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1 Introduction

We consider problems with the general form

(F) : F z = min F (x), (1)

s.t. x ∈ P, (2)

x ∈ K. (3)

Here,

• F (x) is a convex quadratic, i.e. F (x) = xTMx + vTx (with M � 0 and v ∈ Rn).

• P ⊆ Rn is a convex set over which we can efficiently optimize F ,

• K ⊆ Rn is a non-convex set with “special structure”.

• Typically, n could be quite large.

A standard approach to solving this problem would start by solving a convex relaxation to F ,
thereby obtaining a lower bound on F z. However, when K is complex, such a lower bound is likely
to be weak. In this paper we present efficient techniques that enable us to tighten the lower bound.

Our techniques are backed by theory and also prove computationally effective – our approach
yields bounds comparable to or better than those produced by sophisticated formulations, but at
a very small fraction of the computational cost.

To illustrate the situation we have in mind, we focus next on the example where P = {x ∈
Rn : Ax ≥ b} for a given matrix A and vector b, and K is given by a cardinality constraint, i.e.

K =
{
x ∈ Rn+ : ‖x‖0 ≤ K

}
,

where K is a positive integer. [Here, the zero-norm ‖v‖0 of a vector v is used to denote the number
of nonzero entries of v.] This version of problem F , which we denote by Q, has received attention
in the literature. The primary contributions in this paper address problem F in its general form;
however some of the technical points concern the specific case of a cardinality constraint, and our
computational experiments involve problem Q.

A specialized algorithm for Q was presented in [3]; this scheme proved much more effective than
general-purpose branch-and-bound, but it is clear that instances of Q can prove extremely hard
even when Ax ≥ b, x ∈ Rn+ describes the unit simplex, a case of practical importance. The central
difficulty of the problem can be summarized in a single sentence: the (typically, strict) convexity
of F (x) defeats traditional methods for solving discrete optimization problems. Such methods rely
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on polyhedral techniques, that is to say, cutting-plane methods used to separate points from the
convex hull of P ∩ K, and branch-and-bound.

In order to understand why cutting-plane and branching methods fail, write x∗ = argmin{F (x) :
Ax ≥ b, x ∈ Rn+}. Typically x∗ will belong to a high-dimensional face of the feasible region, and
will be “far away” from the set K, so that a polyhedral representation of K will not suffice to cut-off
x∗. This is clearly illustrated by the following special case of Q:

min


n∑
j=1

djx
2
j :

n∑
j=1

x = 1, x ∈ Rn+, ‖x‖0 ≤ K

 , (4)

where dj > 0 for all j. If we ignore the cardinality constraint the optimal solution is given by
x∗j = d−1j /(

∑
i d
−1
i ) for all j, with objective value 1/(

∑
i d
−1
i ); typically a very weak lower bound

to the actual value of (4). As an example, suppose that dj = 1 for all j, n = 1000 and K = 50.
Then the value of (4) is 1/50, while the lower bound provided by x∗ is 1/1000. The challenge lies
in how to significantly improve this lower bound. However,

conv

x ∈ Rn+ :

n∑
j=1

x = 1, ‖x‖0 ≤ K

 =

x ∈ Rn+ :

n∑
j=1

x = 1

 . (5)

In other words, there is nothing to separate – a direct application of cutting-plane methods to Q
will prove completely ineffective in this case.

Branch-and-bound techniques face similar difficulties. The standard mixed-integer program-
ming formulation for F on the unit simplex is as follows:

F z = minF (x) (6)

s.t.
n∑
j=1

x = 1, x ∈ Rn+, (7)

xj ≤ yj , yj = 0 or 1 ∀j;
n∑
j=1

yj ≤ K. (8)

This formulation, even though correct, can prove extremely weak, and will result in a prohibitively
large amount of branching in order to prove a lower bound significantly higher than the value of
the continuous relaxation of (6)-(8). In the case of problem (4) with dj = 1 for all j, n = 1000 and
K = 50, one can prove that more than 2100 branch-and-bound nodes need to be enumerated before
the lower bound improves above 1/900, which is still quite poor.

This example epitomizes the situation we wish to deal with in this paper. A given convex relax-
ation for problem F , perhaps the best possible relaxation that we can practicably run, nevertheless
proves so weak that even an astronomical amount of computation will not materially improve the
lower bound. In such a case, one would be interested in investing some amount of work, perhaps a
significant amount, in order to improve the bound.

The method we propose aims to do just that – it entails some linear algebra work (in the worst
case, polynomially bounded) and empirically it proves very fast, while significantly improving the
lower bound. We stress that our method does not replace, or compete with, any given relaxation
– it is simply an add-on. Nevertheless, in our computational experiments, we run it alongside
relaxations in order to document its comparative efficiency and the strength of the proved bound.
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1.1 Outline of methodology

Stepping back from problem Q, the difficulty we face can be summarized as follows: set K ∩ P
is non-convex while F (x) is (possibly highly) convex. Thus the solution vector x∗ for a convex
relaxation of problem F could be (typically, will be) quite “far”, in the Euclidean distance sense,
from K ∩ P; and F (x∗) is therefore a weak lower bound for F z.

In this paper we use the following template for proving strong lower bounds for problem F
when the above difficulty arises:

(S.1) Develop an efficient procedure that, given a point v ∈ Rn, computes a strong lower bound on
the distance D(v) between v and the feasible region to F , i.e. the set{

x ∈ Rn+ : x ∈ P, x ∈ K
}

for relevant sets K, e.g. the cardinality constraint. We assume that this problem is in general
“easier” than problem F itself – note that we ask for a “strong lower bound” rather than
an exact computation of D(v). We show that this is indeed the case when K is defined by a
cardinality constraint.

(S.2) Let x∗ be the optimal solution to some convex relaxation of F . Armed with a positive lower
bound on D(x∗), use techniques from convex optimization, in particular, the S-Lemma [13]
(also see [2], [5], [12]) to obtain stronger lower bounds on F z than that provided by F (x∗).

(S.1)-(S.2) provides an initial template on our approach; we will see however that this approach
must be appropriately augmented in order to obtain strong bounds. Nevertheless, note that (S.1)-
(S.2) can be embedded in a branch-and-bound scheme where step (S.2) is used to improve the lower
bound obtained at each node.

