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Abstract

This paper considers how to optimally set the basestock level for a single buffer when demand
is uncertain, in a robust framework. We present a family of algorithms based on decomposition
that scale well to problems with hundreds of time periods, and theoretical results on more
general models.

1 Introduction

In this paper we develop procedures for setting the basestock levels for a buffer in a supply chain
subject to uncertainty in the demands. Our work is motivated by experience with an industrial
partner in the electronics industry who was subject to the following difficulties: short product
cycles, a complex supply chain with multiple suppliers and long production leadtimes, and a very
competitive environment. The combination of these factors produced a paucity of demand data
and a significant exposure to risk, in the form of either excessive inventory or shortages.

We consider a buffer evolving over a finite time horizon. For t = 1, 2, . . . , T , the quantity xt

denotes the inventory at the start of period t (possibly negative to indicate a shortage) with x1

given. We also have a (per unit) inventory holding cost ht, a backlogging cost bt, and a production
cost ct. The dynamics during period t work out as follows:

(a) First, one orders (produces, etc) a quantity ut ≥ 0, thereby increasing inventory to xt + ut,
and incurring a cost ctut,

(b) Next, the demand dt ≥ 0 at time t is realized, decreasing inventory to xt+1
.
= xt + ut − dt,

(c) Finally, at the end of period t, we pay a cost of max{htxt+1,−btxt+1}.

This model can be extended in a number of ways, for example by considering capacities, setup
costs, or termination conditions. These features can easily be added to the algorithms described in
this paper.

We are interested in operating the buffer so that the sum of all costs incurred between time
1 and T is minimized. In order to devise a strategy to this effect, we need to make precise steps
(a) and (b). In what follows, we will refer to the minimum-cost problem as the “basic inventory
problem”.

We consider (b) first. A large amount of supply-chain literature considers the case where
demands are stochastically distributed with known distributions – this assumption has produced
an abundance of significant and useful results. On the other hand the assumption that the demand
distribution is known is nontrivial. In recent years, a growing body of literature has considered
optimization problems where some of the input data is uncertain with an unknown distribution –
in such a setting, we want to make decisions that are robust with regards to deviations of the data
away from nominal (expected) values. One may think of the data as being picked by an adversary
with limited power.

In general, we are given a setD (the uncertainty set). Each element ofD is a vector (d1, d2, . . . , dT )
of demands that is available to the adversary. At time t, having previously chosen demand values
d̂i (1 ≤ i ≤ t − 1), the adversary can choose any demand value d̂t such that there is some vector
(d̂1, . . . , d̂t−1, d̂t, dt+1, . . . , dT ) ∈ D.
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Given an uncertainty set D, we need a strategy to produce orders ut so as to minimize the
maximum cost that can arise from demands in D. To make this statement precise, we need to
specify how (a) is implemented. In other words, we need to describe an algorithm, such that at
each time t the decision maker observes the current state of the system (e.g. the current inventory
xt) and possibly prior actions on the part of the adversary, and chooses ut appropriately. A classical
approach found in the supply-chain literature is that of using a basestock policy. A basestock is a
value σ ≥ 0, such that at time t we set

ut = max{σ − xt, 0}, (1)

i.e. we order “up to” level σ.
The main focus of this paper concerns how to pick optimal basestock policies in the robust

setting, under various demand uncertainty sets D. Our focus is motivated, primarily, by the fact
that the mechanism described by (1) has acquired very wide use. It can be shown to be optimal
under many inventory models. See, [FZ84], [CS60], [I63a, I63b], [V66], [E84] [MT01], [Z00]. Fur-
ther, even if such a policy may not be optimal, it is viewed as producing easily implementable
policies in the broader context of a “real-world” supply chain, where it is necessary to deal with
a number of complex details (such as the logistics of relationships with clients and suppliers) not
easily handled by a mathematical optimization engine. In the concrete example of our industrial
partner, we stress that using a (constant) basestock policy was an operational constraint.

The inventory problem in the robust setting, using a constant (time-independent) basestock,
can be described as follows:

min
σ≥0

V (σ) (2)

where for σ ≥ 0,

V (σ) = max
d,x,u

T
∑

t=1

( ctut + max{htxt+1 , −btxt+1} ) (3)

s.t.

ut = max{σ − xt , 0}, 1 ≤ t ≤ T, (4)

xt+1 = xt + ut − dt, 1 ≤ t ≤ T, (5)

(d1, d2, . . . , dT ) ∈ D. (6)

Here, (3)-(5) is the adversarial problem – once the demand variables (d1, d2, . . . , dT ) ∈ D have
been chosen, constraints (4)-(5) uniquely determine all other variables. Note that the quantity x1

(the initial inventory level) is an input. Also, because of the “max” in (3) and (4), the adversarial
problem is non-convex.

Note that we assume σ ≥ 0 in (2) – in fact, our algorithms do not require this assumption.
Under special conditions, the optimal basestock might be negative; however, we expect that the
nonnegativity assumption would be commonly used and hence we state it explicitly.

Problem (2) posits a constant basestock over the entire planning horizon. However, we would
expect that in practice (2) would be periodically reviewed (re-optimized) to adjust the basestock
in a rolling horizon fashion, though perhaps not at every time period. The stipulation for a
constant basestock in (2) can be viewed as an operational feature aimed at achieving stability (and
“implementability”) of the policy used to operate the supply chain. Clearly such a policy could
prove suboptimal. However, when used under periodic review, and with an appropriate discounting
function and termination conditions, the policy should still prove sufficiently flexible. In the case
of our industrial partner, the use of a constant basestock level was a required feature. In the face
of large, and difficult to quantify, demand uncertainty, the use of a constant basestock was seen as
endowing the supply chain with a measure of predictability and stability.

At the other extreme one could ask for a time-dependent basestock policy, i.e. we might have a
different basestock value σt for each 1 ≤ t ≤ T . We give a result regarding the adversarial problem
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in this general setting. Also, there are intermediate models between the two extremes of using
different basestocks at each time interval and a constant basestock: for example,we might allow the
basestock to change at the midpoint of the planning horizon. Or, with seasonal data, we might use
a fixed basestock value for each “season”. Even though we do not study such models in this paper,
simple extensions of the algorithms we present can handle them.

1.1 Prior work

To the best of our knowledge, the first work on distribution-free supply chain management problems
is due to Scarf [S58], who considered a single period newsvendor problem and determined the
orders that maximize the minimum expected profit over all possible demand distributions, for
a given first and second moments. Later, Gallego and Moon [GM93, MG94] provided concise
derivations of his results and extended them to other cases. Gallego, Ryan and Simchi-Levi [GRS01]
considered multi-period version of this problem with discrete demand distributions and proved
the optimality of basestock policies. Recently, Bertsimas and Thiele [BT05] and Ben-Tal et.al.
[BGNV05] studied some supply chain management problems with limited demand information
using the robust optimization framework. A central difference between their work and previous
work is that instead of assuming partial information about the demand distribution, they use the
robust optimization framework outlined before. Also see [BGGN04] and [T05].

Robust Optimization addresses parameter uncertainty in optimization models. Unlike Stochas-
tic Programming it does not assume that the uncertain parameters are random variables with
known distributions; rather it models uncertainty in parameters using deterministic uncertainty
sets in which all possible values of these parameters reside. Robust Optimization, in principle, em-
ploys a min-max approach that guarantees the feasibility of the obtained solution for all possible
values of the uncertain parameters in the designated uncertainty set.

Although the idea is older, the classical references for Robust Optimization are Ben-Tal and
Nemirovski [BN98, BN99, BN00], where they studied a group of convex optimization problems
with uncertain parameters and showed that they can be formulated as conic programs which can
be solved in polynomial time. Since then, there has been an abundance of research that deals
with various aspects of robust optimization. Among the most significant contributors is Bertsimas
and Sim [BS03] who proposes a new polyhedral uncertainty set that guarantees feasibility with
high probability for general distributions for the uncertain parameters. They show that Linear
Programs with this uncertainty framework can be reformulated as Linear Programs with a small
number of additional variables. Also see [AZ05], where robustness is introduced in the context of
a combinatorial optimization problem.

Another field that deals with uncertainty in optimization problems is Adversarial Queueing,
which was first considered by Borodin et. al [BKRSW96]. They studied packet routing over queuing
networks when there is only limited information about demand. Similar to Robust Optimization,
they adapted a worst case approach and proved some stability results that holds for all realizations
of the demand. They used a demand model that was first introduced by Cruz [C91] to capture the
burstiness of inputs in communication networks. Later, Andrews et. al. [AAFKLL96] considered
a similar problem with greedy protocols.

In recent work, Bertsimas and Thiele [BT05] studied robust supply chain optimization problems.
One particular contribution lies in how they model the demand uncertainty set D. In their model
there are, for each time period t, numbers 0 ≤ δt ≤ µt and Γt, such that 0 ≤ Γ1 ≤ Γ2 ≤ . . . ≤ ΓT

and Γt ≤ Γt−1 +1 (for 1 < t ≤ T ). A vector of demands d is in D if and only if there exist numbers
z1, z2, . . . , zT , such that for 1 ≤ t ≤ T ,

dt = µt + δtzt, (7)

zt ∈ [−1, 1], (8)
t
∑

j=1

|zj | ≤ Γt. (9)
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Here, the quantity µj is the “mean” or “nominal” demand at time j, and the model allows for an
absolute deviation of up to δj units away from the mean. Constraints (9) constitute non-trivial
requirements on the ensemble of all deviations. The method in [BT05] handles startup costs and
production capacities, but it is assumed that costs are stationary, e.g. there are constants h, b and
c such that ht = h, bt = b, and ct = c for all t. If we extend the model in [BT05] to the general
case, the approach used in [BT05] formulates our basic inventory problem as the following linear
program:

C∗ = min
T
∑

t=1

( ctut + yt ) (10)

s.t. (11)

yt ≥ ht



x1 +
t
∑

j=1

(uj − µj) + At



 t = 1, . . . T, (12)

yt ≥ bt



−x1 +
t
∑

j=1

(µj − uj) + At



 t = 1, . . . T, (13)

u ≥ 0,

where for t = 1, . . . T , At is the maximum cumulative deviation away from the mean demands,
by time t, that model (7)-(9) allows. Linear program (11) should be contrasted with the “true”
min-max problem:

R∗ = min
u≥0

R(u) (14)

where for u = (u1, u2, . . . , uT ) ≥ 0,

R(u) = max
d,z,x

T
∑

t=1

( ctut + max{htxt+1 , −btxt+1} ) (15)

s.t.

xt+1 = xt + ut − dt, 1 ≤ t ≤ T,

dt = µt + δtzt,

zt ∈ [−1, 1],
t
∑

j=1

|zj | ≤ Γt, 1 ≤ t ≤ T.

