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Abstract

We analyze the asymptotic behavior of the Flow Deviation Method, first presented in 1971 by Fratta,
Gerla and Kleinrock, and show that when applied to packing linear programs such as the maximum
concurrent flow problem, it yields a fully polynomial-time approximation scheme.

1 Introduction

The maximum concurrent flow problem frequently arises in practical applications and has received much
attention due to its difficulty.

The input to the problem is a graph (directed or undirected) with capacities on its edges and a set of
multicommodity demands to be routed. The objective is to find a largest value Γ∗ > 0 such that a fraction Γ∗

of every demand can be simultaneously routed without exceeding the available capacities (possibly Γ∗ > 1).
In other words, we want to find a feasible flow with maximum throughput. A precise definition is given in
Section 2. An equivalent problem is the minimum congestion problem: here we must simultaneously route
100% of every demand so that the maximum load of any edge – the ratio of total flow to capacity – is
minimized. In the literature both problems are sometimes regarded as one and the same and are jointly
referred to as the “maximum concurrent flow problem”, but in this paper we will work with the maximum
throughput version.

This problem arises in telecommunications in many different versions (directed or undirected edges,
restrictions on the routings, etc.). Further, many algorithms for network design problems rely on solving
maximum concurrent flow problems in order to find a feasible routing.

What makes this problem especially noteworthy is that it gives rise to extremely difficult linear programs
– instances of a size and type relevant to applications often prove beyond the reach of state-of-the-art linear
programming codes.

These two facts have spurred a long line of research on alternative algorithms for the maximum concurrent
flow problem, in particular, approximation algorithms. Given the nature of the problem, in a sense an ideal
approximation algorithm would be one whose precision can be controlled. Given ε > 0, a fully polynomial
polynomial-time approximation scheme is one that estimates Γ∗ within relative error ε, and whose worst-case
complexity grows polynomially in ε−1 and in the size of the graph.

The first such algorithm was given by Shahrokhi and Matula [SM91] in the late 80’s, and it applied to
the minimum congestion problem. [SM91] introduced a “potential” function that exponentially penalizes
the load on any edge, so that the approximate minimization of the potential function yields a flow whose
maximum load is provably near-optimal. To carry out the approximate optimization of the potential function
∗This research was partially funded by NSF awards NCR-9706029, CDA-9726385 and 29132-5538 (CORC)
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[SM91] used what amounts to a Frank-Wolfe scheme (see [DW61], [FM68], [FW56]). The overall algorithm
was proved to have a worst-case complexity bound that grows proportional to ε−7 (as well as polynomially
on the size of the graph). The Shahrokhi-Matula algorithm can also be viewed as a Lagrangian relaxation
approach, where the capacity constraints are relaxed, and the violation of these constraints is penalized using
very special multipliers. These are exponential multipliers, which roughly stated arise in the Frank-Wolfe
scheme as the gradient of the potential function.

The Shahrokhi-Matula results catalyzed an intense and still active research effort. See [LMPSTT91],
[GK94], [GK95], [LR98], [PST91], [R95], [KP95]. This research primarily showed how to better use an
exponential potential function, still in the Frank-Wolfe Lagrangian relaxation framework, to obtain faster
algorithms for the minimum congestion problem, and generalizations. A logarithmic “sliding barrier” func-
tion, applied to the minimum congestion problem, is discussed in [VG97]. The analysis in [Y95] shows how
the exponential potential function naturally arises in the derandomization of probabilistic algorithms; the
algorithms for the maximum concurrent flow problem described in [GK98] and [F00] are related to the ideas
in [Y95].

The fastest of these algorithms have running time bounded bounded by ε−2 times a low-order polynomial
on the size of the graph and number of commodities. Altogether, the algorithms in [R95], [GK98] and [F00]
yield the best bounds for the maximum concurrent flow problem, but precisely which is “best” depends in a
complex manner on the number of vertices, edges and commodities. Experimental testing of these algorithms
has yielded implementations that are substantially more effective than commercial linear programming codes,
see [B99], [GOPS].

