
Eigenvalue techniques for convex objective, nonconvex
optimization problems

Daniel Bienstock, Columbia University, New York

November, 2009

Abstract

Consider a minimization problem given by a nonlinear, convex objective function over a
nonconvex feasible region. Traditional optimization approaches will frequently encounter a
fundamental difficulty when dealing with such problems: even if we can efficiently optimize
over the convex hull of the feasible region, the optimum will likely lie in the interior of a high
dimensional face, “far away” from any feasible point. As a result (and in particular, because
of the nonconvex objective) the lower bound provided by a convex relaxation will typically be
extremely poor. Furthermore, we will tend to see very large branch-and-bound (or -cut) trees
with little or no improvement over the lower bound.

In this work we present theory and implementation for an approach that relies on three
ingredients: (a) the S-lemma, a major tool in convex analysis (b) efficient projection of quadratics
to lower dimensional hyperplanes, and (c) efficient computation of combinatorial bounds for
the minimum distance from a given point to the feasible set, in the case of several signficant
optimization problems.

Altogether, our approach strongly improves lower bounds at a small computational cost,
even in very large examples.
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1 Introduction

We consider problems with the general form

(F) : F̄ := min F (x), (1)
s.t. x ∈ P, (2)

x ∈ K. (3)

Here,

• F (x) is a convex function; in this abstract, a convex quadratic, i.e. F (x) = xT Mx + vT x
(with M � 0 and v ∈ Rn).

• P ⊆ Rn is a convex set over which we can efficiently optimize F ,

• K ⊆ Rn is a non-convex set with “special structure”.

• In the applications we consider, n can be quite large.

We assume that a given convex relaxation of the set described by (2), (3) is under consideration.
For example, when dealing with a particularly complex set K, this may be the only sensible relax-
ation that we are able to produce. Or, it may be the only computationally practicable relaxation
we have, especially in the case of large n. Or, as it is often in the case of practice, the relaxation
is one from which it is easy to quickly produce (perhaps, good) heuristic solutions to problem F .

Regardless of the case, one common fundamental difficulty is likely to be encountered: because
of the convexity of F , the optimum solution to a convex relaxation will frequently be attained in
the interior of a high-dimentional face of the relaxation, and far from the set K. Thus, the lower
bound proved by the relaxation will be weak (often, very weak) compared to F̄ . What is more,
if one were to rely on branch-and-cut (the major tool of modern mixed-integer programming) the
proved lower bound may improve little if at all when n is large, even after massive amounts of
branching and extremely long computational time.

This stalling of the lower bounding procedure is commonly encountered in practice and consti-
tutes a significant challenge, the primary subject of our study. We present a body of techniques
that are designed to alleviate this difficulty. After obtaining the solution x∗ to the given relaxation
for problem F , our methods will use techniques of convex analysis, of eigenvalue optimization, and
combinatorial estimations, in order to quickly obtain a valid lower on F̄ which is strictly larger
(often, significantly so) than F (x∗).

We will describe an important class of problems where our method, applied to a “cheap” but
weak formulation, produces bounds comparable to or better than those produced by much more
sophisticated formulations, and at a small fraction of the computational cost.

To motivate our discussion, we introduce two significant examples.

Cardinality constrained optimization problems. Here, for some integer 0 < K ≤ n, K =
{x ∈ Rn : ‖x‖0 ≤ K }, where the zero-norm ‖v‖0 of a vector v is used to denote the number of
nonzero entries of v. A classical example of such a constraint arises in portfolio optimization (see
e.g. [2]) but modern applications involving this constraint arise in statistics, machine learning [12],
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and, especially, in engineering and biology [18]. Problems related to compressive sensing have an
explicit cardinality constraint (see www.dsp.ece.rice.edu/cs for material). Also see [7].

The simplest canonical example of problem F is as follows:

F̄ = min F (x), (4)
s.t.