We have that R∗ ≤ C∗ and the gap can be large. However, [BT05] empirically shows that in
the case of stationary costs (11) provides an effective approximation to (14). This is significant
because (15) is a non-convex optimization problem. In addition, again in the case of stationary
costs, it is shown in [BT05] that LP (11) is essentially equivalent to an inventory problem with
known demands, and as a result the solution to the LP amounts to a time-dependent basestock
policy.

Next we review the results in [BGNV05] in the context of our basic inventory problem. There
are three ingredients in their model. First, motivated by prior work, and by ideas from Control
Theory, the authors propose an affine control algorithm. Namely, the algorithm in [BGNV05] will
construct for each period 1 ≤ t ≤ T parameters α̂j

t (0 ≤ j ≤ t− 1) and impose the control law:

ut = α̂t
0 +

t−1
∑

i=1

α̂t
idi, (16)

in addition to nonnegativity of the ut (this extends the methodology described in [BGGN04]).
When used at time t, the values dj in (16) are the past demands. Using (16), the inventory
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holding/backlogging cost inequalities for time t become inequalities on the quantities α̂. In addition,
[BGNV05] posits that the quantities yt can be approximated (or at least, upper-bounded) by
affine functions of the past demand; the algorithm sets parameters β̂t

j (0 ≤ j ≤ t − 1) with

yt =
∑t−1

j=1 β̂t
jdj + β̂t

0. Using this approach, the inequalities describing the inventory model at each
period t can be abbreviated as

0 ≥
t
∑

i=1

P t
i (α̂, β̂) di + P t

0(α̂, β̂), (17)

where each P t
i (α̂, β̂) is an affine function of α̂ and β̂. The algorithm in [BGNV05] chooses the

α̂ and β̂ values so that (17) holds for each demand in the uncertainty set. This set is given by
the condition dt ∈ [µt − δt , µt + δt], where 0 ≤ δt ≤ µt are known parameters. As was the case
in [BT05], this approach is conservative in that the choice of demands that makes (17) binding
for some t may be different from those corresponding to another period t′. Thus, the underlying
min-max problem (over the uncertainty set dt ∈ [µt− δt , µt + δt] for each t) is being approximated.

Partly in order to overcome this conservatism, [BGNV05] introduces its third ingredient. Given
that the orders and the holding/backlogging costs are represented as affine functions of the demands,
the total cost can be described as an affine function of the demands; let us write the total cost as
Q0 +

∑

t Qtdt where each Qt = Qt(α̂, β̂) is itself an affine function of α̂, β̂. To further limit the
adversary, [BGNV05] models:

cost = max

{

Q0 +
∑

t

Qtdt : d ∈ E

}

, where (18)

E =
{

d : (d− µ)′S(d− µ) ≤ Ω
}

. (19)

Here, ’ denotes transpose, S is a symmetric, positive-definite T × T matrix of known values, Ω > 0
is given and µ is the vector of values µt. Thus, (19) states that the demands cannot simultaneously
take values “far” from their nominal values µt. As shown in [BGNV05], the overall optimization
problem can be efficiently solved using second-order cone programming techniques. [BGNV05]
reports excellent results in examples with T = 24.

1.2 Results in this paper

In this paper we present algorithms for solving the optimal robust basestock problem (2) using
two different models for the demand uncertainty set D. The algorithms are based on a common
approach, Benders’ decomposition [B62], and extensive experimentation shows them to be quite
fast.

Our results can be summarized as follows:

(i) Our algorithms compute optimal basestock levels, a problem of concrete practical importance
due to widespread use. We solve the problems to proved optimality, up to roundoff error.
Further, we demonstrate, empirically, that using incorrect basestock settings can lead to a
substantial cost increase.

(ii) In our numerical experiments we consider two models of demand uncertainty, and in each case
we solve the actual min-max optimization problem, and not a conservative approximation.
Despite the fact that we solve non-convex optimization problems, extensive experimentation
shows that our algorithms scale well with problem size, typically solving problems with several
hundred periods in a few minutes of CPU time, in the worst case, and significantly faster in
many cases. Further, in the case of the hardest problems we consider, we also describe an
approximation scheme that produces solutions which are proved near-optimal significantly
faster.

(iii) All of our algorithms can be viewed as variations on Benders’ decomposition – possibly, this
approach could extend well to many demand uncertainty models.
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In this paper we consider the following models for the demand uncertainty set:

1. The Bertsimas-Thiele model (7)-(9). We will refer to this as the risk budgets model. We also
consider a broad generalization of this model, which we term the intervals model.

2. Based on empirical data from our industrial partner, and borrowing ideas from adversarial
queueing theory, we consider a simple model of burstiness in demand. In this model, each
time period t is either normal or a exceptional period, and demand arises according to the
rules:

(B.a) In a normal period, we have dt ∈ [µt−δt , µt+δt], where 0 ≤ δt ≤ µt are given parameters.

(B.b) In a exceptional period, dt = Pt, where Pt > 0 is given.

(B.c) There is a constant 0 < W ≤ T such that in any interval of W consecutive time periods
there is at most one exceptional period.

The quantities Pt are called the peaks. (B.b) and (B.c) model a severe “burst” in demand,
which is rare but does not otherwise impact the “normal” demand. For such a model we
would employ a Pt value that is “large” compared to the normal demand, e.g. Pt = µt + 3δt.
However, our approach does not make any assumption concerning the Pt, other than Pt ≥ 0.
We will refer to (B.a)-(B.c) as the bursty demand model.

There are many possible variations of this model, for example: having several peak types, or
non-constant window parameters W . Our algorithms are easily adapted to these models.

We also consider the static robust inventory problem, which is defined by:

min
u≥0

T
∑

t=1

ctut + K(u) (20)

where for u = (u1, u2, . . . , uT ) ≥ 0,

K(u) = max
T
∑

t=1

max{htxt+1 , −btxt+1} (21)

s.t. xt+1 = xt + ut − dt, 1 ≤ t ≤ T,

(d1, d2, . . . , dT ) ∈ D. (22)

Here (21) is the adversarial problem: given orders u, the adversary chooses demands d so as to
maximize the total inventory cost. We study problem (20) not only because it is of interest on its
own right, but because it serves as a proof-of-concept for our basic algorithmic ideas. In addition,
by running the static model at every period in a rolling horizon fashion, we obtain a dynamic
strategy, though of course not a basestock strategy. Our algorithms are especially effective on the
static problem, solving instances with thousands of time periods in a few seconds.

Our algorithms can be viewed as variants of Benders’ decomposition; next we provide a generic
blueprint. Recall that D denotes the demand uncertainty set. We will use Π to denote the set of
available policies: for example, in the constant basestock case Π is the set of basestock policies.
Thus, the generic problem we want to solve can be written as:

min
π∈Π

max
d∈D

cost(π, d), (23)

where for any policy π ∈ Π and any demand pattern d = (d1, . . . , dT ) ∈ D,

cost(π, d) =
T
∑

t=1

ct u(π, d, t) + max{ht x(π, d, t + 1) , −bt x(π, d, t + 1) }. (24)
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In this expression, u(π, d, t) denotes the order that would be placed by policy π at time t under
demands d, and x(π, d, t) would likewise denote the inventory at the start of period t. For example,
in the basestock case with basestock σπ, we would have u(π, d, t) = max{0 , σπ − x(π, d, t)}.

Our generic algorithm, given next, will maintain a working list D̃ of demand patterns – each
member of D̃ will be demand vector (d1, d2, . . . , dT ) ∈ D. The algorithm will also maintain an
upper bound U and a lower bound L on the value of problem (23).

Algorithm 1.1 GENERIC ALGORITHM

Initialize: D̃ = ∅, L = 0 and U = +∞.

1. Decision maker’s problem. Let π̃ be the solution to the problem:

minπ∈Π maxd∈D̃ cost(π, d).

Set L← maxd∈D̃ cost(π̃, d).

2. Adversarial problem. Let d̄ be the solution to the problem:

maxd∈D cost(π̃, d).

Set U ← min
{

U , cost(π̃, d̄)
}

.

3. Termination test. If U − L is small enough, then EXIT.

4. Formulation update. Otherwise, add d̄ to D̃ and return to Step 1.

Note that the decision maker’s problem is of the same general form as the generic problem (23) –
however, the key difference is that while D is in general exponentially large, at any point D̃ has size
equal to the number of iterations run so far. One of the properties of Benders’ decomposition is that,
when successful, the number of iterations until termination will be small. In our implementations,
this number turned out quite small indeed, as we will see.

In fact, the decision maker’s problem proves to be quite tractable: roughly speaking, it amounts
to an easily solvable convex optimization problem. For example, in the case of static policies the
problem can be formulated as a linear program with O(T |D̃|) variables and constraints.

On the other hand, the adversarial problem is non-convex. In at least one case we can show
that it is NP-hard [O06]. (But this is only half of the story, because in that case the adversarial
problem can be ε-approximated, i.e. solutions arbitrarily close to the optimum can be efficiently
computed [O06]). The problem can be also modeled as a mixed-integer program, but tackling this
mixed-integer program directly turns out not to be the best approach. Instead, we devise simple
combinatorial algorithms that prove efficient.