In 1971, Fratta, Gerla and Kleinrock [FGK71] proposed a general algorithmic scheme towards the solu-
tion of various optimization problems arising in telecommunications, among them that of finding a feasible
multicommodity flow, which is tantamount to solving a maximum concurrent flow problem. The approach
in [FGK71], which is quite different from those found in the references cited above, involves a simple idea
for increasing the throughput of a feasible flow while using a rational barrier function to prevent flows from
exceeding capacities, together with a Frank-Wolfe procedure that reduces the barrier function. A partial con-
vergence proof was presented in [FGK71]. Although the flow deviation method is well-known and frequently
used in the telecommunications community, it is poorly known in the algorithms community.

In this paper we show that the flow deviation method, properly implemented, yields an algorithm that
solves the maximum concurrent flow problem to relative error ε by solving O(ε−2m3k+m3k logm) minimum-
cost flow computations, where m and k are, respectively, the number of edges and commodities. The
algorithm we describe contains the critical algorithmic ideas in [FGK71] together with some refinements
designed to achieve the ε−2 performance. Without these refinements, the algorithm in [FGK71] can be
shown to converge in O(ρ2m5ε−3k) shortest path computations, where ρ is the width [PST91]. In contrast,
we note that the algorithm in [F00] requires O∗(ε−2m(k +m)) time.

2 Definitions

Consider a graph G with n vertices, and a capacity ue > 0 for each edge e. Suppose we are given a set of k
commodities, where for 1 ≤ j ≤ k, commodity j consists of a pair sj , tj of vertices and a demand amount
dj > 0. For 1 ≤ j ≤ k, let Pj denote the set of paths between sj and tj , and for any edge e let Pe,j denote
the subset of Pj consisting of those paths that contain e. The maximum concurrent flow problem is the linear
program

Γ∗ = max γ
(TF) s.t.

k∑
j=1

∑
p∈Pe,j

xp ≤ ue ∀ e, (1)

∑
p∈Pj

xp = γdj , 1 ≤ j ≤ k, (2)

0 ≤ xp ∀p. (3)

This definition and formulation apply whether the graph is directed or not. From the point of view of linear
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programming, this path-based formulation is not the most efficient – a flow formulation is more compact.
Note that for any commodity j a linear program over the constraints (2), (3) reduces to a shortest path
problem. Given ε > 0, an ε-approximate solution to TF is a flow x̂ with throughput γ̂, feasible for TF, such
that γ̂ ≥ (1− ε)Γ∗, i.e. γ̂ approximates Γ∗ within relative error at most ε.

We will say that a flow vector x is feasible if there exists a nonnegative value γ = γ(x) such that (x, γ)
is satisfies (1 - 3), in which case we will also say that x has throughput γ. Given a flow vector x, we will say
x has load

λ(x) .= max
e
λe(x) (4)

where for an edge e,

λe(x) .=

∑k
j=1

∑
p∈Pe,j xp

ue
(5)

is called the load of x on e. Thus x is feasible iff λ(x) ≤ 1, and we will say x is strictly feasible if λ(x) < 1.

Consider a problem of the form

min {F (x) : x ∈ Q} (6)

where Q ⊆ Rn is convex and F () is convex and differentiable over Q. The classical Frank-Wolfe procedure
solves this problem by generating a sequence {xt}, t = 1, 2, · · · contained in Q. At iteration t, the procedure
solves the convex program

min
{

[∇F (xt)]T v : v ∈ Q
}

(7)

with solution yt ∈ Q, and sets xt+1 = (1− σt)xt + σtyt = xt + σt(yt − xt) where 0 ≤ σt ≤ 1 is chosen so as
to minimize F ((1 − σt)xt + σtyt). σt is called the step-size. The Frank-Wolfe method is closely related to
Danzig-Wolfe decomposition, and to steepest-descent methods for unconstrained optimization.