∑
j

xj = 1, x ≥ 0, (5)

‖x‖0 ≤ K. (6)

This example is significant because (a) one can show that this problem is strongly NP-hard, and
(b) it does arise in practice, exactly as stated. Note that modulo a simple change in variables, the
linear constraint in (5) is simply a stand-in for a general non-homogeneous linear equation with
nonzero coefficients.

In spite of its difficulty, this example already incorporates the fundamental difficulty alluded to
above: clearly, conv

{
x ∈ Rn

+ :
∑

j xj = 1, ‖x‖0 ≤ K
}

=
{
x ∈ Rn

+ :
∑

j xj = 1
}
. In other words,

from a convexity standpoint the cardinality constraint disappears. Moreover, if the quadratic in F
is positive definite and dominates the linear term, then the minimizer of F over the unit simplex
will be an interior point, i.e., a point with all coordinates positive (and in real-life examples, of
similar orders of magnitude); whereas K � n in practice.

Multi-term disjunctive inequalites. Consider vectors vectors ci ∈ Rn and reals βi (1 ≤ i ≤ m).
We are interested in a non-convex set of the form

m⋂
i=1

Ki, where Ki = {x ∈ Rn : ciT x ≤ βi or ciT x ≥ βi + 1}, for 1 ≤ i ≤ m. (7)

More generally, we are interested in (and our methodology applies to) cases where each Ki is
a disjunction among multiple polyhedral sets. The classical split cuts [6] provide an example of
disjunctions based on inequalities as in (7), with integral ci and βi. However, disjunctive inequalities
naturally arise in numerous settings as valid strong statements on a combinatorial set (see e.g. [3],
[4]). Note that in general, given a polyhedral set P, the convex hull of the intersection of P and
a set (7) will have exponentially many facets (even the case m = 1 is not trivial). Thus, most
likely, one would work with a relaxation of P ∩

⋂m
i=1Ki. Moreover, in the typical application of

disjunctions (or split cuts) the disjunctions are found sequentially as a result of a cutting procedure.
For simplicity, consider the case m = 1 – the very first disjunction is added because it is violated

by the solution to an initial relaxation. But thinking about the resulting geometry in the case of a
(strictly) convex F (x), it is clear that, quite possibly, argmin{F (x) : x ∈ conv(P ∩ K1)} will still
violate the first disjunction. For m > 1 the likelihood of such a “stall” in the cutting procedure
increases.

To the extent that disjunctive sets are a general-purpose technique for formulating combinatorial
constraints, the methods in this paper apply to a wide variety of optimization problems, and should
prove effective when the objective is strictly convex.

1.1 Techniques

Our methods embody two primary techniques:
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(a) The S-lemma (see [19], also [1], [5], [14]). Let f, g : Rn → R be quadratic functions and
suppose there exists x̄ ∈ RN such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only if there exists µ ≥ 0 such that (f − µg)(x) ≥ 0 for all x.

Remark: here, a “quadratic” may contain a linear as well as a constant term. The S-lemma can
be used as an algorithmic framework for minimizing a quadratic subject to a quadratic constraint.
Let p, q be quadratic functions and let α, β be reals. Then

min{p(x) : q(x) ≥ β} ≥ α, iff ∃µ ≥ 0 s.t. p(x) − α − µq(x) + µβ ≥ 0 ∀x. (8)

In other words, the minimization problem in (8) can be approached as a simultaneous search for
two reals α and µ ≥ 0, with α largest possible such that the last inequality in (8) holds. The
S-lemma is significant in that it provides a good characterization (i.e. polynomial-time) for a a
usually non-convex optimization problem. See [13], [15], [16], [17], [20] and the references therein,
in particular regarding the connection to the trust-region subproblem.