Benders’ decomposition algorithms have long enjoyed popularity in many contexts. In the
case of stochastic programming with large number of scenarios, they prove essential in that they
effectively reduce a massively large continuous problem into a number of much smaller independent
problems. In the context of non-convex optimization (such as the problem handled in this paper)
the appeal of decomposition is that it vastly reduces combinatorial complexity.

Benders’ decomposition methods can be viewed as a special case of cutting-plane methods. As
is the case for cutting-plane methods for combinatorial optimization, there is no adequate general
theory to explain why Benders’ decomposition, when adequately implemented, tends to converge in
few iterations. In the language of our algorithm, part of an explanation would be that the demand

7



patterns d̄ added to D̃ in each execution of Step 4 above are “important” or “essential”, as well as
being “extremal”.

A final point regarding Algorithm 1.1 is that neither Step 1 nor Step 2 need be carried out
exactly, except for the last iteration (in order to prove optimality). When either step is per-
formed approximately, then we cannot update the corresponding bound (U or L) as indicated in
the blueprint above. However, for example, performing Step 2 approximately can lead to faster
iterations, and at an early stage an approximate solution can suffice since all we are trying to do,
at that point, is to quickly improve the approximation to the set D provided by the existing (and
much smaller) set D̃.

Notation 1.2 In what follows, for any time period t, and any value z, we write

Wt(z) = max{htz , −btz }.

We will refer to the inventory holding/backlogging cost in any period as the inventory cost.

This paper is organized as follows. Section 2 presents our results on the static problem. Section
4 presents our algorithms for the robust constant basestock problem, while Section 5 presents
numerical experiments involving these algorithms.

2 The static problem

In this section we present algorithms for the static problem (14) for the risk budgets and the bursty
demand models of demand uncertainty. Our algorithms follow the template provided by Algorithm
1.1. We can provide a theoretical result.

Theorem 2.1 In the static case, the min-max optimization problem can be solved in a polynomial
number of steps, each of which consists of the solution of an adversarial problem.

Proof. The robust optimization problem can be formulated as the following linear program:

min V

Subject to

V ≥
∑

t∈S

ht



x0 +
t
∑

j=1

(uj − dj)



 +
∑

t/∈S

bt



−x0 −
t
∑

j=1

(uj − dj)



 ,

∀ d ∈ D, and S ⊆ {1, . . . , T}

u ≥ 0

The separation problem for the feasible region of this linear program is solved with one call to the
adversarial problem. Thus, using the equivalence between separation and optimization [GLS93],
we obtain the desired result.

Our theoretical results for the static problem are:

Theorem 2.2 (a) The decision maker’s problem can be solved as a linear program with O(T |D̃|)
variables and constraints. (b) In the case of the risk budgets model with Γt = t for all t, the
adversarial problem can be solved in polynomial time, and consequently the robust optimization
problem can be solved in polynomial time.

The complexity of the adversarial problem in all other cases remains open, though we conjecture
that the adversarial problem can be approximated to any tolerance ε > 0 time polynomial in T
and ε−1 (such a result holds for the basestock model).

The formulation used in Theorem 2.1, while good from a theoretical standpoint, is not efficient
from a computational standpoint. In particular, it is exponentially large even if D is small. To
solve the decision maker’s problem, we instead adapt formulation (20-22) (substituting D̃ for D)
which has O(T |D̃|) variables and constraints. Our algorithms for the risk budgets and the bursty
demand model will differ in how we handle the adversarial problem.
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2.1 The adversarial problem in the risk budgets model

Here we consider the adversarial problem (step 2 of Algorithm 1.1) under the demand uncertainty
model (7)-(9), assuming that the quantities Γt are integral.
We have the following simple result:

Lemma 2.3 Let d̄ be an extreme point of D. Then for 1 ≤ t ≤ T , either d̄t = µt or |d̄t−µt| = δt.

Using this lemma, we can now devise an algorithm for the adversarial problem. Let ũ be a vector
of orders. In the remainder of this section we will assume that ũ is fixed. For 1 ≤ t ≤ T , and
for any integer k with 0 ≤ k ≤ Γt, let At(x, k) denote the maximum cost that the adversary can
attain in periods t, . . . , T , assuming starting inventory at time t equal to x, and that k “units” of
risk have been used in all periods preceding t. Formally,

At(x, k) = max
d

T
∑

j=t

Wj



x +
j
∑

i=1

ũi −
j
∑

i=1

di



 (25)

Subject to
j
∑

i=t

{

|di − µi|

δi
: δi > 0

}

≤ Γj − k, t ≤ j ≤ T,

µj − δj ≤ dj ≤ µj + δj , t ≤ j ≤ T.

Using this notation, the value of the adversarial problem equals
∑T

t=1 ctũt + A1(x1, 0). Now
(25) amounts to a linearly constrained program (in the d variables plus some auxiliary variables)
and it is easily seen that the demand vector that attains the maximum in A1(x1, 0) is an extreme
point of D. Thus, using Lemma 2.3, we have the following recursion:

At(x,Γt) = Wt(x + ũt − µt) + At+1(x + ũt − µt,Γt), (26)

while for k < Γt,

At(x, k) = max
{

fu
t,k(x) , fd

t,k(x) , fm
t,k(x)

}

, (27)

where

fu
t,k(x) = Wt(x + ũt − µt − δt) + At+1(x + ũt − µt − δt, k + 1), (28)

fd
t,k(x) = Wt(x + ũt − µt + δt) + At+1(x + ũt − µt + δt, k + 1), (29)

fm
t,k(x) = Wt(x + ũt − µt) + At+1(x + ũt − µt, k). (30)

Here we write AT+1(x, k) = 0 for all x, k As a result of equation (27) and the definition of the
fu

t,k(x), fd
t,k(x), fm

t,k(x), we have:

Lemma 2.4 For any t and k, At(x, k) is a convex, piecewise-linear function of x.

Equations (26) and (27)-(30) provide a dynamic programming algorithm for computing A1(x1, 0).
In the rest of this section we provide simple details needed to make the algorithm efficient. We
will use the following notation: the representation of a convex piecewise-linear function f is the
description of f given by the slopes and breakpoints of its pieces, sorted in increasing order of the
slopes (i.e., “left to right”).

Lemma 2.5 For i = 1, 2, let f i be a convex piecewise-linear function with slopes si
1 < si

2 < . . . <
si
m(i). Suppose that, for some q > 0, f 1 and f2 have q pieces of equal slope, i.e. there are q

pairs 1 ≤ a ≤ m(1), 1 ≤ b ≤ m(2), such that s1
a = s2

b . Then (a) g = max{f 1, f2} has at most
m(1) + m(2) − q pieces. Furthermore (b) given the representations of f 1 and f2, we can compute
the representation of g in time O(m(1) + m(2)).
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Proof. First we prove (b). Let v1 < v2 < . . . < vn be the sequence of all breakpoints of f 1 and
f2, in increasing order, where n ≤ m(1) + m(2) − 2. Suppose that for some 1 ≤ i < n we have
that f1(vi) ≥ f2(vi) and f2(vi+1) ≥ f1(vi+1) where at least one of the two inequalities is strict.
Then the interval [vi, vi+1] contains one breakpoint of g. In fact, with the exception of at most two
additional breakpoints involving the first and last pieces of f 1 and f2, every breakpoint of g arises
in this form or by exchanging the roles of f 1 and f2. This proves (b), since given the representation
of f1 and f2 we can compute the sorted list v1 < v2 < . . . < vn in time O(m(1) + m(2)). To prove
(a), note that any piece of g is either (part) of a piece of m(1) or m(2); thus, since g is convex, for
any pair 1 ≤ a ≤ m(1), 1 ≤ b ≤ m(2), with s1

a = s2
b (= s, say) there is at most one piece of g with

slope s.

For extensions, see [O06]. In our implementation, we use the method implicit in Lemma 2.5 to-
gether with the dynamic programming recursion described above. We will present computational
experience with this algorithm below. Here we present some comments on its complexity.

Note that in each equation (28)-(30) the corresponding function f u
t,k, fd

t,k or fm
t,k has at most one more

breakpoint than the At+1 function in that equation. Nevertheless, the algorithm we are presenting
is, in the worst case, of complexity exponential in T . However, this is an overly pessimistic worst-
case estimate. Comparing equations (28) and (29), we see that f u

t,k(x) = fd
t,k(x− 2δt). Thus, as is

easy to see (see Lemma 2.6 below) max{f u
t,k, f

d
t,k} has no more breakpoints than f u

t,k, which also
has at most one more breakpoint than At(x, k + 1).
Further, Lemma 2.5 (a) is significant in that when we consider equations (28)-(30) we can see that,
in general, the functions fu, fd and fm will have many pieces with equal slope. In fact, in our
numerical experiments, we have not seen any example where the number of pieces of A1(x, 0) was
large. We conjecture that for broad classes of problems our dynamic-programming procedure runs
in polynomial time.

2.1.1 A special case

There is an important special case where we can prove that our algorithm is efficient. This is the
case where the demand uncertainty set is described by the condition that dt ∈ [µt − δt , µt + δt] for
each t. In terms of the risk budgets model, this is equivalent to having Γt = t for each t. We will
refer to this special case as the box model.

In this case, the extreme points of the demand uncertainty set D are particularly simple: they
satisfy dt = µt−δt or dt = µt+δt for each t. Let At(x) denote the maximum cost that the adversary
can attain in periods t, . . . , T , assuming that the starting inventory at time t equals x. Then:

At(x) = max
{

fu
t (x) , fd

t (x)
}

, (31)

where

fu
t (x) = Wt(x + ũt − µt − δt) + At+1(x + ũt − µt − δt), (32)

fd
t (x) = Wt(x + ũt − µt + δt) + At+1(x + ũt − µt + δt). (33)

and as before we set AT+1(x) = 0. We have, as a consequence of Lemma 2.5:

Lemma 2.6 Let f be a piecewise-linear, convex function with m pieces, and let a be any value.
Then g(x)

.
= max{ f(x) , f(x + a) } is convex, piecewise-linear with at most m pieces.

