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Abstract

The precedence constrained production scheduling problem is the problem of scheduling
the performance of jobs over a number of scheduling periods subject to precedence constraints
among the jobs. The jobs can each be performed in a number of ways, and it also needs to be
determined which processing option (or options) is to be chosen for each job. There can also be
arbitrary side constraints among these variables. The side constraints typically represent either
period capacity constraints, or profile constraints on the aggregate product produced in each
period.

These problems, as they occur in the mining industry, typically have a small number of
side constraints - often well under 100, but may contain millions of jobs and tens of millions of
precedences. Thus despite the fact that the integrality gap is often small in practice, the LP
itself is beyond the practical reach of commercial software.

We present a new iterative lagrangian-based algorithm for solving the LP relaxation of this
problem. This algorithm can be proven to converge to optimality and in practice we have found
that even for problems with millions of variables and tens of millions of constraints, convergence
to proved optimality is usually obtained in under 20 iterations, with each iteration requiring
only a few seconds to solve with current computer hardware.

1 Introduction

1.1 Background

1.1.1 Problem Definition

The production scheduling problems with which we will concern ourselves are those in which, given
a collection of “jobs” and a number of “scheduling periods”, we need to decide which jobs should be
processed in which scheduling period(s); processing a job consumes resources that may be constrained
in each period and affects the profile of the products produced in each period, which may also be
constrained. Additionally we will make two further complicating assumptions:

1. Precedence relationships may exist among the jobs.

2. There may be more than one way of processing any given job.

1.1.2 The Open Pit Mine Scheduling Problem

The practical motivating problem behind our study is the open pit mine scheduling problem. The
open pit mine scheduling problem seeks to determine the optimal schedule for the extraction of
mineralized earth from an open pit mine. The principal structural constraint associated with open
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pit mining – known as the ”slope constraint” – is that for any point x in the orebody, for reasons
of structural stability a schedule may not extract x before it extracts an upward facing (generally)
circular cone that sits above x, i.e. that the slope of the resulting pit after x is extracted must not
exceed some given angle. (See [F06] for a more thorough description of the problem.)

In this model a “job” is the extraction of a unit of material, and the slope constraint is modeled
by precedence relationships between each unit and the units in its upward facing cone. There are,
moreover, a number of options as to what to do with the unit of material once it has been extracted.
It may be sent to waste (this can happen even if the material has positive value and can be blended
to produce a saleable product, in order to conserve valuable capacity in the processing plant), or it
may be processed in one of several possible ways.

The distinguishing feature of the mine scheduling problem is that the vast majority of the con-
straints are those that model the slope constraint as described. The number of “production planning”
constraints (i.e. resource capacity, product profile and similar constraints) is generally on the order
of the number of scheduling periods, which for strategic problems is usually small. Thus there may
be under 100 production planning constraints in a typical problem.

To obtain a reasonably accurate model of the slope constraint however, it is necessary that the
scheduling units not be overly large (typically no larger than 30 meters in any dimension), and in
any case it is desired to keep the unit sizes small in order to maintain selectivity. Moreover to
approximate a circular slope constraint via unit precedences typically requires a substantial number
of precedence constraints per unit (often 20 or more)1

Considering that a typical orebody can have a size that measures into the cubic kilometers,
there can be many orebodies that need to be simultaneously scheduled, and a schedule needs to be
produced for 10 to 20 periods, this can easily make for a problem with millions of variables and
tens of millions of precedence constraints. Thus despite the fact that in practice the integrality gap
between the integer programming solution and the linear programming relaxation is often small,
the linear programming problem itself is well beyond the reach of commercial linear programming
solvers.

1.1.3 Traditional Approaches in Mine Scheduling

The traditional approach to this problem is known as the “nested shells” method. This method,
which is based on the work or Lerchs and Grossman ([LG65]), is applicable to problems for which
the side constraints are comprised of a single capacity constraint for each period and the processing
method is fixed for each unit. It further assumes that any block of ore is defined by a single value
v, and that the objective value of that block in any period t is the present value in period 1 of v
obtained in period t subject to some discount rate.

In this method the problem is converted to one in which there is only one scheduling period, the
capacity constraints are ignored and the only decision is whether or not each unit of earth is to be
extracted. This problem can be solved efficiently yielding a collection C1 of units. If the coefficient
values of the units in the objective are monotonically increased then it can be shown that there
exists an optimal solution C2 to the new problem, for which C2 ⊇ C1. The standard method is
to penalize every unit by some constant λ times the capacity consumption of the unit (for some
chosen capacity), and then to increase λ parametrically. Repeating this procedure yields a sequence
of nested sets

Cn ⊇ Cn−1 · · ·C2 ⊇ C1 (1)

for which it can be shown that the inner sets have a higher average value per unit of capacity
consumption than the outer sets. For the purposes of present value optimization these shells thus
give a rough guide indicating that the inner shells should be extracted before the outer shells.