With regards to (S.1), clearly a trivial positive lower bound on the quantity D(v) is, usually,
readily available (e.g. v is a fractional vector and K specifies that variables must take integral
values). But stronger bounds can be available. As our computational experiments demonstrate,
we can efficiently and very tightly approximate D(v) in the cardinality constrained case. This is
an empirical assessment. From a theoretical perspective we have (proof in Appendix A):

Theorem 1.1 Let η ∈ Rn+, a ∈ Rn+ and a0 ≥ 0 be such that aT η = a0. Let 0 < ε < 1 and K
integer. Then the minimum distance between η and the set {x ∈ Rn : aTx = a0, ‖x‖0 ≤ K} can be
approximated up to a multiplicative error of (1 + ε) in time polynomial in n, ε−1, and the number
of bits needed to represent η and a.

Turning to (S.2), a critical result that we rely on is:

S-Lemma: Let f, g : Rn → R be quadratic functions and suppose there exists x̄ ∈ RN such that
g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only if there exists γ ≥ 0 such that (f − γg)(x) ≥ 0 for all x.

[Remark: here, a “quadratic” may contain a linear as well as a constant term.]The S-lemma can
be used as an algorithmic framework for minimizing a quadratic subject to a quadratic constraint.
Let p, q be quadratic functions of a variable x ∈ Rn and let α, β ≥ 0 be reals. Then

min{p(x) : q(x) ≥ β} ≥ α (9)
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if and only if there exists λ ≥ 0 so that

p(x) − α − λq(x) + λβ ≥ 0 for all x. (10)

In other words, the minimization problem in (9) can be approached as a simultaneous search for
two reals α and λ ≥ 0, with α largest possible such that (10) holds.

For a simple application of our template (S.1-S.2) to problem Q, consider Figure 1.

x* = xF
� �� ����

����� y

Figure 1: Simple application to problem Q.

Here we have n = 3 and K = 2; furthermore the optimizer x∗ of the quadratic over the unit
simplex is in the relative interior of the simplex, i.e. x∗ = xF , where xF is the minimizer of the
quadratic over the hyperplane S = {x ∈ R3 :

∑
j xj = 1}. If we apply the S-Lemma so as to

minimize F (x) while staying on S and on the exterior of the ball with center x∗ and radius D(x∗),
then we obtain, as a lower bound on F z, the value F (y) [Note: we “stay on S” by appropriately
changing coordinates]. Summarizing, F z ≥ F (y) ≥ F (x∗)+λminD

2(x∗), where λmin is the smallest
eigenvalue of M . In this case, of course, simple geometry proves F z ≥ F (x∗)+λminD

2(x∗), however,
using the S-Lemma, we will obtain the exact value for F (y).

Now consider the example in Figure 2, corresponding to n = 3, K = 1. Here a straightforward
application of the S-Lemma will yield as a lower bound (on F z) the value F (y), which is weak –
weaker, in fact, than F (x∗). The situation in this case is that xF , the optimizer of the quadratic
over the affine hull of the feasible region, is not in the relative interior of the convex hull of the
feasible region. This situation is common in practice. In summary, a direct use of the S-Lemma as
outlined will prove ineffective.

To put this difficulty into a more general context, suppose we were to solve a convex relaxation
to problem F and let x∗ denote its solution. Ideally we would want to solve a problem of the form:

V = min
{
xTMx + vTx : x− x∗ ∈ C, (x− x∗)T (x− x∗) ≥ δ2

}
(11)

where δ > 0 is a lower bound on the distance from x∗ to P∩K and C is the cone of feasible directions
(for P ) at x∗. We can view this as a ’cone constrained’ version of the problem addressed by the
S-Lemma. Clearly, F (x∗) ≤ V ≤ F z with the first inequality in general strict. If the relaxation is
polyhedral, (11) becomes

min
{
xTMx + ṽTx : Cx ≥ 0, xTx ≥ δ2

}
(12)

for appropriate ṽ and C. However, we have:
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Theorem 1.2 For M � 0 and δ > 0, Problem (12) is NP-hard.

[Proof in Appendix B].
This is unfortunate, because there is a rich literature on semidefinite programming methods

used to solve problems similar to (12). The trust region subproblem (TRS) is a problem of the form

min xTQx + cTx, (13)

s.t. xTx = 1 (or ≤ 1). (14)

where w is given vector. As shown in [14], this problem can be solved in polynomial time; [16]
shows that polynomial solvability is maintained if we add a single (linear) constraint atx ≥ 0. Also
see [15], [17], [12], and references therein. As discussed in [12] the solution of problem TRS is
closely related to the S-Lemma. Possibly, some of the SDP methodology could be brought to bear
on problem (12), though of course the NP-hardness result will limit the scope. Potentially, the case
where C has one row (or, perhaps, a fixed number of rows) might be polynomially solvable. An
additional hurdle is that we are interested in very large-scale cases.

Rather than tackling problem (12) directly, we will use a computationally practicable approach
that explicitly employs the S-Lemma. We will detail our approach later, but in outline we operate
as follows.

xF

�����

�����

x*
y

Figure 2: Direct application of S-lemma results in weak bound.

Let x∗ be as above, and let c = ∇F (x∗). For α ≥ 0, let p = x∗+αc, and let Hα be a hyperplane
through p orthogonal to c. Define L(α) = min{F (x) : ‖x − p‖2 ≥ D(p), x ∈ Hα}. In Figure 3,
L(α) = F (y). Clearly, L(α) ≤ F z. Then

• Suppose α = 0, i.e. p = x∗. Then x∗ is a minimizer of F (x) subject to x ∈ H0. Thus
L(0) > F (x∗) when F is positive-definite.

• Suppose α > 0. Since cT (y − x∗) > 0, it follows that L(α) = F (y) > F (x∗).

Thus, F (x∗) ≤ infα≥0 L(α) ≤ F z; the first inequality being strict in the positive-definite case. [By
convexity, L(α)→ +∞ as α→ +∞; furthermore it can be shown that the “inf” is a “min”]. Each
value L(α) incorporates combinatorial information (through the quantity D(x∗+αc)) and thus the
computation of minα≥0 L(α) is not easily obtained through direct convex optimization techniques.
As a counterpoint to Theorem 1.2, we have:

Theorem 1.3 If C has one row, V ≤ infα≥0 L(α).
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Proof sketch: Consider any given 0 ≤ α. Let

xα = argmin
{
F (x) : x ∈ Hα, and ‖x− (x∗ + αc)‖22 ≥ D2(x∗)− α2‖c‖22

}
.

Since Hα is orthogonal to c, D2(x∗ + αc) ≥ D2(x∗) − α2‖c‖22. Thus L(α) ≥ F (xα) ≥ V, and the
result follows.

��
��
��
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��
�� �
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�
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�
�
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y

c

Fx

p

Figure 3: A better paradigm.

In order to develop a computationally practicable approach that uses these observations, let 0 =
α(0) < α(1) < . . . < α(J), such that for any x ∈ P ∩ K, cTx ≤ α(J)‖c‖22. Then:

(1) For 0 ≤ i < J , compute tight lower bound, denoted L̃(i),on

min{L(α) : α(i) ≤ α ≤ α(i+1)}.