Corollary 2.7 For any t, the number of pieces in At(x) is at most T − t + 2.

Corollary 2.8 In the box model, the adversarial problem can be solved in time O(T 2).
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Corollary 2.8 is significant for the following reason. In the box case, our min-max problem (23) can
be written as:

min
u≥0

T
∑

t=1

ct ut + z (34)

Subject to z ≥
∑

j∈J

hj



x1 +
j
∑

i=1

ũi −
j
∑

i=1

di



 −
∑

j∈J̄

bj



x1 +
j
∑

i=1

ũi −
j
∑

i=1

di



 ,

for all d ∈ D, and each partition (J, J̄) of {1, . . . , T ). (35)

This linear program has T + 1 variables but 2T |D| constraints. However, by Corollary 2.8, we can
solve the separation problem for the feasible set of the linear program in polynomial time – hence,
we can solve the min-max problem in polynomial time, as well [GLS93]. This result is of theoretical
relevance only – in the box demands case, our generic Benders’ algorithm proves especially efficient.

2.1.2 The adversarial problem as a mixed-integer program

Even though we are using a dynamic-programming algorithm to solve the adversarial problem, we
can also use mixed-integer programming. In the following formulation ũ is the given orders vector.
For each period t, there is a zero-one variable pt which equals 1 if the inventory holding cost is
positive in period t. All other variables are continuous, and the Mt are large enough constants.

max
d,x,p,I,B,z

T
∑

t=1

(It + Bt) (36)

Subject to

for 1 ≤ t ≤ T,

xt+1 = xt + ũt − dt, (37)

ht xt+1 ≤ It ≤ ht xt+1 + ht Mt(1− pt), (38)

0 ≤ It ≤ ht Mt pt, (39)

−bt xt+1 ≤ Bt ≤ −bt xt+1 + bt Mtpt, (40)

0 ≤ Bt ≤ bt Mt (1− pt), (41)

dt = µt + δt zt, (42)

pt = 0 or 1, (43)
t
∑

j=1

|zt| ≤ Γt. (44)

Equations (38)-(41) imply that when if ht xt+1 > 0 then pt = 1, and when pt = 1 then It = ht xt+1

and Bt = 0; whereas if −bt xt+1 > 0 then pt = 0, and when pt = 0 then Bt = −bt xt+1 and It = 0.
Similarly with Bt. We set Mt = max{

∑t
j=1(uj + µj − δj),

∑t
j=1(−uj + µj + δj)}.

Problem (36) bears a passing similarity to the traditional economic lot-sizing problem. As a
result, we would expect modern mixed-integer programming software to handle the problem with
ease. The following table shows sample computational experience using Cplex 9.0 on a current
workstation to solve three examples. In this table “time” is the time to termination (in seconds)
and “BB nodes” is the number of branch-and-cut nodes.

T 24 48 96

time (sec.) 0.12 227 16449

BB nodes 84 215922 7910537

Table 1: Solving the adversarial problem as a mixed-integer program

These results are disappointingly poor – in fact, in the example with T = 96, achieving a near-
optimal solution was already quite expensive. This makes the mixed-integer programming approach
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uncompetitive with the dynamic programming algorithm given above, which solves problems with
T = 500 in seconds.

Nevertheless, it is possible that a more efficient specialized algorithm for solving the mixed-
integer program (36), or for a reformulation of it (there are many) could be developed. In fact,
notice that by replacing equation (44) with the general condition d ∈ D we can in principle tackle
the adversarial problem for general polyhedral set D.

2.2 The adversarial problem in the bursty demand model

Here we consider the adversarial problem for the bursty demand model given in Section 1.2. We
can adapt the dynamic programming recursion used for the risk budgets model as follows. As
previously, we assume a given vector ũ of orders.

For each period t, and each integer 1 ≤ k < min{W, t}, let Πt(x, k), denote the maximum cost
attainable by the adversary in periods t, . . . , T assuming that the initial inventory at the start of
period t is x, and that the last peak occurred in period t − k. Similarly, denote by Πt(x, 0) the
maximum cost attainable by the adversary in periods t, . . . , T assuming that the initial inventory
at the start of period t is x, and that no peak occurred in periods t−1, t−2, . . . ,max{1, t−W +1}.
Writing ΠT+1(x, k) = 0, we have, for 1 ≤ t ≤ T :

Πt(x, k) = max
d∈{µt−δt,µt+δt}

{Wt(x + ũt − d) + Πt+1(x + ũt − d, k + 1)} ,

for 1 ≤ k < min{W − 1, t}, (45)

Πt(x,W − 1) = max
d∈{µt−δt,µt+δt}

{Wt(x + ũt − d) + Πt+1(x + ũt − d, 0)} ,

for W − 1 < t, (46)

Πt(x, 0) = max
{

Π1
t (x) , Π0

t (x)
}

, where (47)

Π1
t (x) = max

d∈{µt−δt,µt+δt}
{Wt(x + ũt − d) + Πt+1(x + ũt − d, 0)} , and (48)

Π0
t (x) = Wt(x + ũt − Pt) + Πt+1(x + ũt − Pt, 1). (49)

We solve this recursion using the same approach as for (26)-(30), i.e. by storing the representation
of each function Πt(x, k) (which clearly are convex piecewise-linear).

3 Computational results for the static problem

To investigate the behavior of our algorithms for the static case, we ran several batteries of tests.
Each of the runs was terminated as soon as the upper bound on the min-max problem was at most
1 + 5.0e−4 times the lower bound.

In Table 3, we report tests involving the risk budgets and the bursty model of uncertainty,
with three different kinds of data: random, periodic and discounted. Further, we consider T =
50, 200, and 500. We ran 500 tests for each separate category, and for each category we report the
average, maximum and minimum running time and number of steps to termination.

For all of the data types, we generate problem parameters randomly. We assume that each
period corresponds to a week and a year has 52 weeks. In the periodic case we generate cost
parameters and demand intervals corresponding to 3 months (13 weeks) and assume that data
repeats every 3 months. For the discounted case we generate the cost data corresponding to one
period and generate the cost for the other periods by discounting these cost parameters with a
yearly discount rate of 0.95. We generated the demand intervals in that case randomly (see below).
For the pure random case, data in each period is generated independent from the other periods.

In generating the cost parameters we assumed that there are two possibilities. In each period,
each cost parameter is uniformly distributed either in some interval [l1, l2] with probability p or in
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interval [h1, h2] with probability 1−p. We generated the mid-points of the intervals where demand
resides using the same method. The half-lengths of the intervals are generated by multiplying
the mid-point with a random number which is uniformly distributed between 0 and 1. Table 2
demonstrates the parameters we used.

[l1, l2] [h1, h2] p

c [0,2] [6,8] 0.5
h [5,10] [15,25] 0.5
b [5,15] [20,30] 0.5
d [0,100] [200,400] 0.7

Table 2: Parameters for data generation

The peak quantities in the bursty demand model were generated by multiplying the mid-point
of the demand interval by 5.

For the demand model with risk budgets we generated budgets in two ways. First, randomly.
Here, starting from budget 0, we generated a budget for each period by increasing the budget in
the previous period by one with probability q which is also randomly generated.

We also tested our algorithm with stationary instances in which the budgets are generated by
the algorithm the given in [BT05]. Let d be a demand vector and let C(d,Γ) be the cost of this
demand vector with the optimal robust policy computed by our algorithm for the budget vector Γ.
The method in [BT05] assumes that d is a random vector and generates the Γ vector that minimizes
an upper bound on E[C(d,Γ)] assuming that the first two moments of the distribution is given.
The algorithm gives budgets which are not necessarily integral. We round them down, since our
algorithm for the static model can only handle the integral budget case. These results are given in
Table 4.

Running Time (sec.) Number of Iterations

# periods average max min average max min

Random (bursty)
50 0.073 0.28 0.01 4.23 10 3
200 3.28 1.21 0.37 4.45 9 3
500 53.6 241 3.94 4.44 11 3

Random (budgets)
50 0.03 0.10 0.01 4.10 8 3
200 1.22 3.60 0.58 4.39 10 3
500 20.00 43.90 10.90 4.18 8 3

Periodic (bursty)
50 0.07 0.17 0.01 4.03 7 3
200 3.00 11.90 0.35 4.26 9 3
500 42.10 149.00 3.85 3.74 7 3

Periodic (budgets)
50 0.04 0.85 0.01 4.33 26 3
200 0.61 10.00 0.26 4.13 17 3
500 5.99 33.70 3.19 3.85 11 3

Discounted (bursty)
50 0.07 0.19 0.01 4.03 7 3
200 3.47 16.20 0.42 4.83 11 3
500 55.40 336.00 4.68 4.76 15 3

Discounted (budgets)
50 0.03 0.42 0.01 4.28 20 3
200 0.92 38.70 0.32 4.37 35 3
500 9.32 238.00 2.71 4.56 26 3

Table 3: Running time and number of iterations

We note the low number of iterations – this shows that on average approximately four demand
patterns suffice to prove optimality (of the optimal policy). The maximum we observed is larger
but still quite modest. In fact, Table 3 may overstate the amount of work needed to converge. This
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is because in addition to requiring few iterations, the algorithm, usually, quickly converged to close
to the optimum and the additional iterations were needed in order to obtain the desired tolerance.
Figure 1 shows a typical example of this behavior.