(b) Consider a given nonconvex set K. We will assume, as a primitive, that (possibly after
an appropriate change of coordinates), given a point x̂ ∈ Rn, we can efficiently compute a strong
(combinatorial) lower bound for the Euclidean distance between x̂ and the nearest point in P ∩K.
We will make this assumption more precise in Section 1.2, but we will show that this is indeed the
case for the cardinality constrained case (see Section 1.4; in the full paper we will show how to
do so for the multi-term disjunctive case). Roughly speaking, it is the “structure” of a set K of
interest that makes the assumption possible. In the rest of this section we will denote by D(x̂) our
lower bound on the minimum distance from x̂ to P ∩ K.

We can put together (a) and (b) into a simple template for proving lower bounds for F̄ :

S.1 Compute an optimal solution x∗ to the given relaxation to problem F .
S.2 Next we obtain the quantity D(x∗).
S.3 Finally, we apply the S-lemma as in (8), using F (x) for p(x), and (the exterior of) the ball
centered at x∗ with radius D(x∗) for q(x)− β.
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Figure 1: A simple case.

For a simple application of this template, con-
sider Figure 1. This shows an instance of problem
(4)-(6), with n = 3 and K = 2 where all coordi-
nates of x∗ are positive. The figure also assumes
that D(x∗) is exact – it equals the minimum dis-
tance from x∗ to the feasible region. If we min-
imize F (x), subject to being on the exterior of
this ball (in other words, if we apply the S-lemma
using F (x) as the objective and the ball as the

constraint) the optimum will be attained at y.
Thus, F (y) is a valid lower bound on F̄ ; we have F (y) = F (x∗) + λ̃1R

2, where R is the radius
of the ball and λ̃1 is the minimum eigenvalue of the restriction of F (x) to the unit simplex. Note:
λ̃1 is lower bounded by the smallest eigenvalue of F (x).
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Now consider the example in Figure 2, corresponding to the case of a single disjunctive inequal-
ity. Here, xF is the optimizer of F (x) over the affine hull of the set P. A straightforward application
of the S-Lemma will yield as a lower bound (on F̄ ) the value F (y), which is weak – weaker, in fact,
than F (x∗). The problem is caused by the fact that xF is not in the relative interior of the convex
hull of the feasible region. In summary, a direct use of our template will not work.

1.2 Adapting the template

In order to correct the general form of the difficulty depicted by Figure 2 we would need to solve a
problem of the form:

V := min
{
F (x) : x− x∗ ∈ C, (x− x∗)T (x− x∗) ≥ δ2

}
(9)

where δ > 0, and C is the cone of feasible directions (for P) at x∗. We can view this as a ’cone
constrained’ version of the problem addressed by the S-Lemma. Clearly, F (x∗) ≤ V ≤ F̄ with the
first inequality in general strict. If we are dealing with polyhedral sets, (9) becomes (after some
renaming):

min
{
F (ω) : Cω ≥ 0, ωT ω ≥ δ2

}
(10)

where C is an appropriate matrix. However, we have (proof in full paper):

Theorem 1.1 Problem (10) is strongly NP-hard.

x *

y x
F

Figure 2: The simple template fails.

We stress that the NP-hardness result is not sim-
ply a consequence of the nonconvex constraint in
(10) – without the linear constraints, the problem
becomes polynomially solvable (i.e., it is handled by
the S-lemma, see the references).

To bypass this negative result, we will adopt
a different approach. We assume that there is a
positive-definite quadratic function q(x) such that
for any y ∈ Rn, in polynomial time we can produce
a (strong, combinatorial) lower bound D2

min(y, q) on
the quantity

min{q(y − x) : x ∈ P ∩ K}.

In Section 1.4 we will address how to produce the
quadratic q(x) and the value D2(y, q) when K is de-
fined by a cardinality constraint (and a similar construct exists in the disjunctive inequalities case).