For completeness, we state the minimum congestion problem. Given a graph and multicommodity de-
mands as in the maximum concurrent flow problem, the minimum congestion problem is the linear program

Λ∗ = min λ
s.t.

k∑
j=1

∑
p∈Pe,j

xp − ueλ ≤ 0 ∀ e, (8)

∑
p∈Pj

xp = dj 1 ≤ j ≤ k, (9)

0 ≤ xp ∀p. (10)

A simple analysis shows that Λ∗ = 1/Γ∗. In what follows, we will deal exclusively with the maximum
concurrent flow problem.

3 The central idea

In this section we describe the main idea in [FGK71].

Consider an instance of the maximum concurrent flow problem, and let x̂ be strictly feasible with through-
put γ̂. To fix ideas, suppose that λ(x̂) = 1/2. Then 2x̂ is feasible and has throughput 2γ̂. In general,
y = 1

λ(x̂) x̂ is feasible and has throughput 1
λ(x̂) γ̂ > γ̂ (but also λ(y) = 1). Suppose that by using an appropri-

ate algorithmic construct we obtain, from y, a feasible vector z, still with throughput 1
λ(x̂) γ̂ but with loads

that are significantly lower than those of y. Then we would have a skeletal outline for an algorithm:

OUTLINE
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A1. Let x̂ be strictly feasible, with throughput γ̂.

B1. Let y = 1
λ(x̂) x̂.

C1. Find a feasible z with throughput 1
λ(x̂) γ̂ and λ(z) substantially smaller than λ(y). Reset x̂ ← z and

γ̂ ← 1
λ(x̂) γ̂, and go to B1.

Thus, each execution of B1 increases throughput while C1 “spreads out” the flow. Next we describe a
concrete implementation of C1.

Let ψ : [0, 1)→ [0,+∞) satisfy the properties

(i) In the range 0 ≤ t < 1, ψ(t) is increasing, continuous and convex,

(ii) ψ(t) → +∞ as t→ 1−.

Then one way to accomplish C1 is to define, for any strictly feasible x,

Ψ(x) =
∑
e

ψ(λe(x)) (11)

and to choose z as the solution to

min
{

Ψ(x) : x a feasible flow with γ(x) =
γ̂

λ(x̂)

}
(12)

In fact, by property (ii) of ψ the optimal solution to the optimization problem (12) “should” have maximum
load smaller than λ(x̂). Note, however, that in view of our construction of y in step B1, Ψ(y) is undefined
(because λ(y) = 1), and in general, it may be the case that Ψ(x) is undefined for any x ∈ 1

λ(x̂) γ̂P . Thus,
we must amend Step B1 slightly: to obtain y, we scale up x̂ by a factor slightly smaller than 1

λ(x̂) . Further,
it may not be strictly necessary to minimize Ψ – rather, we should decrease it from the value Ψ(y). Our
algorithmic scheme is now:

Basic Algorithm

A2. Initialization. Let x̂ be strictly feasible with throughput γ̂.

B2. Magnification. Set y = µx̂, where 1 < µ < 1
λ(x̂) is a parameter.

C2. Barrier reduction. Find a feasible z with throughput µγ̂ such that Ψ(z) is sufficiently smaller than
Ψ(y). If no such z exists, STOP. Otherwise, reset x̂← z and γ̂ ← µγ̂, and go to B2.

The algorithm implicit in Steps A2 - C2 is the main contribution in [FGK71]; found in pp. 112(bott.)–114.
It significantly differs from algorithms found in the references cited above. Other ingredients in [FGK71] are:

1. The barrier function ψ(x) = x
1−x ,

2. A Frank-Wolfe procedure to carry out the barrier reduction step C2,

3. A choice for the parameter µ in B2 that provides a sufficiently rapid increase in throughput, and

4. A provably good choice for the starting point x̂ in A2.

The particular implementation we describe below differs from that in [FGK71] in two aspects:

• Our Frank-Wolfe iterations are minimum-cost flow problems, as opposed to shortest path computations,
and
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• In C2 we may carry out several Frank-Wolfe iterations (i.e. several gradient steps) whereas [FGK71]
uses a single iteration.