Running Time (sec.) Number of Iterations

# periods average max min average max min

50 0.22 4.51 0.00 9.21 42 2
200 5.73 39.82 0.05 8.90 23 2
500 50.28 1049.00 0.61 7.11 13 2

Table 4: Running time and number of iterations for model from [BT05]
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Figure 1: Example with many steps

Finally, we compare the results produced by our algorithm to those using the method in [BT05].
For each of the instances described above, we computed we used the algorithm in [BT05] to compute
an order vector; then we ran the adversarial problem in order to compute the worst-case cost for that
vector. We then computed the gap between that cost and the true min-max optimum computed
using our method. Table 5 summarizes the results.

# periods average max min

Periodic
50 10.52 32.71 1.12
200 10.95 30.44 2.06
500 7.4 22.28 0.38

Discounted
50 12.91 36.39 1.97
200 9.25 31.57 0.54
500 10.69 20.55 2.59

Table 5: % increase in cost incurred by solution in [BT05]
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4 The basestock problem

This section considers how to solve problem (2) using our generic algorithm (1.1), under the risk
budgets and bursty demand uncertainty models. Our theoretical results can be summarized as
follows:

Theorem 4.1
(a) The decision maker’s problem can be solved time polynomial in T and D̃.
(b) In the risk budgets model, the adversarial problem can be solved in O(T 2 ΓT ) iterations, each
of which involves the solution of a linear program with O(T ) variables, plus O(T 2 ΓT ) additional
work.
(c) In the bursty demands model, the adversarial problem is NP-hard, but there is an algorithm
which, given ε > 0, finds a solution with optimality (relative) error at most ε in time polynomial in
T and ε−1.

Section 4.1 considers the decision maker’s problem. The adversarial problem is studied in
Section 4.2 (for the risk budgets model) and Section 4.3 (bursty demands model). In the context
of algorithm (1.1), a policy π̃ consists of a basestock value σ̃, and this will be the output of each
decision maker’s problem; the corresponding adversarial problem will consist of computing the
quantity V (σ̃) defined in equations (3)-(6).
Prior to describing our algorithms, we note a simple observation.

Definition 4.2 Consider a demand vector d. 1 ≤ t ≤ T , let Rt,d = x1 −
∑t−1

j=1 dj. Write
R0,d = +∞.

Definition 4.3 Consider a demand vector d and a basestock value σ. We denote by t∗ = t∗σ,d the
smallest t ≤ T with Rt,d ≤ σ. If no such t exists we set t∗σ,d = T + 1.

In other words, Rt,d is the amount of inventory at the start of period t if no orders are placed
in periods 1, . . . , t − 1, and t∗σ,d indicates the first period where, under the policy using basestock
σ, the starting inventory does not exceed σ.

Example 4.4 Suppose T = 6, d = (10, 8, 0, 15, 4, 9) and x1 = 100. Then R1,d = 100, R2,d = 90,
R3,d = R4,d = 82, R5,d = 67 and R6,d = 63. Also,

t∗σ,d =



































1, for 100 ≤ σ,
2, for 90 ≤ σ < 100,
3, for 82 ≤ σ < 90,
5, for 67 ≤ σ < 82,
6, for 63 ≤ σ < 67,
7, for σ < 63.

Remark 4.5 For 1 ≤ t ≤ T , we have that t∗σ,d = t for σ ∈ [Rt,d , Rt−1,d ). Further, (writing t∗ for
t∗σ,d) if we use basestock σ under demands d,

(a) For every t ≥ t∗, xt ≤ σ, and for every t ≤ t∗, xt = Rt,d.

(b) For t < t∗, ut = 0. For t < t∗ − 1 we have, by definition of t∗, that 0 ≤ σ ≤ Rt+1,d = xt+1,
hence the cost incurred at t equals ht (Rt+1,d) =Wt (Rt+1,d). We might have that xt∗ < 0, in
which case in period t∗− 1 we pay a backlogging cost. In any case, the cost incurred in period
t < t∗ can be summarized as Wt (Rt+1,d).

(c) At t = t∗ the ordering cost equals ct∗ ( σ −Rt∗,d ) and the inventory cost is Wt(σ − dt∗).

(d) For t > t∗ we incur an ordering cost of ctdt−1 and an inventory cost of Wt(σ − dt).
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4.1 The decision maker’s problem

Here we have a finite set D̃ ⊆ D and we wish to compute the basestock value that minimizes the
maximum cost over any demand pattern in D̃. Consider any demand d ∈ D. Let costt(σ, d) denote
the cost incurred at time t, under demands d, if we use basestock σ.

Lemma 4.6 For any fixed 1 ≤ t ≤ T and d, costt(σ, d) is a piecewise convex function of σ with at
most three pieces, each of which is piecewise linear.

Proof. Suppose that σ < Rt,d. Then t∗σ,d > t, and so costt(σ, d) =Wt (Rt+1,d) which is independent
of σ. Suppose now that σ ∈ [Rt,d , Rt−1,d ). Then t∗σ,d = t and costt(σ, d) = ct (σ −Rt,d ) +Wt(σ−
dt). Finally, suppose that σ ≥ Rt−1,d. Then t∗ < t, and costt(σ, d) = ct(dt−1) +Wt(σ − dt). Note
that at σ = Rt−1,d, we have σ −Rt,d = dt−1. The result is proved.

Denoting (as in (24)), cost(σ, d) =
∑

t costt(σ, d, ) we have:

Corollary 4.7 For any demand vector d, cost(σ, d̃) is a piecewise convex function of σ with at
most 3T pieces, each of which is piecewise linear.

Corollary 4.8 maxd̃∈D̃ cost(σ, d̃) is piecewise convex, with each convex piece being piecewise-linear.

Our objective is to compute σ ≥ 0 so as to minimize maxd̃∈D̃ cost(σ, d̃). To do this, we rely on
Lemma 4.7:

(i) Compute, and sort, the set of breakpoints of all functions cost(σ, d̃). Let 0 ≤ β1 < β2 . . . < βn

be the sorted list of nonnegative breakpoints, where n ≤ 3T |D̃|.

(ii) In each interval I of the form [0, β1], [βi, βi+1] (1 ≤ i < n) and [βn,+∞), we have that
maxd̃∈D̃ cost(σ, d̃) is the maximum of a set of convex functions, and hence convex (in fact:

piecewise linear). Let σI ∈ I be the minimizer of maxd̃∈D̃ cost(σ, d̃) in I.

(iii) Let Ĩ = argminI maxd̃∈D̃ cost(σI , d̃). We set σ̃ = σĨ .

In order to carry out Step (ii), in our implementation we used binary search. There are theoretically
more efficient algorithms, but empirically our implementation is adequate. Note that in order
to carry out the binary search in some interval I, we do not explicitly need to construct the
representation of maxd̃∈D̃ cost(σ, d̃), restricted to I. Rather, when evaluating some σ̂ ∈ I we simply

compute its functional value as the maximum, over d̃ ∈ D̃, of cost(σ̂, d̃); and this can done using
the representation of each cost(σ̂, d̃).

Further, in the context of our generic algorithm 1.1, Step (i) can be performed incrementally.
That is to say, when adding a new demand d̄ to D̃, we compute the breakpoints of cost(σ, d̄) and
merge these into the existing sorted list, which can be done in linear time.

In summary, all the key steps of our algorithm for the decision maker’s problem run linearly in
T and |D̃|.

We stress that the above algorithm is independent of the underlying uncertainty set D. In what
follows, we will describe our algorithms for the adversarial problem, under the risk budgets and
bursty demand uncertainty models.

4.2 The adversarial problem under the risk budgets model

In this section we consider the adversarial model under the demand uncertainty set D given by
(7)-(9), and assuming that a fixed basestock σ has been given. For conciseness, in this paper
we only consider the case where the Γt are integral (see [BO05, O06], where a polynomial-time
algorithm and computational results are given for the general case). We let (d∗, z∗) denote the
optimal demand (and risks) vector chosen by the adversary. We want to characterize structural
properties of (d∗, z∗). In what follows, we write t∗ for t∗σ,d∗ . First we have the following easy result:
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Lemma 4.9 Suppose t∗ ≥ T . Then d∗ is obtained by solving the two following linear programs,
and choosing the solution with higher value:

Max
T
∑

t=1

ht



x1 −
t
∑

j=1

dj



 (50)

s.t. d ∈ D

x1 −
T−1
∑

t=1

dt ≥ σ.

Max
T−1
∑

t=1

ht



x1 −
t
∑

j=1

dt



+ bT

(

T
∑

t=1

dt − x1

)

(51)

s.t. d ∈ D

x1 −
T−1
∑

t=1

dt ≥ σ.

Lemma 4.9 provides one case for our adversarial algorithm. In what follows we will assume that
t∗ < T and describe algorithms for this case. We will describe two algorithms: an exact algorithm,
which solves the problem to proved optimality, and a much faster approximate algorithm which
does not prove optimality but nevertheless produces a “strong” demand pattern d̄ which, in the
language of our generic algorithm (1.1), quickly improves on the working set D̃. The exact algorithm
requires (in a conservative worst-case estimate) the solution of up to O(T 2 ΓT ) warm-started linear
programs with fewer than 4T variables, plus O(T 2 ΓT ) additional steps; as we show in Section 5 this
algorithm can be implemented to run quite efficiently. The approximate algorithm, in addition, is
significantly faster.

We begin with the exact algorithm. Lemma 4.10, Corollary 4.11 and Lemma 4.12 provide some
structural properties of an optimal solution to the adversarial problem. Sections 4.2.1, and 4.2.2
describe the technical details of our approach. The overall algorithm is put together in Section
4.2.3; the approximate algorithm is described in Section 4.2.4. The reader may skip over Sections
4.2.1, 4.2.2 without loss of continuity.

Lemma 4.10 Suppose t ≥ t∗ is such that
∑t

j=1 |z
∗
j | is fractional. (i) Without loss of generality z∗

t

is integral. (ii) If, in addition,
∑k

j=1 |z
∗
j | is fractional for all k ≥ t, then without loss of generality

|z∗t | = 1.