This is obviously a very rough approach, and it can be fairly useless when there are constraints
other than capacity constraints, or when there are multiple capacity constraints, or multiple pro-
cessing options. Moreover it is often the case that there is a huge jump in size between some set

1The reader can verify that if, for example, units are cubes and the maximum slope angle is 45◦, then the naive
model in which for each cube c there are five precedence cubes in the shape of a plus sign above c would yield a square
precedence cone rather than a circular precedence cone.
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and the next set in the sequence, and the algorithm can give no guidance as to how to break up the
difference between the sets into manageable chunks.

More recently, as commercial integer programming software has become more powerful, mine
scheduling software packages have emerged that aggregate units of earth into a small number of
large scheduling blocks in order to yield a mixed integer programming problem of tractable size.
Nevertheless the degree of aggregation that is required in order to obtain a solvable problem can be
enormous – combining thousands of units in the original formulation into a single aggregated unit –
which can compromise the validity and the usefulness of the solution.

Other heuristic approaches have appeared in the open mine planning literature (see [HC00] and
[F06] for an overview), but there is little that comes with a proof of optimality. Caccetta and Hill
([CH03]) have published a paper describing a branch and cut based algorithm designed for large
scale problems, but due to commercial confidentiality considerations they have not released details
of their method.

1.2 Overview

In this paper we will present a new algorithm for provably solving the linear programming relaxation
of the precedence constrained production scheduling problem. We will show that the precedence
constrained production scheduling problem can be reformulated as a problem in which all constraints
needed to model the slope constraint and the multiple processing options are of the form

xi ≤ xj . (2)

A problem in which all constraints are of this form is known as a “maximum weight closure
problem”, and can be solved as a minimum s–t cut problem ([P76] and others). Thus the mine
scheduling problem can be thought of as a minimum s–t cut problem with a small number of side
constraints. This structure makes the problem amenable to lagrangian based approaches, since by
dualizing the side constraints we are left with a min cut problem, for which the aforementioned sizes
are well within the reach of published algorithms.

The algorithm we will present iteratively solves a lagrangian relaxation, which it uses to generate
a “small” LP (with a number of variables and constraints on the order of the number of side
constraints, depending on the exact implementation), whose solution is in turn used to update the
lagrangian relaxation. The algorithm will be proved to converge, solving both the lagrangian and
the original LP.

In practice convergence is fast – often in ten iterations or less – and thus the algorithm is suited
to be embedded inside of a branch and bound algorithm to solve the original IP.

1.3 Roadmap

In Section 2 we will formally describe the precedence constrained production scheduling problem. We
will then describe a subclass of this problem which we refer to as the “Parcel Assignment Problem”.
In this subclass the decisions as to when the jobs are to be performed are aggregated to a small
number of “super” decisions, but the decisions as to how they are to be performed are left as is.

In mine planning terms the interpretation of the parcel assignment problem is as follows. We
aggregate the scheduling units into a small number of very large units so that a single extraction
decision is made in each period for each very large aggregated unit of earth, but we still make separate
processing decisions for each of the original units that are components of these large aggregated units.
Thus there are a small number of extraction decisions (and a small number of precedence constraints)
but there are still just as many processing decisions.

In Section 3 we show that the solution to the parcel assignment problem, despite having poten-
tially millions of variables, can be derived from the solution to a much smaller LP had we known
the values of a small set of optimal duals. These duals are unknown, but we use this observation to
derive a “guessing algorithm”, which when applied to the simpler problem described in [BDFG09]
is broadly similar to their algorithm. The algorithm guesses these duals in order to generate this
smaller LP, and then uses dual information from that smaller LP’s optimal solution to update its
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guess. We then prove the convergence of one version of this algorithm and prove a theorem that
indicates that its convergence is likely to be fast.

In Section 4 we return to the original precedence constrained production scheduling problem. In
Section 4.1 we show that precedence constrained production scheduling can be reformulated as a
min cut problem with the same number of side constraints.

Then in Section 4.2 we prove a theorem that is crucial to the application of the algorithm defined
with respect to the parcel assignment problem to the precedence constrained production scheduling
algorithm. This theorem states that given an extreme point solution x to a min cut problem with
k side constraints, x contains no more than k distinct fractional values. This acts as an analogue of
the parcel assignment problem result stating that the knowledge of a small number of optimal dual
values can be used to generate the full parcel assignment problem solution, and it allows us to apply
a variation of the same algorithm to the full precedence constrained production scheduling problem.

We will also show that a similar but more general result holds for all problems whose constraint
sets are totally unimodular matrices with the addition of side constraints, thus opening up the
possibility that a similar algorithm can be developed for min cost network flow problems plus side
constraints.

In Section 4.3 we motivate, define and prove convergence of the algorithm, and in Section 4.4
we prove several theorems that show a deep relationship between LP solutions and the lagrangian
solutions in order to shed further light on the algorithm’s convergence properties. Finally, in section
5 we present the results of computational experiments.

2 Definitions and Preliminaries

2.1 The Precedence Constrained Production Scheduling Problem

Definition 1 The Precedence Constrained Production Scheduling Problem is defined as follows:

Given a directed graph G = (N ,A), where the elements of N represent jobs, and the arcs A represent
precedence relationships among the jobs ((i, j) ∈ A means that job j can be performed no later than
job i).