Let c = ∇F (x∗) (other choices for c discussed in full paper). Note that for any x ∈ P ∩ K,
cT (x− x∗) ≥ 0. For α ≥ 0, let pα = x∗ + αc, and let Hα be the hyperplane through pα orthogonal
to c. Finally, define

V (α) := min{F (x) : q(x− pα) ≥ D2(pα, q), x ∈ Hα}, (11)

and let yα attain the minimum. Note: computing V (α) entails an application of the S-lemma,
“restricted” to Hα. See Figure 3. Clearly, V (α) ≤ F̄ . Then

• Suppose α = 0, i.e. pα = x∗. Then x∗ is a minimizer of F (x) subject to x ∈ H0. Thus
V (0) > F (x∗) when F is positive-definite.
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• Suppose α > 0. Since cT (yα − x∗) > 0, by convexity V (α) = F (y) > F (x∗).

Thus, F (x∗) ≤ infα≥0 V (α) ≤ F̄ ; the first inequality being strict in the positive-definite case. [It
can be shown that the “inf” is a “min”]. Each value V (α) incorporates combinatorial information
(through the quantity D2(pα, q)) and thus the computation of minα≥0 V (α) cannot be obtained
through direct convex optimization techniques. As a counterpoint to Theorem 1.1, we have (proof
in full paper):

Theorem 1.2 In (10), if C has one row and q(x) =
∑

j x2
j then V ≤ infα≥0 V (α).

In order to develop a computationally practicable approach that uses these observations, let 0 =
α(0) < α(1) < . . . < α(J), such that for any x ∈ P ∩ K, cT x ≤ α(J)‖c‖2

2. Then:

Updated Template

1. For 0 ≤ i < J , compute a value Ṽ (i) ≤ min{V (α) : α(i) ≤ α ≤ α(i+1) }.
2. Output min0≤i<J Ṽ (i).

Bounding ellipsoid in

α

pα

H
α

H
α

H
α

x*

yα

c

minimizer of F(x) in

H

Figure 3: A better paradigm.

The idea here is that if (for all i)
α(i+1) − α(i) is small then V (α(i)) ≈
V (α(i+1)). Thus the quantity out-
put in (2) will closely approximate
minα≥0 V (α).

In our implementation, we com-
pute Ṽ (i) by appropriately interpolat-
ing between V (α(i)) and V (α(i+1)) (de-
tails, full paper). Thus our approach
reduces to computing quantities of the
form V (α). We need a fast procedure
for this task (since J may be large).
Considering eq. (11) we see that this
involves an application of the S-lemma, “restricted” to the hyperplane Hα. An efficient realization
of this idea, which allows for additional leveraging of combinatorial information, is obtained by
computing the projection of the quadratic F (x) to Hα. This is the subject of the next section.

1.3 Projecting a quadratic

Let M = QΛQT be a n × n matrix. Here the columns of Q are the eigenvectors of M and
Λ = diag{λ1, . . . , λn} where the λi are the eigenvalues of M . We assume λ1 ≤ . . . ≤ λn. Let c 6= 0,
denote H =

{
x ∈ Rn : cT x = 0

}
, and let P be the projection matrix onto H. In this section

we describe an efficient algorithm for computing an eigenvalue-eigenvector decomposition of the
“projected quadratic” PMP . Note that if x ∈ H, xT PMPx = xT Mx. The vector c could be
dense (is dense in important cases) and Q could also be dense. Our approach reverse engineers,
and extends, results from [8] (also see Section 12.6 of [9] and references therein).

Clearly, c is an eigenvector of PMP (corresponding to eigenvalue 0). The remaining eigenvalues
λ̃1, . . . , λ̃n−1 are known to satisfy λ1 ≤ λ̃1 ≤ λ2 ≤ λ̃2 ≤ . . . ≤ λn−1 ≤ λ̃n−1 ≤ λn.

Definition 1.3 An eigenvector q of M is called acute if qT c 6= 0. An eigenvalue λ of M is called
acute if at least one eigenvector corresponding to λ is acute.