Proof. Using Remark 4.5, (c) and (d), the cost paid as a function of dt equals ct+1dt +Wt(σ − dt)
(where cT+1 = 0), which is a convex function of dt.
(ii) Let t be as stated. Suppose first that z∗

t = 0 (i.e. d∗t = µt). Then we can set d∗t = µt ± εδt

and z∗t = ±ε for some small ε > 0, and remain feasible; convexity shows that at least one of these
two solutions is still optimal. Thus, without loss of generality, |z∗

t | = 1. Assuming now that z∗t is
fractional, we can adjust |z∗t | by ±ε and correspondingly adjust |d∗t−µt| by ±εδt, and again apply
convexity. This will either yield (w.l.o.g.) |z∗

t | = 1, or bring us back to the case |z∗t | = 0.
(i) Assuming (ii) does not apply, let k > t be such that

∑k
j=1 |z

∗
j | is integral, and smallest subject to

these two conditions. Thus we have that z∗k is fractional, so if z∗t is fractional then again a convexity
argument yields the desired result.

Corollary 4.11 Either (a) there is a period te ≥ t∗ such that
∑te

j=1 |z
∗
j | is integral, or (b) without

loss of generality |z∗t | = 1 for every t ≥ t∗.

Note that, given for a given t∗, case (b) of Corollary 4.11 is simple: we simply need to set, for each
t ≥ t∗, either dt = µt + δt or dt = µt − δt, so as to maximize Wt(σ − dt) + ct+1dt. For case (b) to
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hold, we must have that
∑t∗−1

t=1 |z
∗
t∗−1| ≤ ΓT − (T − t∗ + 1). So, for a given t∗, case (b) amounts to

solving the linear program:

Max
t∗−2
∑

t=1

ht



x1 −
t
∑

j=1

dt



+Wt∗−1

(

x1 −
t∗−1
∑

t=1

dt

)

+ct∗

(

σ − x1 +
t∗−1
∑

t=1

dt

)

(52)

s.t. dt = µt + δtzt, 1 ≤ t ≤ t∗ − 1,

zt ∈ [−1, 1], 1 ≤ t ≤ t∗ − 1,
t
∑

j=1

|zj | ≤ Γt, 1 ≤ t ≤ t∗ − 2,

t∗−1
∑

j=1

|zt∗−1| ≤ ΓT − (T − t∗ + 1),

x1 −
t∗−2
∑

t=1

dt ≥ σ,

x1 −
t∗−1
∑

t=1

dt ≤ σ.

Each of the problems of type (52) can be solved by solving two linear programs. In total, case (b)
amounts to 2T − 2 linear programs of type (52). In what follows, we assume that case (a) holds,
and that furthermore the period te is chosen as small as possible. In addition we write

γ∗ =
t∗−1
∑

t=1

|z∗t |.

Lemma 4.12 Without loss of generality we can assume that: (1) z∗
t is integral for every t with

t∗ ≤ t 6= te. (2) If γ∗ is fractional then |z∗te | = dγ
∗e − γ∗. (3) If γ∗ is integral te = t∗.

Proof. (1) If t < t∗ this follows from our choice for te and Lemma 4.10 (i). The cases t =
te + 1, te + 2, . . . , T are handled inductively in that order, again using Lemma 4.10 (i). (2) follows
from (1). (3) again follows from Lemma 4.10 (i).

Given t∗ and te, we partition the time periods into three sets:

B = {1, 2, . . . , t∗ − 1, te} , (53)

A = {t∗, t∗ + 1, . . . , te − 1, te + 1, . . . , T} . (54)

Let d∗(B) and d∗(A) (z∗(B) and z∗(A), respectively) be the subvectors of d∗ (resp., z∗) restricted
to B and A. Below we will show that each of B and A gives rise to an optimization problem, for
which (d∗(B), z∗(B)) and (d∗(A), z∗(A)) are respectively optimal. Thus, essentially, the adversarial
problem is partitioned into two problems that can be solved (almost) independently. To ensure
that the solutions to the three problems can be joined into a feasible solution to the adversarial
problem, we will need to enumerate a polynomial number of boundary cases.

In the following sections 4.2.1, 4.2.2, we we describe optimization problems arising from A and B
that are solved by (d∗(A), z∗(A)) and (d∗(B), z∗(B)), respectively.

4.2.1 Handling A.

For integer −1 ≤ k < Γt∗−1, and integer q = 0 or 1, consider
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PA(k, q, t∗, te) : maxd,z
∑

i∈A (Wi(σ − di) + ci+1di)

s.t. di = µi + δizi ∀i ∈ A (55)
i
∑

j=t∗
|zj | ≤ Γi − k − 1 t∗ ≤ i ≤ te − 1 (56)

te−1
∑

j=t∗
|zj |+

i
∑

j=te+1

|zj | ≤ Γi − k − 1− q te + 1 ≤ i ≤ T (57)

−1 ≤ zi ≤ 1 integral ∀i ∈ A,

Lemma 4.13 If γ∗ is fractional then (d∗(A), z∗(A)) is an optimal solution to PA(bγ∗c, 0, t∗, te). If
γ∗ is integral then (d∗(A), z∗(A)) is an optimal solution to PA(γ∗ − 1, |z∗t∗ |, t

∗, t∗).

Proof. Assume first that γ∗ is fractional. We claim that (d∗(A), z∗(A)) is feasible for PA(bγ∗c, 0, t∗, te)
This follows by Lemma 4.12 (1), (2). Conversely, if (d̂(A), ẑ(A)) is an optimal solution to PA(bγ∗c, 0, t∗, te),
then (d∗(B), d̂(A)) is a feasible solution to the adversarial problem, and the result follows. The
case with integral γ∗ is similar.

A problem PA(k, q, t∗, te) is solved by a dynamic programming recursion, using a stage for each
t ∈ A, and a state corresponding to the (ceiling of the) total risk budget consumed by period t− 1.
For each v = 0 or 1, and each choice for te, the set of all PA(k, q, t∗, te) are reduced to a single
dynamic program; hence the overall complexity is O(T 2 ΓT ).

4.2.2 Handling B.

Next we turn to set B (c.f. (53)). For integer −1 ≤ k < Γt∗−1, and integers 0 ≤ v ≤ w ≤ 1, consider:

PB(t∗, te, k, w, v) :

max
d,z,y,γ

t∗−2
∑

i=1

hi

(

x0 −
i
∑

h=1

dh

)

+Wt∗−1

(

x1 −
t∗−1
∑

h=1

dh

)

+

+ct∗

(

σ −

(

x0 −
t∗−1
∑

h=1

dh

))

+Wte (σ − dte) + cte+1dte

s.t. x0 −
i
∑

h=1

dh ≥ σ ∀i ∈ {1, 2, ..., t∗ − 1}

x0 −
t∗−1
∑

h=1

dh ≤ σ

di = µi + δizi ∀i ∈ {1, 2, ..., t∗ − 1, te}

|zi| ≤ yi ≤ 1 ∀i ∈ {1, 2, ..., t∗ − 1, te}
i
∑

h=1

yh ≤ Γi ∀i ∈ {1, 2, ..., t∗ − 1}

t∗−1
∑

h=1

yh − γ = 0

w + k ≤ γ ≤ k + 1 (58)

yte = k + 1− γ + v (59)

This problem models the behavior of the adversary during those periods in B. Here, γ is the
total uncertainty consumed in periods 1 ≤ t ≤ t∗ − 1. Constraint (59) controls how much risk
the adversary can expend during period te – note that when w = 1, we are forcing γ to take the
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(integral) value k + 1 and forcing yte to take the integral value v. When w = 0 (so v = 0), we
either have k = γ and yte = 1; or k < γ ≤ k + 1 and yte = dγe − γ. The first term in the objective
is the inventory holding cost incurred in periods 1 ≤ i ≤ t∗ − 2, the second term is the inventory
cost in period t∗ − 1; while the last two terms describe the inventory cost during period te and the
ordering cost in period te + 1. Also note that at optimality yt = |zt| for each t ∈ B. The following
result is clear, with a slight abuse of notation:

Lemma 4.14 If γ∗ is fractional then (d∗(B), z∗(B), γ∗) solves PB(t∗, te, bγ∗c, 0, 0). If γ∗ is integral
then (d∗(B), z∗(B), γ∗) solves PB(t∗, te, γ∗ − 1, 1, |z∗te |).

Further:

Lemma 4.15 Problem PB(t∗, te, k, w, v) reduces to at most four linear programs.

Proof. This follows because the objective of PB(t∗, te, k, w, v) contains just two functions Wt.

4.2.3 The algorithm

Our algorithm examines every pair (t̄∗, t̄e), where 1 ≤ t̄∗ ≤ t̄e ≤ T For each such pair, we solve
the three problems PB(t̄∗, t̄e, k, 0, 0), for every 0 ≤ k < Γt̄∗−1, as well as PB(t̄∗, t̄e, k, 1, 0) and
PB(t̄∗, t̄e, k, 1, 1), for every −1 ≤ k < Γt̄∗−1. We also solve all problems PA(k, 0, t̄∗, t̄e) for every
0 ≤ k < Γt̄∗−1, and PA(k, 1, t̄∗, t̄∗) for every −1 ≤ k < Γt̄∗−1. By Lemmas 4.13 and 4.14 the
solutions we enumerate can be assembled into an optimal solution to the adversarial problem.

A comment on the problems LB(t̄∗, t̄e, k). There is a total of O(T 2 ΓT ) such problems, and as
discussed above, each such problem reduces to up to four linear programs. These linear programs
should be warm-started, i.e. not solved from scratch. For example, parameter k only affects one
constraint; in order to solve the problem we can re-optimize starting from the solution to the
problem corresponding to k + 1, which will typically require a tiny number of pivots. Similarly
with t̄∗, and t̄e. This detail, together with other implementational tricks, is important.

4.2.4 The approximate adversarial algorithm

In the discussion above we focused on solving the adversarial problem in Algorithm 1.1 exactly.
Even though our algorithm runs in polynomial time, it is very conservative: it examines demand
patterns that are unlikely to prove optimal except under extreme data conditions.