(2) Output min0≤i<J L̃(i).

The idea here is that if (for all i) α(i+1) − α(i) is small then L(α(i)) ≈ L(α(i+1)) and we should
be able to choose L̃(i) nearby, as well. Thus the quantity output in (2) will closely approximate
minα≥0 L(α).

To implement Step (1), we show that the computation of a single value L(α) can be carried out
by obtaining an eigenvector decomposition of the projection of F (x) to a hyperplane orthogonal to
c (Section 2), and then appropriately changing coordinates so that the S-lemma can be efficiently
applied (Section 3) on an (n− 1)-dimensional space. Furthermore, our use of the S-lemma is such
that for each 0 ≤ i < J the computation of L̃(i) amounts to an interpolation between L(α(i)) and
L(α(i+1)) (Section 5).

As already indicated, we only perform one projection – the rest of the linear algebra, including
the application of the S-Lemma, and the interpolation, is simple and fast. Thus we can choose
J quite large if desired, or equivalently, make the differences α(i+1) − α(i) small, thereby closely
approximating minα≥0 L(α). The overall procedure runs fast even for large n.

In the following sections we will formalize the approach. We point out that the procedure can
be adapted so that the vector c is not necessarily ∇F (x∗) (other choices can work better).

Finally, one fortuitous benefit resulting from computing the projection of the quadratic onto a
hyperplane is that the eigenvalue structure changes favorably; again yielding even better bounds.
In fact, if the definition of the feasible set P includes a set of linear equations then the projection
to the hyperplane defined by these equations (or a subset thereof) before proceeding with step (1)
above will further improve the eigenvalue structure.
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2 Projecting a quadratic

Let M = QΛQT be an n× n matrix given by its eigenvalue-eigenvector decomposition. Let c be a
unit vector and denote H =

{
x ∈ Rn : cTx = 0

}
. In this section we describe an efficient algorithm

for computing an eigenvalue-eigenvector decomposition of the “projected quadratic” PMP where
P is the projection matrix onto H. The vector c could be dense (is dense in important cases) and Q
could also be dense. Our approach reverse engineers, and extends, results from [7] (also see Section
12.6 of [8] and references therein).

Definition 2.1 An eigenvector q of M is called acute if qT c 6= 0. An eigenvalue λ of M is called
acute if at least one eigenvector corresponding to λ is acute. An eigenvector (resp., eigenvalue)
which is not acute is called perpendicular.

In what follows, we will write d = QT c.

Lemma 2.2 Let α < β be acute eigenvalues of M such that there is no acute eigenvalue in (α, β).
Then the equation

n∑
i=1

d2i
λi − λ

= 0 (15)

has a unique solution λ̃ in (α, β). Further, λ̃ is an eigenvalue of PMP and there is a corresponding
eigenvector of PMP which is a linear combination of acute eigenvectors of M .

Proof. The expression on the left-hand side of (15) has a singularity at each acute eigenvalue; the
choice of α and β shows that there is indeed a unique solution in (α, β).

For the second statement of the proof, note that (15), evaluated at λ̃, can be written as

0 = dT (Λ− λ̃I)−1d = cTQ(Λ− λ̃I)−1QT c = wT c, (16)

where

w = Q(Λ− λ̃I)−1QT c., (17)

Clearly, w is a linear combination of acute eigenvectors of M and that w ∈ H, and therefore
Pw = w. So

(M − λ̃I)w = Q(Λ− λ̃I)QTw = QQT c = c,

and therefore
PMPw = PMw = λ̃Pw = λ̃w,

as desired.

Notes: (1) the lemma provides an algorithmic recipe for constructing the eigenvector w, given λ̃.
(2) The expression in (15) is sometimes referred to as the secular polynomial. (3) The computation
of a zero of the secular polynomial in a given interval (α, β) can be performed by e.g. using a
Newton-Raphson approach or simple golden section (or binary) search.

Lemma 2.3 Let α be an eigenvalue of M , V α the set of columns of Q with eigenvalue α, and
A = A(α) denote the acute members of V α. If |A| > 0, then we can construct |A| − 1 eigenvectors
of PMP corresponding to eigenvalue α, each of which is a linear combination of elements of A and
is orthogonal to c.
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Proof: Write m = |A|, and let H be the m ×m Householder matrix [8] corresponding to dA, i.e.
H is a symmetric matrix with H2 = Im such that

HdA = (‖dA‖2, 0, ..., 0)T ∈ Rm.

Let QA be the n×m submatrix of Q consisting of the columns corresponding to A, and define

W = QAH. (18)

Then cTW = dTAH = (‖dA‖2, 0, ..., 0). In other words, the columns of the submatrix Ŵ consisting

of the last m− 1 columns of W are orthogonal to c. Denoting by Ĥ the submatrix of H consisting
of the last m− 1 columns of H, we therefore have

Ŵ = QAĤ, and

PMPŴ = PQΛQT Ŵ = PQΛQTQAĤ = αPQAĤ = αŴ .

Finally, Ŵ T Ŵ = ĤT Ĥ = Im, as desired.

Now suppose that
α1 < α2 < . . . < αq

denote the distinct acute eigenvalues of M (possibly q = 0). Let p denote the number of columns
of Q which are perpendicular eigenvectors. Writing mi = |A(αi)| > 0 for 1 ≤ i ≤ q, we have that

n =

q∑
i=1

mi + p.

(p.1) Using Lemma 2.2 we obtain q−1 eigenvectors of PMP , each of which is a linear combination of
acute eigenvectors among Q. Any eigenvalue of PMP constructed in this manner is different
from all acute eigenvalues of M .

(p.2) Using Lemma 2.3 we obtain, for each i, a set of mi− 1 eigenvectors of PMP , orthogonal to c
and with eigenvalue αi, each of which is a linear combination of elements of A(αi). In total,
we obtain n− q − p eigenvectors of PMP .

(p.3) Let p denote the number of perpendicular vectors among Q. Any such vector v (with eigen-
value λ, say) by definition satisfies PMPv = PMv = λPv = λv.

By construction, all eigenvectors of PMP constructed as per (p.1) and (p.2) are distinct. Those
arising in (p.3) are different from those in (p.1) and (p.2) since no column of Q is a linear combi-
nation of other columns of Q. Thus, altogether, (p.1)-(p.3) account for n− 1 distinct eigenvectors
of PMP , all of them orthogonal to c, by construction. Finally, the vector c itself is an eigenvector
of PMP , corresponding to eigenvalue 0.