In (e.2) below we will use the convention 0/0 = 0.
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Lemma 1.4 Let α1 < α2 < . . . < αq be the acute eigenvalues of M . Write d = QT c. Then, for
1 ≤ i ≤ q − 1,

(e.1) The equation
∑n

j=1

d2
j

λj−λ = 0 has a unique solution λ̂i in (αi, αi+1).

(e.2) Let wi = Q(λ− λ̂iI)−1d. Then cT wi = 0 and PMPwi = λ̂iw
i.

Altogether, Lemma 1.4 produces q − 1 eigenvalue/eigenvector pairs of PMP . The vector in
(e.2) should not be explicitly computed; rather the factorized form in (e.2) will suffice. The root
to the equation in (e.1) can be quickly obtained using numerical methods (such as golden section
search) since the expression in (e.1) is monotonely increasing in (αi, αi+1).

A different construction, which handles the non-acute eigenvectors and the eigenvalues of M
with multiplicity greater than one, produces n − q + 1 additional distinct eigenvalues/eigenvector
pairs for PMP orthogonal to c which are also distinct from those obtained through Lemma 1.4
(details in full paper).

To conclude this section, we note that it is straightforward to iterate the procedure in this
section, so as to project a quadratic to hyperplanes of dimension less than n− 1. More details will
be provided in the talk and in the full paper.

1.4 Combinatorial bounds on distance functions

Here we take up the problem of computing strong lower bounds on the Euclidean distance from a
point to the set P ∩ K. In this abstract we will focus on the cardinality constrained problem, but
results of a similar flavor hold for the disjunctive inequalities case.
Let a ∈ Rn, b ∈ R, K < n be a positive integer, and ω ∈ Rn. Consider the problem

D2
min(ω, a) := min


n∑

j=1

(xj − ωj)2, : aT x = b and ‖x‖0 ≤ K

 . (12)

Clearly, the sum of smallest n − K values ω2
j constitutes a (“naive”) lower bound for problem

(12). But it is straightforward to show that an exact solution to (12) is obtained by choosing
S ⊆ {1, . . . , n} with |S| ≤ K, so as to minimize

(b−
∑

j∈S ajωj)2∑
j∈S a2

j

+
∑
j /∈S

ω2
j . (13)

[We use the convention that 0/0 = 0.] Empirically, the naive bound mentioned above is very weak
since the first term in (13) is typically at least an order of magnitude larger than the second; and
it is the bound, rather than the set S itself, that matters.

Suppose aj = 1 for all j. It can be shown, using (13), that the optimal set S has the following
structure: S = P ∪ N , where |P | + |N | ≤ K, and P consists of the indices of the |P | smallest
nonnegative ωj (resp., N consists of the indices of the |N | smallest |ωj | with ωj < 0). The optimal
S can be computed in O(K) time, after sorting the ωj . When ω ≥ 0 or ω ≤ 0 we recover the
naive procedure mentioned above (though again we stress that the first term in (13) dominates).
In general, however, we have:

Theorem 1.5 (a) It is NP-hard to compute D2
min(ω, a). (b) Let 0 < ε < 1. We can compute a

vector x̂ with
∑

j aj x̂j = b and ‖x̂‖0 ≤ K, and such that

n∑
j=1

(x̂j − ωj)2 ≤ (1 + ε)D2
min(ω, a),
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in time polynomial in n, ε−1, and the number of bits needed to represent ω and a.

In our current implementation we have not used the algorithm in part (b) of the Lemma, though
we certainly plan to evaluate this option. Instead, we proceed as follows. Assume aj 6= 0 for all j.
Rather than solving problem (12), instead we consider

min


n∑

j=1

a2
j (xj − ωj)2 : aT x = b and ‖x‖0 ≤ K

 .

Writing ω̄j = ajωj (for all j), this becomes min
{ ∑n

j=1(xj − ω̄j)2 :
∑

j xj = b and ‖x‖0 ≤ K
}
,

which as noted above can be efficiently solved.