If A2 - C2 is implemented using shortest path computations only and single Frank-Wolfe iterations in C2,
the resulting algorithm can be shown to converge to an ε-approximate solution in O(ρ2m5ε−3k) shortest path
computations [R01], where ρ is the width parameter [PST91]. Finally, we note that in [FGK71] the term
“flow deviation method” appears to refer to the Frank-Wolfe procedure itself; however it has since become
synonymous with the entire scheme A2 - C2.

4 The algorithm

In this section we describe our implementation of A2 - C2. We will use the same notation as in Section 2.
We let q be the smallest positive integer such that 2−q ≤ ε.

Algorithm FD

Step 0. (Initialization.) To each edge e of the graph assign the length u−1
e . For 1 ≤ j ≤ k, let zj denote

the flow that carries dj units along the shortest path between st and tj under this metric, and let z denote
the multicommodity flow (z1, z2, · · · , zk). Set x0 = 1

2λ(z)z and t = 0.

Step 1. Set yt = 1− 1
2 (1−λ(xt))

λ(xt) xt.

Step 2. (Frank-Wolfe procedure.) Write v0 = yt and γ = γ(yt).

For h = 0, 1, · · · Do:

A.h For 1 ≤ j ≤ k, let wh,j denote the solution to the minimum-cost flow problem where we send γdj
units of flow from sj to tj and each edge e has cost [∇Ψ(vh)]e and capacity ue. Let wh = (wh,1, · · · , wh,k)
denote the resulting multicommodity flow.

B.h Set vh+1 = (1− σh)vh + σhw
h where 0 ≤ σh ≤ 1 is chosen so as to minimize Ψ((1− σh)vh + σhw

h).

C.h If Ψ(vh)−Ψ(vh+1) < Ψ(vh)2

128(Ψ(vh)3+m)
, exit loop: set t← t+ 1, xt ← vh+1 and go to Step 3.

End

Step 3. If λ(xt) ≥ 1− ε
2m , or if Ψ(xt) ≥ m2q+2, terminate algorithm. Otherwise, and go to Step 1.

End.

4.1 Analysis of Algorithm FD

Given γ > 0 denote

Ψ∗(γ) = min {Ψ(x) : x feasible with γ(x) = γ} . (13)

In order to show the correctness of the algorithm, we first state the following theorem whose proof is
deferred:

Theorem 4.1 Consider an execution of the For loop in Step 2, with input yt. Suppose the loop exits at
iteration h. Then

Ψ(vh) ≤ 2Ψ∗(γ(yt)). (14)
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Pending the proof of Theorem 4.1, the following sequence of lemmas establish the correctness and workload
of the algorithm.

Lemma 4.2 Let r be a nonnegative integer. (i) Suppose γ < (1 − 2−(r+1))Γ∗. Then Ψ∗(γ) < 2r+1m. (ii)
Suppose (1− 2−r)Γ∗ ≤ γ. Then 2r − 1 ≤ Ψ∗(γ).

Proof. (i) Consider x∗ feasible with throughput Γ∗. Then u = γ
Γ∗x

∗ has throughput γ and satisfies Ψ(u) ≤
mΨ( γ

Γ∗ ) < 2r+1m. (ii) is proved in a similar way.

Lemma 4.3 Let 0 < τ < 1, and suppose that an iterate xt in Step 3 satisfies λ(xt) ≥ 1− τ
2m . Then

γ(xt) ≥ (1− τ)Γ∗ (15)

Proof. Assume by contradiction that (15) does not hold. Let x∗ be feasible with throughput Γ∗. Then
u = γ(xt)

Γ∗ x∗ has throughput γ(xt), and satisfies

λ(u) < 1− τ. (16)

As a result

Ψ(u) < m(τ−1 − 1). (17)

Given the value of λ(xt), we also have

Ψ(xt) ≥ 2m
τ
− 1, (18)

which together with (17) contradicts Theorem 4.1.