2.1 Repeated projection

Let C be an r × n matrix of rank r. Here we show how to construct an eigenvalue-eigenvector
decomposition Q̃Λ̃Q̃T of the projected quadratic P̃MP̃ , where P is the projection matrix onto
H = {x ∈ Rn : CTx = 0}, such that

(i) n− r of the columns of Q̃ are contained in H, and
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(ii) the remaining r columns of Q̃ form a basis for the linear space spanned by the rows of C.

The case r = 1 was handled in the previous section and here we complete the general case.

Proceeding inductively, assume that the construction (i)-(ii) has been carried out using the first
k rows of C, obtaining a decomposition M = Q̄Λ̄Q̄T which satisfies (i) and (ii) with k = r. Without
loss of generality assume that the first k columns of Q̄ form a basis for the linear space S̄ spanned
by the first k rows of C. Denote by c vector obtained by projecting the (k+ 1)st row of C onto the
n− k-dimensional hyperplane orthogonal to S̄, and then scaling so that ‖c‖2 = 1.

Suppose we use the construction described in section 2 using this vector c and the quadratic
Q̄Λ̄Q̄T . By construction, the first k columns of Q̄ are perpendicular, and any new eigenvector cor-
responding to case (p.1) above will be a linear combination acute columns of Q̄ and thus orthogonal
to the first k columns of Q̄. Properties (i)-(ii) now clearly follow.

3 Application of the S-Lemma

In this section we are given an h× n matrix N of full row rank, a vector x̂ ∈ Rn, a positive vector
(δ1, . . . , δn), a positive real β, and a vector v ∈ Rn. We describe a computationally practicable
approach to solving the problem

min xTMx + vTx, subject to

n∑
i=1

δi(xi − x̂i)2 ≥ β, and x = Nx̂. (19)

By rescaling, translating, and appropriately changing notation, the problem becomes of the form

min xTMx + vTx, subject to
n∑
i=1

x2i ≥ β, and Nx = 0. (20)

Let H = {x ∈ Rn : Nx = 0}, and let P be the n× n matrix corresponding to projection onto H.
Using the methodology in Section 2.1 we can produce a representation of PMP as Q̃Λ̃Q̃T , where
without loss of generality the last h eigenvectors in the representation are a basis for H. Thus,
problem (20) becomes, for appropriately defined ṽ,

min
n−h∑
j=1

λ̃jy
2
j + 2ṽT y, subject to

n−h∑
j=1

y2j ≥ β. (21)

Using the S-lemma, the value of this problem is at least γ, if and only if there exists µ ≥ 0 s.t.

n−h∑
j=1

λ̃jy
2
j + 2ṽT y − γ − µ

n−h∑
j=1

y2j − β

 ≥ 0 ∀ y ∈ Rn−h. (22)

A matrix form of the S-Lemma is known, but for completeness we carry out a direct derivation of
a condition equivalent to (22). Defining

W =


λ̃1 − µ ṽ1

λ̃2 − µ ṽ2

. . .
...

λ̃n−h − µ ṽn−h
ṽ1 ṽ2 . . . ṽn−h µβ − γ

,
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(22) holds if and only if

zT W z ≥ 0 ∀ z ∈ Rn−h+1 with zn−h+1 = 1. (23)

We claim that (23) holds if and only if W � 0. Clearly, W � 0 implies (23), and if there exists
z ∈ Rn−h+1 with zTWz < 0 then, without loss of generality, zn−h+1 6= 0, for if zn−h+1 = 0 then
resetting zn−h+1 = ε (small) we will still have zTWz < 0. Rescaling if necessary we will have
zn−h+1 = 1 thus contradicting (23).
Thus, we want to choose µ ≥ 0 so that W � 0, and this holds if and only if

µ ≤ λ̃i, 1 ≤ i ≤ n− h, and (24)

µβ − γ −
n−h∑
i=1

ṽ2i
λ̃i − µ

≥ 0. (25)

In other words, we want to choose µ ≥ 0 so as to maximize

µβ −
n−h∑
i=1

ṽ2i
λ̃i − µ

, (26)

subject to (24). This is a simple numerical task, since in the range 0 ≤ µ < min1≤i≤n−h λ̃i the
expression in (26) is concave in µ.

3.1 Interpolation

Suppose we consider a family of problems of the form (19) corresponding to different vectors x̂ of
the form x̂ = x̂(α) = p+αc, where p, c ∈ Rn, α ∈ [αD, αU ] and αD ≤ αU are given reals. We would
like to obtain a lower bound on the value of problem (19) which is valid for every α ∈ [αD, αU ].

Clearly, the quantities ṽi in eq. (21) are affine functions of α. We can therefore compute an
upper bound on each ṽ2i , valid on [αD, αU ]. Replacing each ṽ2i by its upper bound in (26) we can
proceed as above.

4 Generalized distances in the cardinality constraint case

Let a ∈ Rn, θ ∈ Rn with positive entries, and a0 a scalar. Let K < n be a positive integer, and let
ω ∈ Rn. Here we consider the problem

min
∑n

j=1 θj(xj − ωj)2, s.t. aTx = a0 and ‖x‖0 ≤ K. (27)

[Similar results hold for the version of the problem with cardinality constraint ‖x‖0 = K]. Problem
(27) is a special case of the problem F considered in this paper; consequently our general method-
ology applies. From an empirical perspective, these techniques produce extremely good bounds for
problem (27); see Table 1 in Section 6. In our experiments, the perspective formulation used in
[10] also does appear quite effective.

In this section, and Appendix A, we present a theoretical justification for why problem (27)
should be “easy.” We will assume, for conciseness, that θ > 0, although the results extend to the
general nonnegative case.

Using scaling and renaming, (27) becomes

min

n∑
j=1

(xj − ωj)2, s.t. aTx = a0 and ‖x‖0 ≤ K. (28)
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Clearly, the sum of the squares of the smallest n−K values |ωj | constitutes a (“naive”) lower bound
for problem (28). But it is straightforward to show that an exact solution to (28) is obtained by
choosing S ⊆ {1, . . . , n} with |S| ≤ K, so as to minimize

(a0 −
∑

j∈S ajωj)
2∑

j∈S a
2
j

+
∑
j /∈S

ω2
j . (29)

[We use the convention that 0/0 = 0.] Empirically, the naive bound mentioned above is very weak
since the first term in (29) is typically at least an order of magnitude larger than the second; and
it is the bound, rather than the set S itself, that matters.

We consider three cases; the first is practical and we theorize that an appropriate version of the
last two may prove likewise.