1.5 Application of the S-Lemma

Let M = QΛQT � 0 be a matrix given by its eigenvector factorization. Let H be a hyperplane
through the origin, x̂ ∈ H, v ∈ Rn, δj > 0 for 1 ≤ j ≤ n, β > 0, and v ∈ Rn. Here we solve the
problem

min xT Mx + vT x, subject to
n∑

i=1

δi(xi − x̂i)2 ≥ β, and x ∈ H. (14)

By rescaling, translating, and appropriately changing notation, the problem becomes:

min xT Mx + vT x, subject to
n∑

i=1

x2
i ≥ β, and x ∈ H. (15)

Let P be the n× n matrix corresponding to projection onto H. Using Section 1.3 we can produce
a representation of PMP as Q̃Λ̃Q̃T , where the the nth eigenvector q̃n is orthogonal to H, and
λ̃1 = mini<n{λ̃i}. Thus, problem (15) becomes, for appropriately defined ṽ,

Γ := min
n−1∑
j=1

λ̃jy
2
j + 2ṽT y, subject to

n−1∑
j=1

y2
j ≥ β. (16)

Using the S-lemma, we have that Γ ≥ γ, iff there exists µ ≥ 0 s.t.

n−1∑
j=1

λ̃jy
2
j + 2ṽT y − γ − µ

n−1∑
j=1

y2
j − β

 ≥ 0 ∀ y ∈ Rn−1. (17)

Using some linear algebra, this is equivalent to

Γ = max

{
µβ −

n−1∑
i=1

ṽ2
i

λ̃i − µ
: 0 ≤ µ < λ̃1

}
. (18)

This is a simple numerical task, since in [0, λ̃1) the objective in (18) is concave in µ.

Remarks:
(1) Our updated template in Section 1.2 requires the solution of multiple problems of the form 18
(for different β and ṽ) but just one computation of Q̃ and Λ̃.
(2) Consider any integer 1 ≤ p < n− 1. When µ < λ̃1, the expression maximized in (18) is lower

bounded by µβ −
∑p

i=1
ṽ2

i

λ̃i−µ
−

∑n−1

i=p+1
ṽ2

i

λp+1−µ . This, and related facts, yield an approximate version of
our approach which only asks for the first p elements of the eigenspace of PMP (and M).
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1.5.1 Capturing the second eigenvalue

We see that Γ < λ̃1β (and frequently this bound is close). In experiments, the solution y∗ to
(15) often “cheats” in that y∗1 is close to zero. We can then improve on the bound if the second
projected eigenvalue, λ̃2, is significantly larger than λ̃1. Assuming that is the case, pick a value θ
with y∗21 /β < θ < 1.

(a) If we assert that y2
1 ≥ θβ then we can strengthen the constraint in (14) to

∑n
i=1 δi(xi− x̂i)2 ≥ γ,

where γ = γ(θ) > β. This is certainly the case for the cardinality constraint and for the disjunctive
inequalities case (details, full paper). So the assertion amounts to applying the S-lemma, but using
γ in place of β.

(b) Otherwise, we have that
∑n−1

i=2 y2
i ≥ (1 − θ)β. In this case, instead of the right-hand side of

(18), we will have

max

{
µ(1− θ)β −

n−1∑
i=2

ṽ2
i

λ̃i − µ
: 0 ≤ µ ≤ λ̃2

}
. (19)

The minimum of the quantities obtained in (a) and (b) yields a valid lower bound on Γ; we can
evaluate several candidates for θ and choose the strongest bound. When λ̃2 is significantly larger
than λ̃1 we often obtain an improvement over the basic approach as in Section 1.5.

Note: the approach in this section constitutes a form of branching and in our testing has proved
very useful when λ2 > λ1. It is, intrinsically, a combinatorial approach, and quite distinct from the
S-lemma and related problems (e.g. the trust region subproblem). It is thus not easily reproducible
using convexity arguments alone. Also see remark (2) of the previous section.

