 0 ≤ x̂j ≤ 1, ∀j. We will assume that

∑
j pj x̂j > (2 − ε)vZ , and show that this leads to a

contradiction, thereby proving Theorem 1.3. Define

P = {1 ≤ j ≤ N : j > n+ 1 and wj + wj∗ ≤ 2} .

Lemma 4.6 If
∑

j∈P x̂jpj > 60 ε, there exists T ⊆ P with∑
j∈T

wj ≤ 2− wj∗ x̂j∗ , and (115)

∑
j∈T

pj > 30ε. (116)

Proof. Consider the maximum knapsack problem

K̃ : max{
∑
j∈P

pjxj :
∑
j∈P

wjxj ≤ 2− wj∗ x̂j∗ , x ∈ {0, 1}P }.

By construction, the restriction of x̂ to indices in P is feasible for the continuous relaxation of K̃,
and has objective larger than 60ε. Since the LP/IP ratio for a knapsack problem is not larger than
2, there is a 0/1 vector feasible for K̃ with objective at least 30ε.

Lemma 4.7
∑

j∈P x̂jpj ≤ 60 ε.

Proof. Assume by contradiction that
∑

j∈P x̂jpj > 60ε. The proof will construct a subset A ⊆ P
such that

wj∗ +
∑
j∈A

wj ≤ 2, and (117)

∑
j∈A

pj > 6ε. (118)

This will provide a contradiction, since in this case setting xj = 1 for every j ∈ A ∪ {j∗} yields a
feasible solution, with objective (by Corollary 4.4) at least 1 + ε and thus

vω

vZ
≤ 2

1 + ε
< 2− ε.

Let α be defined as follows. If wj∗ ≤ 1, then α = wj∗ , whereas if wj∗ > 1 then α = 2 − wj∗ =
1− (wj∗ − 1). Note that in either case

α ≤ wj∗, (119)
wj∗ − α < 6ε, and (120)
wj∗ − α < α ≤ 2− wj∗. (121)
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Here (119) holds by construction, and (120) and (121) hold by Lemma 4.5 (b).

Let T be as in Lemma 4.6, and write T = {i(1), i(2), · · · , i(|T |)} . For k = 1, · · · , |T |, define ak and
bk as follows:

a1 = 0, (122)

bk =
k∑
j=1

wi(j), k = 1, · · · , |T |, (123)

ak+1 = bk, k = 1, · · · , |T | − 1. (124)

For k = 1, · · · , |T |, let Ik = [ak, bk]. Refer to Figure 1.
Then we can partition the intervals Ik into at most 5 disjoint classes (some of which may be empty),

(1) Set of intervals Ik with bk ≤ α,

(2) Set of intervals Ik with ak ≥ wj∗,

(3) Set of intervals Ik with ak > α and bk < wj∗,

(4) An interval Ik with ak ≤ α and bk > α,

(5) Possibly one interval Ik with ak < wj∗ and bk > wj∗ .

Classes (1), (3) and (5) may be empty. Let A be the class with largest sum of pj – thus A
satisfies (118). We need to show that (117) is satisfied. This is the case if A corresponds to
class (1) by the second inequality in (121), or if it corresponds to class (2) since in that case
wj∗ +

∑
j∈Awj ≤

∑
j∈T wj ≤ 2 by construction of T . In cases that A corresponds to class (4) or

(5), (117) is also satisfied by definition of P . Finally, (117) follows in case (3) again using (121).

Lemma 4.3 and Lemma 4.7 imply that
n∑

j=1, j 6=j∗
x̂jpj +

∑
j∈P

x̂jpj ≤ 64 ε, (125)

In the rest of this section we will show that the remaining terms in
∑

j x̂jpj amount to less than
(3/2 + 7/2 ε)vZ . Thus, overall∑

j

x̂jpj ≤ 64ε+
(

3
2

+
7
2
ε

)
vZ ≤

(
3
2

+
135
2
ε

)
vZ ≤ (2− ε)vZ ,

(by our choice of ε) which is the desired contradiction. Note that the remaining terms consist of

• index j∗, and

• indices j 6= j∗ with wj + wj∗ > 2. Let I be the set of such indices j.

Our approach will be to upper-bound the sum of remaining terms by the value of a linear pro-
gram, whose constraints will primarily amount to clique inequalities, restricted to variables xj with
j ∈ I ∪ {j∗}.

We partition I into

S = {j ∈ I : wj ≤ 1} and L = {j ∈ I : wj > 1} .
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Lemma 4.8 Suppose S = ∅. Then x̂j∗ pj∗ +
∑

j∈I x̂jpj ≤ 1 + ε.

Proof. By definition of I and L, ∑
j∈I∪{j∗}

xj ≤ 1,

is a clique inequality, and the result follows by Lemma 4.2(a).

The remainder of the proof handles the case S 6= ∅, and consequently, by definition of I, wj∗ > 1.
Note that for each j ∈ I we have j > n and wj > 1 − 3ε (this by Lemma 4.5(b)). Thus, since∑N

j=1wj x̂j ≤ 2, we also have ∑
j ∈I∪{j∗}

x̂j < 2/(1− 3ε) < 2 + 7ε. (126)

Also note that if j ∈ S,

pj ≤ pj/wj ≤ pj∗/wj∗ < pj∗ . (127)

Definition:

• s(1) = argmax{pj : j ∈ S},

• L1 = {j ∈ L : wj + ws(1) > 2}, and

• L2 = L − L1.

Lemma 4.9 Suppose |S| = 1. Then x̂j∗ pj∗ +
∑

j∈I x̂jpj ≤ 1 + ε.