(a) aj = 1 for all j, ω ≥ 0 and aTω = a0. It can be shown, using (29), that the optimal set S
contains the indices of the K largest nonnegative ωj . Thus we recover the naive procedure
mentioned above, though again we stress that the first term in (29) dominates. If, instead
ω is a general vector (but still aj = 1∀ j) then there is a slightly more complex structure.
Namely, there exist disjoint sets of indices P1, P2 such that {j ∈ S : ωj ≥ 0} is the union of
P1, P2 and at most one more element, and, moreover, P1 and P2 are the sets of indices of the
|P1| largest (resp., |P2| smallest) nonnegative ωj other than the special index; and likewise
with the negative ωj . So the optimal set S is efficiently identified after sorting the ωj .

(b) All aj > 0, aTω = a0 and each aj takes one of two values, say u1 and u2; let U j = {1 ≤ i ≤
n : ai = uj}, for j = 1, 2. In this case we enumerate all possibilities for |S ∩ U j |, j = 1, 2. In
each enumerated case it is easy to minimize (29) as in (a). Extending this idea to the general
case, one can proceed in a way similar to that applied in [4] to the knapsack problem so as
to obtain a theoretically efficient approximation algorithm.

(c) A different theoretically good algorithm is given in Appendix A. There we prove the following
result. Assume that a ≥ 0 and ω ≥ 0, and let 0 < ε < 1. Let Dmin be the value of problem
(28). Then we can compute a vector x̂ with

∑
j aj x̂j = a0 and ‖x̂‖0 ≤ K, and such that

n∑
j=1

θj(x̂j − ωj)2 ≤ (1 + ε)Dmin,

in time at most O(L2(n4K2 + n2K4)ε−4), where L is the total number of bits needed to
represent ω and a.

4.1 Interpolation

Suppose we consider a family of problems of the form (27) corresponding to different vectors ω of
the form ω = ω(α) = p+αc, where p, c ∈ Rn, α ∈ [αD, αU ] and αD ≤ αU are given reals. We would
like to obtain a lower bound on the value of problem (27) which is valid for every α ∈ [αD, αU ] and
is tight when αU − αD is small.

Denote by d(S, α) the quantity in (29), thus we want to lower bound min{minS d(S, α) : αD ≤
α ≤ αU}. For a given S, d(S, α) is a convex function of α; further its derivative is

d′(S, α) = −
2
(
a0 −

∑
j∈S aj(pj + αcj)

)∑
j∈S ajcj∑

j∈S a
2
j

+ 2
∑
j /∈S

(pj + αcj)cj . (30)
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It is clear that for a given value of α we can compute a quantity g(α) such that g(α) ≤ d′(S, α) for
every subset S. For example, the second term in (30) is lower bounded by the sum of the n − k
smallest values 2(pj +αcj)cj , plus the sum of any additional 2(pj +αcj)cj that are negative. Then
by convexity, for any α

d(S, α) ≥ d(S, αD) + g(αD)(α− αD), and so

min
S
d(S, α) ≥ min

S
d(S, αD) + g(αD)(α− αD).

Note that the minima in this expression are precisely the values of problem (27) at ω = p+αc and
ω = p+ αDc, respectively. Finally,

min
αD≤α≤αU

min
S
d(S, α) ≥ min

S
d(S, αD) + min

αD≤α≤αU
{g(αD)(α− αD)}.

The quantity in the right-hand side is a lower bound with the properties we seek.

5 The overall procedure

Here we describe our implementation of the ideas described in the previous sections. As before,
we consider a given convex relaxation, i.e. a convex set Ω such that P ∩ K ⊆ Ω, and we have
already computed x∗ = argmin{F (x) : x ∈ Ω}. Unlike the description in the introduction, here
we assume that the vector c is arbitrary (e.g. not necessarily ∇F (x∗)). Our implementation uses
the cardinality constraint only in one specific context.

(a) Choose a subset (possibly empty) of constraints A=x = b= which hold as equalities for the
affine hull of the relaxation. Let r be the number of rows of A=.

(b) Compute the projection of the quadratic xTMx onto the null space of A=.

(c) Choose an arbitrary vector c; if r > 0 the vector is required to satisfy A=c = 0.

(d) Choose a finite set of values α(0) < α(2) < . . . α(J) (zero among them).

For any real α, denote by Hα the (n−r−1)-dimensional hyperplane orthogonal to c and orthogonal
to the rows of A=, which contains the point pα = x∗ + αc. Then

(e) For 0 ≤ j < J compute a lower bound, denoted by L̃(j), on

min
α(j)≤α≤α(j+1)

min{F (x) : ‖x− p‖2 ≥ D(pα), x ∈ Hα}.

(f) Write
Ũ = min{F (x) : x ∈ Ω, cTx ≥ α(J)‖c‖22 },

D̃ = min{F (x) : x ∈ Ω, cTx ≤ α(0)‖c‖22 },

We output

min

{
min

0≤j<J
L̃(j) , L̃ , Ũ

}
Notes: step (e) is performed using the interpolation results in Sections 3.1 and 4.1. When c =
∇F (x∗) step (2) can be skipped if we choose α(0) = 0.

12



6 Experiments

In our numerical experiments we considered the cardinality-constrained convex quadratic program-
ming problem over the unit simplex. In our application of the S-lemma we always used the Euclidean
ball as the bounding quadratic. In our experiments we considered, for our choice for c,

• The gradient at x∗,

• The ray from x∗ to its nearest feasible neighbor (i.e. the nearest nonnegative, point on the
unit simplex with at most K positive coordinates).

• An eigenvector corresponding to the minimum eigenvalue.

All three choices prove effective though the last one dominated; however more experiments are
needed to decide conclusively if any is best. As we will see, however, the linear algebra is always
quite fast and little is lost by trying all three variants and keeping the best bound.

We chose α(J) to be one-tenth as large as the maximum α such that the hyperplane Hα

intersects the unit simplex. In general α(1) may be negative (this is almost always the case except
when c is the gradient of F at x∗) and a similar criterion was applied in that case. Finally, we set
J = 100, and the quantities α(j) equally spaced between α(1) and α(100).

In table 1 we consider examples involving separable quadratics – the coefficients of the quadratics
where chosen randomly. Here, the row labeled “rMIPQP” indicates the value of the continuous re-
laxation of the standard MIP formulation, whereas “CpxLB50K” indicates the lower bound proved
by Cplex [6] after 50K nodes of branch-and-cut; “UB” indicates the value of the best solution found
by Cplex, and SLELB shows the lower bound proved by our procedure.

n = 1000, K = 50 n = 100, K = 50

rMIPQP 0.00124 0.00141 0.01229 0.01395
CpxLB50K 0.00124 0.00141 0.01410 0.01414

SLELB 0.01981 0.01969 0.02037 0.02108
CpxUB 0.02026 0.02047 0.02238 0.02416

Table 1: Separable quadratic examples

Table 2 considers problems with non-separable quadratics. Here we consider a problem with
n = 2443. The eigenvalue structure is real; however the obtained the eigenvectors by applying 5000
random rotations to an identity matrix, as a form of stress testing for our routines. In particular,
the quadratic is far from separable.