Lemmas 4.2(i) and 4.3 imply:

Corollary 4.4 Upon termination of Algorithm FD, we have a feasible flow with ε-optimal throughput.

Now we turn to the complexity of Algorithm FD. First we have:

Lemma 4.5 The vector x0 has throughput at least Γ∗

2m .

Proof. This result is implied by weak linear programming duality, but a direct proof follows. Denote by L∗

the sum, over all commodities, of the shortest path lengths in Step 0. If x is any multicommodity flow we
have

mλ(x) ≥ L∗. (19)

Clearly λ(z) ≤ L∗. Consequently,

1
λ(z)

≥ 1
mλ(x)

. (20)

Thus 1
λ(z) ≥

Γ∗

m , and by construction of x0, the result follows.

In what follows, for integral 0 ≤ r we will denote by Phase r of the algorithm the set of those iterations
t with (1 − 2−r)Γ∗ ≤ γ(xt) < (1 − 2−(r+1))Γ∗. Note that a given Phase r might be empty, and that the
algorithm might perform iterations of Phase r with r > q.

Lemma 4.6 (i) For 0 < r ≤ q, the number of iterations t in Phase r is O(m). (ii) The number of iterations
in Phase 0 is O(m logm). (iii) The total number of iterations in Phases q + 1, q + 2, · · · is O(m).
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Proof. By Lemma 4.3, for r ≥ 0 if γ(xt) < (1− 2−(r+1))Γ∗ we have λ(xt) < 1− 2−r

4m . Consequently,

γ(xt+1) = γ(yt) =
1− 1

2 (1− λ(xt))
λ(xt)

γ(xt) (21)

=
1
2

(1 +
1

λ(xt)
)γ(xt) (22)

> (1 +
2−r

8m
)γ(xt). (23)

(i) Suppose 0 < r. By definition we started Phase r with throughput at least (1−2−r)Γ∗. Thus, (23) implies
that this Phase will perform O(m) iterations, as desired.

(ii)This follows as (i), using Lemma 4.5.

(iii) Consider an iteration t during Phase r with r > q. Since the algorithm has not yet terminated, we
can replace (23) with the stronger condition γ(yt) > (1 + 2−q

8m )γ(xt), and again we obtain that there are
altogether at most O(m) iterations in Phases q + 1, q + 2, · · ·.

The next lemmas analyze the complexity of each execution of Step 2.

Lemma 4.7 Consider an iteration t of Step 1, and let e be any edge. Then 1− λe(yt) ≥ 1−λe(xt)
2 .

Proof. We have that λe(yt) = 1+λ(xt)
2λ(xt) λe(x

t). Since by definition λe(xt) ≤ λ(xt), the result follows.

Lemma 4.8 Consider an iteration t of Step 1 during Phase r. Then Ψ(yt) ≤ O(m2min{r,q}).

Proof. Suppose first that r > 0. Then by Theorem 4.1 and respectively, Lemma 4.2 (for the case r ≤ q) and
the second termination criterion in Step 3 (for the case r > q) we have that Ψ(xt) ≤ O(m2min{r,q}). To
obtain the desired result, we will show Ψ(yt) = O(Ψ(xt)). To see this, consider the contributions of an edge
e to Ψ(xt) and to Ψ(yt). These are, respectively, λe(x

t)
1−λe(xt) and λe(y

t)
1−λe(yt) . By Lemma 4.7, the denominator in

the second expression is at least half of that in the first. To compare the numerators, note that since this is
an iteration during Phase r > 0, λ(xt) ≥ 1− 2−r ≥ 1/2 and consequently λe(yt) = 1+λ(xt)

2λ(xt) λe(x
t) ≤ 3

2λe(x
t).