Thus, it is appealing to use a possibly suboptimal algorithm. The benefit of this would be that
we would have much faster iterations, while, if the suboptimal algorithm were “smart” enough, we
would still recap the benefit of updating the set D̃ in Algorithm 1.1 with demand patterns that
fairly accurately approximate what the adversary can do. Of course, if we follow this approach,
the quantity U computed in Step 2 of Algorithm 1.1 no longer qualifies as an upper bound to the
min-max problem, though L certainly is a lower bound.

Hence, we can use the following approach: run Algorithm 1.1 as stated in its description, but
using a suboptimal algorithm to handle the adversarial problem. Whenever U −L is small, we run
the exact adversarial algorithm, at which point the value of the adversarial problem does become
a valid upper bound. This might allow us to terminate immediately if the gap is small. If not,
we continue with the generic algorithm, once again using the suboptimal procedure to solve the
adversarial problem. In theory, the exact algorithm should be run, for example, every k iterations
for some k, but in our experience this was not needed.

The particular suboptimal algorithm we used was based on a simple idea. Our approach for the
exact algorithm solved problems PM (k, t̄∗, t̄e) and PB(t̄∗, t̄e, k) for all appropriate triples (t̄∗, t̄e, k).
In the suboptimal algorithm, instead, given t̄∗, we compute a particular period to serve as t̄e. Recall
that at period t̄e, inventory is already at or below basestock, and so the inventory cost will equal
Wt̄e(σ − dt̄e); by applying this formula with

dt̄e = µt̄e ± δt̄e (60)
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we compute the maximum inventory cost at t̄e. On the other hand, if te = t̄e, the minimum
inventory cost at t̄e will be attained when

dt̄e = µt̄e . (61)

Our method picks that period t̄e for which the effect of decrease from (60) to (61) on cost is
minimum. Notice that by doing so we ignore the relation between the period t̄e and problem
PB(t̄∗, t̄e, t̄e, k, j) assume that zte = 0. However, the impact on optimality should be small. As we
will see, this approximation dramatically speeds up the algorithm.

4.3 The adversarial problem under the bursty demand model

For the reader’s convenience, we restate the bursty demand model. Here, period t is either normal,
meaning dt ∈ [µt−δt, µt+δt] (where 0 ≤ δt ≤ µt are given parameters), or it is exceptional, meaning
dt = Pt, where Pt is a given parameter. Further, in any set of W consecutive periods there is at
most one exceptional period.

From a purely theoretical standpoint, we have the following result [O06]:

Theorem 4.16 (a) The adversarial problem in the bursty demand model is NP-hard. (b) For
every ε > 0 a demand pattern of cost at least (1 − ε) times the optimum can be computed in time
polynomial in T and 1/ε.

This result is possibly of theoretical interest only, because it is not clear just how large T would
be in a practical application. Nevertheless, the result does highlight that, most likely, a polynomial-
time algorithm for the adversarial problem does not exist.

Our approach is as follows. For any demand pattern d, define the time period t∗ as in Section 4:
t∗ is the earliest period such that the starting inventory is ≤ σ. Then the maximum cost attainable
by the adversary during periods 1 through t∗ − 1, plus the order cost at period t∗, assuming that
the last exceptional period is t∗ − k (k = 1, . . . ,min{t∗,W}) is obtained by solving the following
optimization problem:

IP (t∗, k) :

max
t∗−2
∑

i=1

hi



x1 −
i
∑

j=1

dj



+Wt∗−1



x1 −
t∗−1
∑

j=1

dj



+ ct∗(σ − (x1 −
t∗−1
∑

j=1

dj))

s.t. x1 −
t
∑

j=1

dj ≥ σ 1 ≤ t ≤ t∗ − 2 (62)

x1 −
t∗−1
∑

j=1

dj ≤ σ (63)

dt = st + ItPt 1 ≤ t ≤ t∗ − 1 (64)

(1− It)(µt − δt) ≤ st ≤ (1− It)(µt + δt) 1 ≤ t ≤ t∗ − 1 (65)
t+W−1
∑

i=t

It ≤ 1 1 ≤ t ≤ t∗ −W (66)

It∗−k = 1 (67)

It ∈ {0, 1} 1 ≤ t ≤ t∗ − 1

In this formulation, the 0 − 1 variable It is used to indicate exceptional periods. If we set
k = 0, and replace (67) with the constraints It = 0 for t = 1, . . . ,min{t∗,W}, then we obtain the
maximum cost attainable by the adversary assuming that there is no exceptional period among the
W last.
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We will return to problem IP (t∗, k) below, but first we consider the second half of the problem.
This can be done with a simple dynamic programming recursion. For t = t∗, . . . , T and k =
0, 1, . . . ,min{t− t∗,W}, let Vt(k) denote the maximum cost attainable by the adversary in periods
t, . . . , T (not counting the ordering cost at t) assuming that the last exceptional period prior to t
is period t− k (with the same interpretation as before for k = 0). The recursion goes as follows:
For t = t∗, ..., T − 1, we have

Vt(0) = max
d∈{µt−δt,µt+δt,Pt}

{ Wt(σ − d) + ct+1d + Vt+1 (I) } ,

where we set I = 1 when we choose d = Pt, and otherwise we set I = 0. For k = 1, . . . ,W − 1 and
t < T ,

Vt(k) = max
d∈{µt−δt,µt+δt}

{Wt(σ − d) + ct+1d + Vt+1(k + 1 (modW ))}.

For t = T , we set

VT (0) = max
d∈{µT −δT ,µT +δT ,Pt}

WT (σ − d),

and for k = 1, ...,W − 1

VT (k) = max
d∈{µT −δT ,µT +δT }

WT (σ − d).

Clearly this recursion runs in polynomial time. Further, for each t and k we can put together
a solution to IP (t, k) and the optimizer for Vt(k) to obtain a feasible solution to the adversarial
problem, and the best such solution will clearly be the optimal solution. It is clear that the Vt(k)
can be computed efficiently; now we return to the mixed-integer program IP (t, k).

Consider the system made up of those constraints involving the 0− 1 variables It, namely (64),
(65) and (66) (we do not include (67) since it just fixes a variable) plus the bounds 0 ≤ It ≤ 1 for
all t. It can be shown that this system defines an integral polyhedron (that is to say, a polyhedron
each of whose extreme points has 0 − 1 values on the It variables). This essentially is a known
fact; in particular constraints (66) describe a vertex-packing polyhedron on an interval graph (see
[NW88] for background).

The consequence of this is that problem IP (t∗, k), or, rather, each of the two linear objective
problems obtained by considering the two cases forWt∗−1, is a mixed-integer programming problem
over an integer polyhedron plus two side constraints (which do not involve the 0 − 1 variables).
We would thus expect IP (t∗, k) to be easily solvable as a general mixed-integer program. And this
proves to be exactly the case: using commercial software, even instances with T in the hundreds,
the problem is solved in hundredths of a second.

5 Experiments with the basestock model

Our computational experiments are of two kinds. First, we want to study the convergence proper-
ties of the algorithms. Second, we want to investigate qualitative properties of the models studied
in this paper.

In all the runs given below, the algorithm was terminated as soon as the upper bound on the
min-max problem was at most 1 + 1.0e−5 times the lower bound.

5.1 The risk budgets model

Table 6 presents the running time of the algorithm for instances with integral budgets. For each
data class we generated 100 examples. Note that even with 150 periods, our algorithm solves the
problem very quickly. One fact that is worth noting is that in the discounted data case, on average,
our algorithm converges to the optimum in fewer iterations than in the other cases.
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Running Time (sec.) Number of Iterations

# periods Average Max Min Average Max Min

Random
75 5.56 35.20 0.16 4.79 16.00 2.00
150 37.70 244.40 1.54 4.38 8.00 2.00

Periodic
75 3.85 25.93 0.16 4.04 14.00 2.00
150 34.65 282.65 1.80 3.51 7.00 2.00

Discounted
75 2.71 80.14 0.11 2.96 6.00 2.00
150 32.90 465.75 1.37 3.11 6.00 2.00

Table 6: Performance statistics – risk budgets model

In Table 7 we compare the time spent solving adversarial problems to the total running time of
our algorithm. Each problem category shows an average over 100 sample runs. This table clearly
reinforces the idea that an adequate method for approximating the adversarial problem (perhaps by
appropriately “sampling” demands) would yield a much faster overall algorithm; though of course
the resulting algorithm might simply amount to a heuristic.

# periods average

Random
75 99.9737
150 99.9934

Periodic
75 99.9711
150 99.9977

Discounted
75 99.9765
150 99.9999

Table 7: Ratio of adversarial time to total running time for the budgets model

In Table 8 we compare an optimal static policy, computed as in Section 2, with an optimal base-
stock policy (with constant basestock). To conduct these tests, given the optimal static policy, we
computed its corresponding worst-case demand pattern and corresponding cost, which is reported
in the column headed ’Static Policy’. The column headed ’Basestock policy’ was computed in a
similar way.

Example Static Policy Basestock Policy Error (%)

1 10,115.00 12,242.17 -17.38
2 9,097.50 9,255.44 -1.71
3 172.94 175.83 -1.64
4 615,000.00 132,000.00 365.91
5 354,000.00 48,900.00 623.93
6 3,440,000.00 76,500.00 4396.73

Table 8: Static vs Basestock Policies

We see that for the first three examples the static policy performs better than the basestock
policy. This is understandable: in these examples the uncertainty sets are either a single point or
are very restricted. For such uncertainty sets, basestock policies impose an additional constraint
on orders. However, for the last three examples, the basestock policy provides a significant gain
which savings of up to 4396% in Example 6.

In the next set of experiments we compare the optimal basestock policy, run in a rolling horizon
fashion, to the optimal static policy (Section 2), also run with a rolling horizon. We will refer to
the latter approach as the dynamic policy.