2 Computational experiments

For the sake of brevity, we describe a partial set of experiments (more in the talk and in the full
paper). The purpose of our experiments is to (a) investigate the speed of our numerical algebra
routines, in particular the projection of quadratics, for large n and large number of nonzeroes in
the quadratic, and (b) to study the strength of the bound our method produces.

We study problems of the form

min{xT Mx + vT x :
∑
j

xj = 1, x ≥ 0, ‖x‖0 ≤ K }.

The matrix M is given in its eigenvector/eigenvalue factorization QΛQT . To stress-test our linear
algebar routines, we construct Q as the product of random rotations: as the number of rotations
increases, so does the number of nonzeroes in Q, and the overall “complexity” of M .

In our experiments, we ran our procedure after computing the solution to the (diagonalized)
“weak” formulation

min{ yT Λy + vT x : QT x = y,
∑
j

xj = 1, x ≥ 0}.

We compare our bounds to those obtained by running the (again, diagonalized) perspective formu-
lation [10], [11], a strong conic formulation (here, λmin is the minumum λi):
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min λmin

∑
j

wj +
∑
j

(λj − λmin)y2
j

s.t. QT x = y,
∑
j

xj = 1

x2
j − wjzj ≤ 0, 0 ≤ zj ≤ 1 ∀ j, (20)∑
j

zj ≤ k, xj ≤ zj ∀ j,

x, w ∈ Rn
+.

For our experiments, we used Cplex 12.1 on a single-core 2.66GHz Xeon machine with 16 Gb of
physical memory, which was never exceeded, even in the largest examples.

For the set of tests in Table 1, we used n = 2443 and a vector or real-world eigenvalues from a
finance application. Q is the product of 5000 random rotations, resulting in 142712 nonzeros in Q
(and thus, not particularly large).

K rQMIP PRSP SLE rQMIP PRSP SLE
LB LB LB sec sec sec

200 0.031 0.0379 0.0382 14.02 59.30 5.3
100 0.031 0.0466 0.0482 13.98 114.86 5.8
90 0.031 0.0485 0.0507 14.08 103.38 5.9
80 0.031 0.0509 0.0537 14.02 105.02 6.2
70 0.031 0.0540 0.0574 13.95 100.06 6.2
60 0.031 0.0581 0.0624 15.64 111.63 6.4
50 0.031 0.0638 0.0696 13.98 110.78 6.4
40 0.031 0.0725 0.0801 14.03 104.48 6.5
30 0.031 0.0869 0.0958 14.17 104.48 6.8
20 0.031 0.1157 0.1299 15.69 38.13 6.9
10 0.031 0.2020 0.2380 14.05 43.77 7.2

Table 1: Examples with few nonzeroes

Here, rQMIP refers to the weak formulation, PRSP to the perspective formulation, and SLE to the
approach in this paper. “LB” is the lower bound produced by a given approach, and “sec” is the CPU
time in seconds. We see that that rQMIP is quite weak especially for smaller K. Both PRSP and SLE
substantially improve on rQMIP, though PRSP is significantly more expensive.

In Table 2 we consider examples with n = 10000 and random Λ. In the table, Nonz indicates the
number of nonzeroes in Q; as this number increases the quadratic becomes less diagonal dominant.

Nonz rQMIP PRSP SLE rQMIP PRSP SLE
in Q LB LB LB sec sec sec

5.3e+05 2.483e-03 1.209e-02 1.060e-02 332 961.95 57.69
3.7e+06 2.588e-03 1.235e-02 1.113e-02 705 2299.75 57.55
1.8e+07 2.671e-03 1.248e-02 1.117e-02 2.4e+03 1.3e+04 57.69
5.3e+07 2.781e-03 1.263e-02 1.120e-02 1.1e+04 8.5e+04 58.44
8.3e+07 2.758e-03 1.262e-02 1.211e-02 2.3e+04 1.4e+05 57.38

Table 2: Larger examples
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As in Table 1, SLE and PRSP provide similar improvements over rQMIP (which is clearly extremely
weak). Moreover, SLE proves uniformly fast – essentially, free compared to rQMIP.