In this table “rQMIP” refers to the continuous relaxation of the (standard) mixed-integer programming
formulation for the problem which we described above (equations (6)-(8)). “PRSP” refers to the perspective
formulation; a conic formulation (see [9], [1], [10]). Finally, “SLE” is our approach. Column “UB” describes
upper bounds to the problems obtained by running the binary QMIP formulation.

As we can see from the table, the QMIP formulation is quite weak – its relaxation has the same value,
regardless of K. The perspective formulation is clearly stronger but the SLE is stronger still. At the same
time, our approach is quite cheap from a computational standpoint.

A salient question that is raised by these experiments is whether the bound obtained by the S-lemma
can be “naturally” embedded into a convex programming formulation for problem F .
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K rQMIP PRSP SLE UB rQMIP PRSP SLE
val val val sec sec sec

100 0.031 0.0466 0.0830 0.24 16.25 121.84 1.57
90 0.031 0.0485 0.0905 ? 15.77 104.11 1.36
80 0.031 0.0509 0.1001 ? 15.66 105.89 1.66
70 0.031 0.0540 0.1141 ? 15.77 100.56 1.71
60 0.031 0.0581 0.1324 ? 15.64 110.78 1.73
50 0.031 0.0638 0.1570 ? 15.80 111.28 1.72
40 0.031 0.0725 0.1975 ? 15.69 104.20 1.72

Table 2: Non-separable quadratic examples

7 Continuing work

There are many ways in which our approach can be extended and improved. First of all, we are considering
alternative quadratics as constraints (besides separable quadratics).

In particular, using a separable quadratic plus a sum of low-rank quadratic may be an effective way to
approximate difficult eigenvalue distributions. Additionally, we are exploring the use of the more general
version of the S-lemma, involving multiple quadratic constraints.

In Figure 4, point 1 is the initial solution to a relaxation. An application of the S-lemma yields the
bound proved by point 2. The ball centered on point 2 represents the minimum distance from point 2 to the
feasible region (of the non-convex program); we can now apply the S-lemma to lower bound the objective
subject to being on the exterior of the union of both balls. This yields the bound proved by point 3. We
stress that in the case of multiple quadratics the S-lemma is weaker; generally speaking such problems are
viewed as much harder.

2

1

3

Figure 4: Using multiple quadratics

From a technical perspective, the positive-semidefiniteness argument technique culminating in equation
(26) needs to be updated so as to handle multiple parameters µ (one corresponding to each quadratic
constraint); this is somewhat more complex than the single parameter case but early experimentation is
promising.

We also point out that our approach suggests a form of nonstandard branching. In Section 5 we described
the hyperplanes Hα(j) and a technique for obtaining a bound in the “sandwich” region between Hα(j) and
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Hα(j+1). We could also branch: in branch j, 1 ≤ j < J we branch by constraining the feasible points to lie
in this region – and in each branch we now choose a vector c orthogonal to that used to define the Hα(j).

Finally, we are primarily interested in very large scale instances, and cases where we use a quadratic
to (locally) approximate a convex (but not quadratic) objective function F ; the speed of the linear algebra
techniques as evidenced by Table 2 is encouraging in this context.

Acknowledgement. I thank Prof. C. van Loan for pointing out the material in Section 12.6 of [8]. I also
thank Paul Tseng, Kurt Anstreicher, Sam Burer and Gabor Pátaki for useful comments.
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A Appendix A

A.1 Combinatorial approximation algorithms

Here we consider the problem

Dmin = min

n∑
j=1

(xj − x∗j )2, s.t. aTx = a0 and ‖x‖0 ≤ K, (31)

where K > 0 is an integer, and a, x∗ ∈ Rn. We claim that

Dmin = min

 (a0 −
∑
j∈S ajx

∗
j )

2∑
j∈S a

2
j

+
∑
j /∈S

x∗2j : S ⊆ {1, . . . , n} and |S| ≤ K

 , (32)

where we use the convention that 0/0 = 0. To see that this is the case, let x̂ be any feasible solution to (31).
Let S ⊆ {1, . . . , n} with |S| ≤ K be such that x̂j = 0 for all j /∈ S, and define y ∈ Rn by yj = x∗j for j ∈ S
and otherwise yj = 0. Finally, we write H =

{
x ∈ Rn : aTx = a0

}
. There are two cases:

(a) aj = 0 for all j ∈ S. In this case we must have a0 = 0. Furthermore,

‖x̂− x∗‖22 =
∑
j /∈S

x∗2j +
∑
j∈S

(x∗j − x̂j)2 ≥
∑
j /∈S

x∗2j =
(a0 −

∑
j∈S ajx

∗
j )

2∑
j∈S a

2
j

+
∑
j /∈S

x∗2j = ‖y − x∗‖22;

note that y is feasible for (31).

(b) Suppose aj 6= 0 for at least index j ∈ S. The point v ∈ H with vj = 0 for all j /∈ S, and closest to y,
clearly has coordinates of the form

vj = yj + taj , j ∈ S
= 0, otherwise, (33)

for some scalar t; substituting, we obtain

t =
a0 −

∑
j∈S ajyj∑

j∈S a
2
j

=
a0 −

∑
j∈S ajx

∗
j∑

j∈S a
2
j

. (34)

Note that (x∗ − y)T (v − y) = 0. Thus, we have

‖x∗−x̂‖22 = (x∗−y+y−x̂)T (x∗−y+y−x̂) = ‖x∗−y‖22+‖y−x̂‖22 ≥ ‖x∗−y‖22+‖y−v‖22 = ‖x∗−v‖22,

by definition of v. Wsing the value for t as in (34), we have

‖x̂− x∗‖22 ≥
∑
j /∈S

x∗2j + t2
∑
j∈S

a2
j =

∑
j /∈S

x∗2j +
(a0 −

∑
j∈S ajx

∗
j )

2∑
j∈S a

2
j

.

In summary, in both cases (a) and (b) we have that the right-hand side in (29) is a lower bound for Dmin.
The converse statement is similarly proved.