23



In terms of the basestock model, a formal description is as follows. Let µt, δt,Γt, t = 1, . . . , T
be given. Then, for t = 1, . . . , T ,

1. Let σ(t) be the optimum basestock computed by restricting the problem to periods t, . . . , T .
Then we order ut = max{0, σ(t) − xt} at period t.

2. Compute the demand dt by sampling from a normal distribution with mean µt and standard
deviation δt/2. If dt < 0 we reset dt = 0.

3. Set xt+1 = xt + ut − dt.

4. Let d̄t = dt. If d̄t < µt− δt, reset d̄t ← µt− δt. If d̄t > µt + δt, reset d̄t ← µt + δt. Let rt be the
largest multiple of 0.25 that is less than or equal to |d̄t−µt|/δt. Then we reset Γk ← Γk − rt,
for k = t + 1, . . . , T .

The algorithm for the dynamic model is similar. In our experiments, we again consider the
three different data types described in Section 3. For each type we ran 100 randomly generated
examples with 50 time periods, and for each example we generated 200 sample paths (demand sets).
In Table 9 we report the percentage increase in the average cost resulting from using the dynamic
policy over using the basestock policy with rolling horizon. In the table, standard deviations are
taken over the average cost of the 200 samples for each example. For completeness, we also report
on the “pure” static policy, i.e. not run with a rolling horizon.

Dynamic policy Static policy

average stddev min max average stddev min max

Random -22.07 14.84 -49.03 17.91 831.99 249.64 388.37 1,744.73

Periodic -8.22 54.92 -84.16 194.84 731.19 515.96 25.80 2,648.07

Discounted -17.34 30.89 -72.31 82.09 606.18 274.49 87.35 1,220.91

Table 9: % increase in average cost of dynamic and static policies over the rolling horizon basestock
policy

Notice that, on average, the dynamic policy outperforms the basestock policy with rolling
horizon, though the standard deviation is quite high.
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Figure 2: % error in basestock vs. % error in cost

Another issue of interest is to quantify the impact of an incorrect basestock choice. Figure 2
shows the percentage error in cost as a function of the percentage error in basestock value for a
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particular example. For small values of error in basestock level, the cost curve is flat indicating
that we can use near optimal basestock levels without sacrificing too much from optimality. This
implies, for example, that even if numerical precision in an implementation of our algorithm were
low, we would not be far from optimal. At the same time, Figure 2 shows that for large enough
basestock error, the cost error grows linearly.

For completeness, we present some results concerning the case with fractional Γt, using the
more general algorithm in [BO05, O06]. We can obtain a lower (resp., upper) bound on the
min-max problem by using risk budgets bΓtc (resp., lceilΓte). In Table 10, the columns headed
’Exact Algorithm’ concern the algorithm for fraction Γt, while the columns headed ’Approximation’
concern the approximation with integral budgets – the column headed “Cost Gap” indicates the
percentage error between the upper and lower bounds. To produce the statistics in the table,
for each data type we ran 150 randomly generated instances each with T = 100 time periods.
Running times are in seconds. We see that, on average, the bounding procedure proves bounds
with approximately a 1.7% gap. Another point to be stressed is that in both the exact algorithm
and in the early termination version, the running time is dominated by the adversarial problem
computations.

Exact Algorithm Approximation

Running Time (sec.) Running Time (sec.) Cost Gap (%)

Average Max Min Average Max Min Average Max Min

Random 187.8 1362.62 1.35 13.91 58.89 2.02 1.52 12.22 0.09

Periodic 186.98 1659.17 2.83 11.41 56.25 1.56 1.42 8.71 0.00

Discounted 61.22 272.33 1.39 8.18 34.60 1.97 1.75 4.97 0.03

Table 10: Performance of algorithm for risk budgets (T = 100).

Table 10 may overstate the difference between the early termination solution and the optimal
solution: in Table 11 we compare the approximate basestock with the optimal basestock level
(same data as Table 10). We see that in most cases the approximation heuristic indeed provides a
solution of excellent quality.

% Error in Basestock

Average Max Min

Random 0.43 5.14 0.00

Periodic 0.42 8.44 0.00

Discounted 0.03 1.06 0.00

Table 11: Error in the basestock produced by using integral budgets.

5.2 The bursty demand model

For each category shown in Table 12, 200 tests were performed. Data was generated using the same
procedure as in Section 3. In addition, in most of these instances the window size was 15.

Table 13 describes experiments where we change the window size while keeping all other data
constant, for a 300-period model in the periodic data case. We see that the number of iterations
appears to grow quite slowly.

In Table 14, we investigate the impact of changing the initial inventory amount. Here we use
the formula x1 = step × Φ/15 , where step = 0, 1, 2, . . . and Φ is a crude estimate of the total
demand we would altogether see in the T periods – this assumes normal demands are at their mean
values, and prorates the peaks. Note that there is no need to test cases with x1 < 0 since they
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Running Time (sec.) Number of Iterations

# periods average max min average max min

Random
75 4.15 19 0.01 4.17 21 3
150 35.96 228 0.01 6.52 31 4
300 196.28 866 0.05 8.13 25 4

Periodic
75 4.48 26.5 0.05 4.22 22 3
150 27.4 188 0.05 5.65 22 3
300 240.28 1290.00 0.05 7.52 19 4

Discounted
75 3.8 13.3 0.09 2.66 20 3
150 30.33 146 0.05 4.86 20 3
300 166.0 869.00 0.05 6.7 21 4

Table 12: Behavior of algorithm for bursty demand model under a constant basestock

Window 5 10 15 20 25 30 35 40 45 50

Time 17.1 30.2 43.1 53.7 64.3 73.4 83.2 181.0 192.6 210.05

Iterations 7 7 7 7 7 7 7 11 11 11

Table 13: Impact of window size on a 300-period model

will behave in the same way as those with x1 = 0. The examples in Table 14 all correspond to the
same data set (other than x1) with T = 300. When x1 > 14000 the optimal basestock is always
zero (and the algorithm takes 4 iterations). The results shown in this Table are quite interesting
and are worth explanations. Essentially, what we see are two separate, but related, effects: the
complexity of the problem, and the magnitude of the optimal basestock.

x1 Time Iterations Optimal
Basestock

0 1.00e-02 7 89.39
1000 1.40e-01 8 88.91
2000 1.05e+00 8 89.22
3000 3.58e+00 8 89.06
4000 1.00e+01 8 88.91
5000 1.86e+01 7 89.56
6000 2.93e+01 8 88.91
7000 4.66e+01 7 89.42
8000 6.80e+01 7 88.66
9000 1.04e+02 7 89.05
10000 1.44e+02 7 89.15
11000 1.99e+02 7 88.47
12000 5.03e+02 8 90.78
13000 6.34e+02 12 339.33
14000 3.66e+02 4 0

Table 14: Impact of initial inventory

First, the larger x1 is, the later that inventory will first fall below basestock (this is the parameter
t∗ discussed above). The higher this value is, the more uncertain the problem becomes, and thus,
the more difficult. Consider, for example, the case with x1 = 12000. This amounts to, very roughly,
approximately 4/5ths of all the demand. So it will take, very roughly, on the order of 200 time
periods for inventory to fall below basestock. This makes the decision maker’s problem much more
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complex, than, say if we had t∗ on the order of 10. For x1 ≥ 14000 we have a much easier problem
because inventory never goes below basestock. The other effect we see in the table is that the
optimal basestock is essentially constant (approximately equal to two or three periods’ worth of
demand, in a very crude sense), then grows rapidly, and then drops to zero – when the initial
inventory is large enough no “safety” is needed. The sudden growth of the basestock at, or just
before, the “critical” level of x1 can be explained as follows: if x1 is large enough the risk that
inventory will go below basestock is low, until near the end of the planning horizon – so setting a
larger basestock value is unlikely to have a negative effect (i.e., ordering costs) until near the end.
However, for t near T the inventory could actually go negative, and a larger basestock will protect
against that.

Another important issue is how the optimal robust basestock behaves as a function of the
input data, and, in particular, as a function of how “large” the uncertainty sets are. Table 15
demonstrates an interesting phenomenon that is also observed in stochastic inventory theory (see
[GKR05]). Here we have an example of the bursty demand model. Our experiment consisted in
scaling the window size parameter and the magnitudes of the peaks by the same constant. Notice
that by doing so we increase the variability in the system. To understand the intuition behind this
suppose that Pt = P for all t. Then, on average, the peak demand at any period in window of size
w will be P/w, but the variance will be of the order of P 2/w. Hence, the “expected” demand per
period will not change if we scale the window and peak size by the same constant, but demand
variance will increase. Table 15 shows that as the variance of the demand increases, the optimal
basestock level initially increases, but then it decreases and appears to converge to a constant.

Scale 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.6

Optimal Bs. 74.92 78.10 75.30 119.98 125.63 131.54 74.29 74.29 74.21

Table 15: Variance vs Optimal Basestock

We performed some additional tests to measure the sensitivity of the optimal basestock to
problem data, in particular to the magnitude of the peaks Pt. In these tests we varied the problem
data by scaling all peaks by the same scale constant, and keeping all other data constant. Figure
3 displays the result of such a test on a problem with T = 75, and window parameter W = 5.
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Figure 3: Effect of scaling peaks on optimum basestock

Note that as the scale factor goes to zero the optimum basestock convergences to a constant.
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This is easy to understand, since when the peaks are small the adversary does not gain much
from using or not using the peaks. When the scale factor is large enough, the optimum basestock
also converges to a constant. At first glance this might appear incorrect: perhaps the optimum
basestock should also increase, to offset potential large backlogging costs? However, this view is
incorrect, because if we set the basestock large, then we have to carry large inventory in all periods.

6 Extensions

The approach described in this paper can be adapted to handle safety-stock policies, as well as
ambiguous chance-constrained models. For these, and other extensions, we refer the reader to
[BO05].
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