Hence Ψ(yt) = O(Ψ(xt)), as desired.

Suppose instead that r = 0. We always have (again by Theorem 4.1 and by the choice of x0) that
Ψ(xt) = O(m). If λ(xt) ≥ 1/2 the Lemma follows as in the previous paragraph. If instead λ(xt) < 1/2, then
each edge e will satisfy λe(yt) ≤ 3/4 and thus Ψ(yt) = O(m).

Lemma 4.9 Let 0 ≤ r. The number of iterations of A.h-C.h in an execution of Step 2 during Phase r is
O(22 min{r,q}m2).

Proof. We will show that if more than O(22 min{r,q}m2) iterations h achieve

Ψ(vh+1)−Ψ(vh) < − Ψ(vh)2

128(Ψ(vh)3 +m)
, (24)

then we will reach a value of Ψ smaller than Ψ∗, a contradiction. Thus, consider an iteration h where (24)
holds. Suppose first that

Ψ(vh)3 ≥ m. (25)

In this case, the recursion (24) can be abstracted as

zh+1 − zh ≤ −c 1
zh
,

where c > 0 is a constant. This recursion has the property that it reduces zh by a factor of 2 in O(z2
h)

iterations. Thus, using Lemma 4.8, we obtain that there are at most O(22 min{r,q}m2) iterations of A.h-C.h
where (25) holds.
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In the remainder of the proof we handle the iterations with Ψ(vh)3 < m. If r > 0 then using Lemma
4.2(ii) we conclude that each iteration satisfying (24) decreases Ψ by Ω(1/m), and consequently there are
at most O(m5/3) such iterations (a tighter analysis is possible but not needed). This concludes the proof if
r > 0. Finally, if r = 0 then just as in the previous line we conclude that in at most O(m5/3) iterations we
obtain Ψ(vh) ≤ 1. By Lemma 4.5, γ(x0) ≥ Γ∗

2m , and a variation of the analysis in Lemma 4.2 shows that
any time during Phase 0, Ψ∗ ≥ 1

2m . We conclude that there are at most O( 1
1/2m ) = O(m) iterations h with

Ψ(vh) < 1.

Corollary 4.10 The total number of Frank-Wolfe iterations A.h over the course of Algorithm FD is O(m3ε−2+
m3 logm).

In the next section we prove Theorem 4.1. In Section 4.3 we show how to replace the line-search in step
B.h with a provably good step-size rule that requires O(1) time.

4.2 Proof of Theorem 4.1

Consider an iteration h of the Frank-Wolfe procedure, corresponding to input vector yt. For simplicity, write
γ = γ(yt). For 0 ≤ σ ≤ 1, write

g(σ) .= Ψ( (1− σ)vh + σwh) = Ψ( vh + σ(wh − vh)). (26)

Then g is convex, g(0) = Ψ(vh),

g′(0) = [∇Ψ(vh)]T · (wh − vh), and (27)

g(σ) = g(0) + g′(0)σ +
1
2
g′′(α)σ2, (28)

where 0 < α < σ (2nd order Taylor expansion). By choice of wh in A.h, the right-hand side of (27) cannot
decrease if we replace wh with any other feasible flow with throughput γ. In particular, if we use a flow w∗

with throughput γ and such that Ψ(w∗) = Ψ∗(γ), we obtain

g(σ)− g(0) ≤ [∇Ψ(vh)]T · (w∗ − vh)σ + 1
2g
′′(α)σ2. (29)

which, since Ψ is convex, implies:

g(σ)− g(0) ≤ (Ψ∗(γ)−Ψ(vh))σ +
1
2
g′′(α)σ2. (30)

Next we will bound the quadratic term in (30). We have

g(α) =
∑
e

ψ(λe(vh) + σ[λe(wh)− λe(vh)]), (31)

and consequently

g′′(α) =
∑
e

(λe(wh)− λe(vh))2

(1− λe(vh)− α[λe(wh)− λe(vh)])3
(32)