We next show how to approximate the minimum in (29). In order to simplify the discussion, we will assume
a number of restrictions; the general case can be handled with a somewhat more complex construction. We
will show that, given 0 < ε < 1, the quantity Dmin can be approximated with a multiplicative error of (1+ε)
in time O(L2(n4K2 + n2K4)ε−4), where L is the total number of bits needed to represent x∗ and a.
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Restrictions:
(1) We assume that

∑
j ajx

∗
j = a0; thus for any S ⊆ {1, · · · , n},

a0 −
∑
j∈S

ajx
∗
j =

∑
j /∈S

ajx
∗
j .

(2) For aj ≥ 0 and x∗j ≥ 0, for all j.

Now we turn to the approximation scheme. Suppose first that a0 = 0. Then a candidate for Dmin is

min

∑
j /∈S

x∗2j : |S| ≤ K, aj = 0 ∀ j ∈ S

 ,

which is easily computed. In the remainder we will assume that we want to approximate the right-hand side
of (29) with the added stipulation that aj 6= 0 for at least one index j ∈ S. Likewise, suppose that the set
Z = {j : ajx

∗
j = 0} has cardinality at least n−K. Then, the sum of the n−K smallest x∗2j , over j ∈ Z, is

a candidate for Dmin.

In what follows, therefore, we will approximately compute the minimum value
(
∑

j /∈S ajx
∗
j )2∑

j∈S a
2
j

+
∑
j /∈S x

∗2
j over

sets S with |S| ≤ K, aj > 0 for at least one index j ∈ S, and ajx
∗
j > 0 for at least one index j /∈ S – such a

set S will be called legal.

Now, suppose that |{j : x∗j = 0}| ≥ K. Then, clearly, Dmin = 0, so we will assume that fewer than K
indices j are such that x∗j = 0.

Denote by 0 < Xmin (resp., Xmax) the sum of the K smallest (resp., largest) x∗j . Denote by Pmin the
smallest positive value ajx

∗
j , and by Pmax the sum of the largest n −K values ajx

∗
j . Let 0 < ε < 1. The

above discussion implies that for any legal set S, without loss of generality,

Xmin ≤
∑
j /∈S

x∗2j ≤ Xmax.

Thus, defining

H =
logXmax − logXmin

log(1 + ε)
= O

(
logXmax − logXmin

ε

)
(for ε small enough), (35)

for any legal S there exists an integer 0 ≤ h < H such that

Xmin(1 + ε)h ≤
∑
j /∈S

x∗2j ≤ Xmin(1 + ε)h+1. (36)

Note: the quantity H is polynomial on the size of the input data. Similarly, defining

Q =
logPmax − logPmin

log(1 + ε)
= O

(
logPmax − logPmin

ε

)
(37)

for any legal S there exists an integer 0 ≤ q < Q such that

Pmin(1 + ε)q ≤
∑
j /∈S

ajx
∗
j ≤ Pmin(1 + ε)q+1; (38)
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again the quantity Q is polynomially sized. (36) and (38) suggest the following enumerational procedure.
For 0 ≤ h < H and 0 ≤ q < Q, define:

P(h, q) : v(h, q) = max
S

∑
j∈S

a2
j (39)

s.t.
∑
j /∈S

x∗2j ≤ Xmin(1 + ε)h+1 (40)

∑
j /∈S

ajx
∗
j ≤ Pmin(1 + ε)q+1 (41)

S legal. (42)

Then, we have:

Lemma A.1

min
h,q

{
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

v(h, q)

}
≤ (1 +O(ε))Dmin.

We will be interested in an approximate version of problem P(h, q) – rather than approximating the
obje‘ctive (39) we will instead produce superoptimal solutions that slightly violate (40) and (41). We will see
that this will enable us to efficiently approximate Dmin. To this effect, let us denote by w(h, q) the quantity
inside the brackets in the statement of Lemma (A.1). We have:

Lemma A.2 Suppose that for every 0 ≤ h < H and 0 ≤ q < Q, there is a set S̄(h, q) such that

v(h, q) ≤
∑

j∈S̄(h,q)

a2
j , (43)

∑
j /∈S̄(h,q)

x∗2j ≤ Xmin(1 + ε)h+2, and (44)

∑
j /∈S̄(h,q)

ajx
∗
j ≤ Pmin(1 + ε)q+2. (45)

Then, writing w(h, q) =
∑
j∈S̄(h,q) a

2
j , we have:

(1 + ε)−2 min
h,q

(
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

v(h, q)

)
≤

min
h,q

(
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

w(h, q)

)
≤

min
h,q

(
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

v(h, q)

)
.

Proof. Since, for 0 ≤ h < H and 0 ≤ q < Q, w(h, q) ≥ v(h, q) the second inequality easily follows. For the
other, let 0 ≤ h∗ < H and 0 ≤ q∗ < Q be such that

Xmin(1 + ε)h
∗+1 +

(Pmin(1 + ε)q
∗+1)2

w(h∗, q∗)
= min

h,q

{
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

w(h, q)

}
.

Note that by definition of H, when h∗ = H−1 we can tighten the right-hand side of (44) to Xmin(1+ε)h
∗+1.

Similarly when q∗ = Q− 1. Hence, when h∗ = H − 1 and q∗ = Q− 1 we have that S̄(h∗, q∗) is optimal for
(39)-(42); i.e. w(h∗, q∗) = v(h∗, q∗). In what follows we assume that h∗ < H − 1 or q∗ < Q− 1.
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In that case, writing h = min{h∗ + 1, H − 1} and q = min{q∗ + 1, Q− 1} we have that S̄(h∗, q∗) is certainly
feasible for P(h, q), and therefore w(h∗, q∗) ≤ v(h, q), and thus

Xmin(1 + ε)h
∗+1 +

(Pmin(1 + ε)q
∗+1)2

w(h∗, q∗)
≥ Xmin(1 + ε)h

∗+1 +
(Pmin(1 + ε)q

∗+1)2

v(h, q)

≥ (1 + ε)−2

(
Xmin(1 + ε)h+1 +

(Pmin(1 + ε)q+1)2

v(h, q)

)
.

Next, we turn to the (approximate) computation of the v(h, q). We would like to simplify this problem so
as to remove constraint (42). Note that if the value of problem (39)-(41) is positive then the optimal set
satisfies one of the two requirements for legality (aj > 0 for at least one index j ∈ S). And if not, then there
is no legal set S satisfying (40)-(41). Consequently, we only need to guarantee that ajx

∗
j > 0 for at least

one j /∈ S. A simple expedient to obtain this guarantee is to enumerate every possible index j with this
property. In summary, we have:

Corollary A.3 The computation of v(h, q) can be reduced to at most n problems of the form

max
∑
j

a2
jzj (46)

s.t.
∑
j

x∗2j (1− zj) ≤ r1,
∑
j /∈S

ajx
∗
j (1− zj) ≤ r2 (47)

∑
j

zj ≤ K, zj = 0 or 1, ∀ j (48)

for appropriate values r1, r2.