Proof. Let S = {i}. Then L1 = {j ∈ L : wi + wj > 2}. The following are clique inequalities:

xj∗ +
∑
j∈L1

xj +
∑
j∈L2

xj ≤ 1, (128)

xj∗ +
∑
j∈L1

xj + xi ≤ 1, (129)

and thus, x̂j∗pj∗ + x̂ipi +
∑

j∈L x̂jpj is upper-bounded by the value of the linear program

max

 pj∗xj∗ + pixi +
∑
j∈L

pjxj : s.t. (128)-(129), each variable in [0, 1]

 . (130)

We conclude that

x̂j∗ pj∗ + x̂ipi +
∑
j∈L

x̂jpj ≤ max
{

max
k∈L1∪{j∗}

wk , wi + max
k∈L2
{wk}

}
≤ vZ , (131)

where the last inequality follows because by definition of L2, there is an integer feasible solution to
KMAX of value precisely wi +maxk∈L2{wk} (and clearly there is one of value maxk∈L1∪{j∗}wk).
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In the remainder of the proof we will assume |S| ≥ 2. Consider the linear program

θ = max
∑

j∈L1∪{j∗}

pjxj +
∑
j∈L2

pjxj +
∑
j∈S

pjxj (132)

Subject to:

(ᾱ) :
∑

j∈L1∪{j∗}

xj +
∑
j∈L2

xj ≤ 1, (133)

(β̄) :
∑

j∈L1∪{j∗}

xj + xs(1) ≤ 1, (134)

(γ̄) :
∑

j∈L1∪{j∗}

xj +
∑
j∈L2

xj +
∑
j∈S

xj ≤ 2 + 7ε, (135)

x ≥ 0. (136)

Here, (133) and (134) are clique inequalities, and (135) is the same as (126). Thus,∑
j∈L∪j∗

x̂jpj +
∑
j∈S

x̂jpj ≤ θ.

In the above formulation, we have indicated the names of the dual variables. Next, define:

• h = argmax{pj : j ∈ L1 ∪ {j∗}}.

• s(2) = argmax{pj : j ∈ S − s(1)}.

Lemma 4.10 Suppose
{
j ∈ L : pj > ps(2)

}
⊆ L1. Then θ ≤

(
3
2 + 7

2ε
)
vZ .

Proof. By construction (and (127)), ph > ps(1) ≥ ps(2) ≥ pj for each j ∈ L2. Thus, the following
vector is a dual feasible solution to the LP (132)-(136):

ᾱ = 0, β̄ = ph −
ps(1) + ps(2)

2
, γ̄ =

ps(1) + ps(2)

2
. (137)

The value of this dual feasible solution is

ph + (1 + 7ε)
ps(1) + ps(2)

2
≤
(

3
2

+
7
2
ε

)
max{ ph , ps(1) + ps(2) }. (138)

This concludes the proof, since we have an integer feasible solution to KMAX by setting xh = 1
(and all other xj = 0), and another by setting xs(1) = xs(2) = 1 and all other xj = 0.

Lemma 4.11 Suppose there exists k ∈ L2 with pk > ps(2). Then θ ≤
(

3
2 + 7

2ε
)
vZ .

Proof. Without loss of generality we can assume k = argmax{pj : j ∈ L2}. As previously,
ph > ps(1). Also, since k ∈ L, wk > 1. Since

∑n
j=1wj ≤ 2, and wj∗ > 1, we therefore have k > n

and so

pk/wk ≤ pj∗/wj∗ . (139)

Further, s(1) ∈ I implies wj∗ + ws(1) > 2. But since k ∈ L2, wk + ws(1) ≤ 2. Consequently,
wj∗ > wk, and using (139) we have

pk < pj∗ ≤ ph.
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As a result, if pk ≤ ps(1), the following is a dual feasible solution to the LP (132)-(136):

ᾱ = 0, β̄ = ph −
ps(1) + pk

2
, γ̄ =

ps(1) + pk

2
; (140)

and if pk > ps(1), the following vector is dual feasible:

ᾱ = ph −
ps(1) + pk

2
, β̄ = 0, γ̄ =

ps(1) + pk

2
. (141)

In either case, the value of the solution is

ph + (1 + 7ε)
ps(1) + pk

2
≤
(

3
2

+
7
2
ε

)
max{ ph , ps(1) + pk }. (142)

This concludes the proof, since we have an integer feasible solution to KMAX by setting xh = 1
(and all other xj = 0), and another by setting xs(1) = xk = 1 and all other xj = 0.
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[4] D. Bienstock and N.Özbay, Tree-width and the Sherali-Adams operator, Discrete Opti-
mization 1 (2004) 13-22.

[5] D. Bienstock and M. Zuckerberg, Subset algebra lift operators for 0-1 Integer Program-
ming, SIAM J. Optimization 15 (2004) 63-95.

[6] D. Bienstock and M. Zuckerberg, Approximate fixed-rank closures of covering problems
Math. Programming 105 (2006), 9 – 27.

[7] T. Carnes and D. Shmoys, Primal-Dual Schema for Capacitated Covering Problems, Proc.
IPCO 2008.

[8] R.D. Carr, L.K. Fleischer, V.J. Leung, C.A. Phillips, Strengthening Integrality Gaps
for Capacitated Network Design and Covering Problems, Proc. 2000 SODA,

[9] W. Cook and S. Dash, On the matrix-cut rank of polyhedra, Mathematics of Operations
Research 26 (2001), 19 – 30.

[10] A.M. Frieze and M.R.B. Clarke, Approximation algorithms for the m-dimensional knap-
sack problem: Worst-case and probabilistic analyses, Eur. J. of Oper. Research 15 (1984), 100
– 109.

22
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Figure 1: Detail in proof of Lemma 4.7.
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