Since both vh and wh are feasible, (λe(wh)− λe(vh))2 ≤ 1. Further, 1
(1−x)3 < 8( x

1−x )3 + 8 for all 0 ≤ x < 1.
Thus, from (32) we get that

g′′(α) ≤ 8([Ψ(vh + α(wh − vh)]3 +m). (33)

If σ is chosen so that

Ψ(vh + σ(wh − vh)) ≤ Ψ(vh), (34)

then (33) and the convexity of Ψ imply g′′(α) ≤ 8(Ψ(vh)3 +m), and substituting in (30) we obtain:

g(σ)− g(0) =
Ψ(vh + σ(wh − vh))−Ψ(vh) ≤ (Ψ∗(γ)−Ψ(vh))σ + 8(Ψ3(vh) +m)σ2. (35)
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Inequality (35) holds for any 0 ≤ σ ≤ 1 that satisfies (34). In Step B.h we choose σ = σh so that the
left-hand side of (35) is minimized. Instead, let 0 ≤ µ < 1 be the argument that minimizes the quadratic
Q on the right-hand side of (35) (note: a simple check verifies the stated bounds on µ). We would like to
argue that Ψ(vh + σh(wh − vh)) − Ψ(vh) ≤ Q(µ). This will follow if we can argue that µ is such that (35)
holds at σ = µ; or, in other words, that σ = µ satisfies (34).

But note that for 0 ≤ σ small enough (34) holds by choice of wh (wh − vh is a descent direction). If
(35) holds for all 0 ≤ σ we are done. Otherwise (34) holds for some closed interval [0, σ̃] and does not hold
outside the interval. Since (35) holds with equality at 0, and Q′(0) < 0, clearly µ < σ̃, as desired.

Thus, from (35) we get (after a calculation to minimize the quadratic)

Ψ(vh+1)−Ψ(vh) =

Ψ(vh + σh(wh − vh))−Ψ(vh) ≤ − (Ψ∗(γ)−Ψ(vh))2

32(Ψ3(vh) +m)
. (36)

If Ψ(vh) > 2Ψ∗(γ) we therefore obtain

Ψ(vh+1)−Ψ(vh) ≤ − Ψ2(vh)
128(Ψ3(vh) +m)

. (37)

The theorem is proved.

4.3 Choosing the step-size

A key step in Algorithm FD is the choice of the step-size σh in Step B.h. We expect that from the point of
view of computational effectiveness, it will be best to actually carry out a numerical line-search to estimate
σh. In the rest of this section, we show how to instead choose a value for σh in O(1) time which nevertheless
preserves the theoretical properties of the algorithm.

One way to choose σ so as to minimize the quadratic Q(σ) introduced in the proof of Theorem 4.1, while
assuming Ψ(vh) > 2Ψ∗(γ), or in other words, to minimize

Q̂(σ) .= −Ψ(vh)
2

σ + 8(Ψ3(vh) +m)σ2 (38)

whose decrease was used in the proof of Theorem 4.1 to bound the decrease in Ψ itself. We have to show
that if we alter Algorithm FD to use this step-size (= Ψ(vh)

32(Ψ3(vh)+m)
) we still have a correct algorithm with

the same complexity bound.

In fact, we proved that as long as Ψ(vh) > 2Ψ∗(γ), choosing σ so as to minimize Q̂(σ) guarantees a
decrease in Ψ of at least Ψ2(vh)

128(Ψ3(vh)+m)
. Thus the validity of the algorithm is preserved. Further, Lemma 4.9

still applies (consider the first line in its proof). This shows that the complexity bound for Algorithm FD
still applies.

4.4 Comments on Algorithm FD

In [FGK71], the procedures and analysis are not pitched towards provably good approximation – this field
existed only in embryonic form in 1971. This is the primary cause for the differences between Algorithm FD
and that in [FGK71]. Nevertheless, the critical idea in [FGK71] is the key ingredient in Algorithm FD.