This corollary handles the exact version of P(h, q), but it is easily adaptable to the approximation version
we seek, as follows. Given h and q, if for any index j we have aj > Pmin(1 + ε)q+1, then in problem P(h, q)
we must have j ∈ S (and, likewise, if Xmin(1 + ε)h+1 > 1 and K < n then P(h, q) is infeasible). This
means that the quantities r1, r2 in (47) are nonnegative. Similarly, we can assume that r1 and r2 are always
at least as large as any of the left-hand side coefficients in in (47). As a consequence, we have that if we
were to compute, for each problem (46)-(48), a solution which

• is feasible for (48) and superoptimal, and

• satisfies the constraints in (47) using right-hand sides r1(1 + ε) and r2(1 + ε), respectively,

then we will obtain a set S̄(h, q) as in Lemma A.2. In what follows, therefore, we will focus on problems of
the form (46)-(48) from a superoptimality/approximate feasibility perspective. We will show that each such
task can be carried out in time O((n3K2+nK4)ε−2); thus, altogether, we obtain an (1+O(ε))-approximation
to Dmin in time O(HQ(n4K2 +n2K4)ε−2); using our definition of H and Q this is O(L2(n4K2 +n2K4)ε−4),
where L is the total number of bits needed to represent x∗ and a .

Thus, we consider the problem

w(K) = max

n∑
j=1

wjzj , (49)

s.t.

n∑
j=1

aij(1− zj) ≤ ai0, i = 1, 2 (50)

n∑
j=1

zj ≤ K, z ∈ {0, 1}n. (51)
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Here, the vectors a1, a2 are integral (and here we allow them to take negative values) and K ≤ n is an
integer. Without the cardinality constraint (51) this problem is closely related to the so-called 2-knapsack
problem studied by Magazine [11] (essentially, they are equivalent). In [11] it is shown that no FPTAS exists
for the 2-knapsack problem unless P = NP. The proof in [11] can be adapted to show the same result for
problem (49)-(51). Our approach to (49)-(51) does not yield a FPTAS – it yields superoptimal but slightly
infeasible solutions, as per the discussion above.

The following constructions likely (we assume) amount to folklore, but we include them for completeness.

Lemma A.4 Let 0 < ε < 1. There is an algorithm of complexity O((n3K2 + nK4)ε−2) which produces a
vector ẑ ∈ {0, 1}n with

∑n
j=1 zj ≤ K and such that

(i)
∑
j wj ẑj ≥ w(K),

(ii)
∑
j aij ẑj ≤ ai0 + ε maxj |aij |, for i = 1, 2.

Proof. To prove the result we consider a closely related problem, where constraint (51) is replaced with

n∑
j=1

zj = J, z ∈ {0, 1}n. (52)

where 0 ≤ J ≤ K is an integer. Denote by J2(J) the problem consisting of (49), (50) and (52), and let
v(J) denote its value. Given such a problem, and given 0 < ε < 1, we modify it as follows (where α > 0 is
a parameter to be fixed later).

• Without loss of generality, assume that maxj |a1j | = maxj |a2j | = M , say.

• Let P be the largest integer such that 2P ≤M . Choose integer p smallest such that 2P−p ≤ nα.

• For i = 1, 2, and 0 ≤ j ≤ n, define âij = baij/2pc.
Using these constructions, consider the problem:

v′(K) = max

n∑
j=1

wjzj , (53)

s.t.

n∑
j=1

âij(1− zj) ≤ âi0, i = 1, 2 (54)

n∑
j=1

zj = J, z ∈ {0, 1}n. (55)

This problem can be solved in time O(J n1+2α) (using dynamic programming) since the choice of p guarantees
that âij ≤ 2nα for all i and j. Let ẑ be an optimal solution. Since, for all i and j, aij ≤ 2pâij + 2p, it follows
that for i = 1, 2,

n∑
j=1

aij ẑj ≤ ai0 + 2p(n− J) ≤ ai0 +
2P+1

nα
(n− J) ≤ ai0 +

2(n− J)M

nα
, (56)

by definition of M and P . Now suppose we choose α such that nα = 2(n−J)/ε. Then ẑ satisfies (ii), and the
complexity of the algorithm is O(J(n− J)2n/ε2). To prove (i) note that any feasible solution for (49)-(51)
is feasible for (53)-(55).

A Appendix B

A.1 NP-hardness

Here we outline a proof that a problem of the form

min
{
g(x) : Cx ≥ 0, xTx ≥ θ

}
(57)
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where g : Rn → R is a positive-semidefinite quadratic, C is a matrix and θ > 0, is strongly NP-hard. We will
show that the Vertex Cover problem (given an undirected graph, find a minimum-cardinality set of vertices
that meet all edges) can be reduced to (57).

To this effect, let G be a graph with vertex-set {1, 2, . . . , n} and edge-set E. Let M = n5. Consider the
problem with variables x = (x0, x1, . . . , xn):

g∗ = min M(x0 − 1)2 +

n∑
i=1

xi (58)

s.t. xi + xj ≥ 0 ∀ {i, j} ∈ E (59)

xi − x0 ≤ 0, −xi − x0 ≤ 0, i = 1, . . . , n, x0 ≥ 0, (60)

x0 ≥ 0, (61)
n∑
j=0

x2
j ≥ n+ 1. (62)

We have:

Lemma A.1 Let S∗ be a minimum cardinality vertex cover of G. Then dg∗e = 2|S∗| − n.

Proof. Consider the vector defined by x̂0 = 1 and, for j ≥ 1, x̂j = 1 if j ∈ S∗ and x̂j = −1 otherwise. This
vector is feasible for (59)-(62) and has objective value 2|S∗| − n.

For the opposite direction, let x̃ be an optimal solution to (58)-(61). Write x̃0 = 1 + ε. Since Mε2 ≤
2|S∗|−n ≤ n it follows that ε ≤ n−2. (60), (61) imply (n+1)(1+ε)2 ≥ n+1, so ε ≥ 0. Let µ = min1‘≤i≤n |x̃i|.
Using (62) we have

n+ 1 ≤ n(1 + ε)2 + µ,

so µ ≥ 1− 2nε (for n large enough). By (59) it follows that the set S = {j : x̃j ≥ 1− 2nε} is a vertex cover.
Moreover, the objective value of x̃ is at least

Mε2 + |S|(1− 2nε)− (n− |S|)(1 + ε) > 2|S∗| − n− 1. (63)

Note: the above proof is easily modified so that the objective is positive-definite.
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