In the examples in Table 2, the smallest ten (or so) eigenvalues are approximately equal, with larger
values after that. The techniques in Section 1.5.1 should extend to this situation in order to obtain an even
stronger bound – we hope to present results on this in the talk.

Also note that the perspective formulation quickly proves impractical. A cutting-plane procedure that
replaces the conic constraints in (20) with (outer approximating) linear inequalities is outlined in [10], [11]
and tested on random problems with n ≤ 400 (which we will also test in the full paper). Such a procedure
begins by solving rQMIP and then iteratively adds the inequalities; or it could simply solve a formulation
consisting of rQMIP, augmented with a set of pre-computed inequalities. In either case the running time
will be slower than that for rQMIP. In our initial experiments with this linearized approximation, we found
that (a) it can provide a very good lower bound to the conic perspective formulation, (b) it can run signif-
icantly faster than the full conic formulation, but, (c) it proves significantly slower than rQMIP, and, in
particular, still significantly slower than the combination of rQMIP and SLE.

The discussion regarding the perspective formulation is of interest because it is precisely an example of
the paradigm that we consider in this paper: a convex formulation for a nonconvex problem with a convex
objective. In our tests involving large cases, and using branch-and-cut, the lower bound proved by the per-
spective formulation exhibited the expected stalling behavior. Figure 3 concerns the K = 70 case of Table
1 where we ran the mixed-integer programming version of several formulations using Cplex 12.1 on a faster
machine (on which rQMIP requires 4.35 seconds and our method, 3.54 seconds, to prove the lower bound of
0.0574). The runs in the table used four parallel threads of execution.

formulation nodes time LB UB
QPMIP 124300 85320 0.0312 0.337

(2.75 sec/node)
PRSP-MIP 6100 85467 0 0.712

(56.04 sec/node)
LPRSP-MIP 39000 109333 0.0554 0.305

(11.21 sec/node) root 0.0540

Table 3: Detailed analysis of K = 70 case of Table 1

In Table 3, QPMIP is the weak formulation, PRSP-MIP is the perspective formulation [Comment:
on conic MIPs, Cplex appears to keep the lower bound fixed at 0 for a very long time]. LPRSP-MIP it the
linearized perspective version. The figures in parentheses indicate CPU seconds per branch-and-cut node.
“time” indicates the observed time (i.e. total CPU time will be, roughly, four times larger). Note the stalling
of the lower bound in LPRSP-MIP at a value strictly smaller than the 0.0574 bound SLE proved with
no branching. QPMIP with all Cplex cuts suppressed (not shown in the table) yielded an upper bound
of 0.281 in 200 seconds – this underlines the point concerning fast heuristics that we made in the introduction.

Our thechniques apply to the solution computed by the perspective formulation (after projecting out the
auxiliary variables). This approach can only be desirable if there is a fast and tight approximation to the
perspective formulation. However, Table 2 suggests that for large problems rQMIP is already too expensive.
It might simply better to approximate its solution, quickly, perhaps using a first-order method (and apply
our techniques to the resulting solution vector). We plan to investigate these issues in the full paper.

A more significant focus of our upcoming work concerns problems in complex applications where aux-
iliary binary variables cannot be naturally employed. A major issue that we plan to investigate is how to
incorporate our techniques within branch-and-cut, so that the bound proved at each node strictly improves
on the bound at its parent node – no stalling. In this context, the single most important idea that we will
investigate and report on concerns branching based on eigenvector structure, along the lines of Section 1.5.1.
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