(i) The fact that the Frank-Wolfe iterations are minimum-cost flow problems is only needed in the para-
graph immediately following (32) so that we can guarantee λ(wh) ≤ 1. If we were to replace the
minimum-cost flow calls with shortest path calls, then instead we could only claim λ(wh) ≤ ρ, where
ρ is the width ([PST91] – in the context of this paper, the width of the problem is upper bounded
by the ratio of the largest demand dj to the smallest capacity ue). This results in an increase in
our complexity estimate by a factor of ρ2. The “trick” of using minimum-cost flow calls to avoid the
dependence on ρ is not new: it is used in [PST91] and [GK94]. Recent algorithms for the maximum
concurrent flow problem avoid the dependence on ρ while only resorting to shortest path calls ([GK98],
[F00]). We conjecture that a more refined version of our algorithm will achieve the same behavior.
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(ii) The algorithmic outline in [FGK71] uses a single Frank-Wolfe iteration in each Step 2. The algorithm
in this paper can be adapted so as to use single Frank-Wolfe iterations in each Step 2; it can be shown
[R01] that the dependence on ε of the adapted algorithm grows as O(ε−3). This adaptation entails a
finer tuning of the multiplier in Step 1.

(iii) The magnification factor 1− 1
2 (1−λ(xt))

λ(xt) used in Step 1 is as in [FGK71], except that the choice of the
parameter 1/2 is ours ([FGK71] only states that “a proper tolerance” should be used). In Step 0 our
choice for flow z is precisely the same as the choice in the initialization step in [FGK71]. We start
with x0 = 1

2λ(z)z, rather than with z
λ(z) , so that we can guarantee that Ψ(x0) = O(m) (as opposed to

O(m2)).

(iv) Our proof of Theorem 4.1, up to inequality (30), follows fairly closely a similar analysis in [FGK71](pp.
128 - 130). The latter part of our proof follows [FGK71] somewhat less closely. In particular, [FGK71]
does not analyze the quadratic term in (30), which is key to the overall complexity estimate. Finally,
our analysis prior to the proof of Theorem 4.1 is new.

(v) Algorithm FD is easily generalized to general packing linear programs [PST91].

(vi) [FGK71] points out that [DS69] contains some ideas similar to those in the Flow Deviation method,
although in less developed form. Courant [Cou43] has been credited with one of the earliest uses of
“potential” functions in the solution of systems of equations.

(vii) Some pointers for the reader who decides to tackle [FGK71]. Here we use the notation from [FGK71].
(a) The algorithm in pp. 113-114 is geared towards finding a feasible flow with throughput 1. This
includes the exit condition in Step 1. (b) Step 2, and the definition of the FD operator in page 110
inductively show the for n > 0 we always have σn < 1 and consequently REn+1 > REn. (c) There is
an error in the paper for the case n = 0: the exit condition should be σ0/RE0 ≤ 1.

4.5 Computational outlook

Despite the clear theoretical inferiority of the worst-case complexity bound we proved for algorithm FD as
compared to e.g. that in [F00] or [GK98], practitioners who employ the flow deviation method swear by its
effectiveness.

There are two likely advantages of the rational potential function used in FD over the (implicit) exponen-
tial potential in [F00], [GK98], or the Karmarkar-like function in [VG97]: one is better numerical stability,
and the other is independence from ε. By this we mean that the potential function in FD does not include
ε in its definition – in fact, the entire algorithm only uses ε in the termination conditions. This may lead to
“cleaner” implementations that are easier to tune.

Our on-going computational research (see [B99], and the forthcoming [B01]) has focused on explicitly
seeking to reduce potential as a means to accelerate convergence (again as opposed to [F00], [GK98] where
the potential function is implicit) and we feel that this is an effective paradigm, in that we can leverage the
considerable machinery developed by the nonlinear programming community. In this context, exploring the
rational potential function from a computational standpoint will be a topic for our future work.
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