Given R processing options for each job.

Given T scheduling periods.

Let yj,t ∈ {0, 1} represent the choice to process job j in period t.

Let xj,t,d ∈ [0, 1] represent the proportion of job j performed in period t, and processed accord-
ing to processing option, or “destination”, d

Let cT x be an objective function, and let Dx ≤ d be a collection of arbitrary “side” constraints.

The LP relaxation of the problem, which we will refer to as PCPSP, is as follows:

maximize cT x subject to:

t∑
τ=1

yi,τ ≤
t∑

τ=1

yj,τ , ∀(i, j) ∈ A, t = 1, . . . , T (3)

Dx ≤ d (4)

yj,t =
R∑

d=1

xj,t,d, ∀j ∈ N , t = 1, . . . , T (5)
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T∑
t=1

yj,t ≤ 1, ∀j ∈ N (6)

x ≥ 0

2.2 The Parcel Assignment Problem (PAP)

As mentioned, in the mining industry, a “job” is the extraction of a particular unit of earth. It is
often the case that for the purposes of defining the extraction schedule over periods of time on the
order of a year or more that it is acceptable for the units of earth considered to be somewhat coarse.
Thus block sizes of 30 × 30 × 30 m3 may be acceptable. But blocks of such a size can be highly
heterogeneous, and thus for the purposes of the processing decisions it is desired to subdivide these
large blocks into smaller units. These units are called “parcels” in the mining industry, and they
can be thought of as “sub-jobs”.

For the purposes of the model, the extraction of a portion of a unit of earth is treated as the
extraction of that portion of each parcel within the unit, but the processing decisions are separate
for each parcel. Allowing for parcels yields the following generalization of Definition 1.

Definition 2 The Precedence Constrained Production Scheduling Problem With Parcels is defined
as follows:

Given a directed graph G = (N ,A), where the elements of N represent jobs, and the arcs A represent
precedence relationships among the jobs.

For each job j ∈ N , given a set of parcels (sub-jobs) P (j)

Given R processing options for each parcel.

Given T scheduling periods.

Let yj,t ∈ {0, 1} represent the choice to perform job j in period t.

For each J ∈ N and j ∈ P (J), let xj,t,d ∈ [0, 1] represent the proportion of parcel j performed
in period t, and processed according to processing option, or “destination”, d

Let cT x be an objective function, and let Dx ≤ d be a collection of arbitrary “side” constraints.

The LP relaxation of the problem, which we will refer to as PCPSP-Parcel, is as follows:

maximize cT x subject to:

t∑
τ=1

yi,τ ≤
t∑

τ=1

yj,τ , ∀(i, j) ∈ A, t = 1, . . . , T (7)

Dx ≤ d (8)

yJ,t =
R∑

d=1

xj,t,d, ∀j ∈ P (J), J ∈ N , t = 1, . . . , T (9)

T∑
t=1

yj,t ≤ 1, ∀j ∈ N (10)

x ≥ 0
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For precedence constrained production scheduling problems that occur in the mining industry
some typical numbers are as follows:

• Typical number of periods : 10 – 20.

• Typical number of destinations : 2 or 3.

• Typical number of side constraints : 20 – 200.

• Typical number of blocks : 50, 000 – 5 million.

• Typical number of parcels : 1 million – 10 million.

• Typical number of precedences : 1 – 100 million.

These numbers indicate that the number of constraints of the form (7), (9) and (10) can be expected
to be very large. Let us consider however a variety of problem for which the number of parcels
remains large but the number of jobs is small (so that only the number of constraints (9) will be
large). The physical interpretation of such a problem as a mine scheduling problem would be that a
planner has somehow aggregated together the earth in the orebody into a small number of very large
units, and has determined that the extraction schedule can be assumed to be defined in terms of
those units. The planner however has made no predetermination as to how the original component
units and parcels within each of those units is to be processed. We will refer to problems of this
variety as “Parcel Assignment Problems” to emphasize that the principal difficulty is the assignment
of a processing option to each parcel (i.e. constraint 9).

Definition 3 A Precedence Constrained Production Scheduling Problem With Parcels for which
the number of parcels is “large” but the number of jobs is “small” will be referred to as a Parcel
Assignment Problem.

We first consider what is perhaps the easiest version of such a problem.

3 An Algorithm for PAP

3.1 Cutoffs

Definition 4 The Simple Parcel Assignment Problem is a parcel assignment problem for which:

• There are two processing options denoted as

1. Process Plant

2. Waste Dump

• There is one side constraint per period, which is a periodic capacity constraint on “process
plant” (i.e. a nonnegative knapsack constraint with nonzero coefficients corresponding only to
x variables for “process plant” in the given period). Waste is uncapacitated.

• The value of a parcel sent to waste never exceeds the value when sent to the process plant.

The Simple Parcel Assignment Problem is almost the same as the problem considered in [BDFG09]
(in their problem there are two capacity constraints per period). In that paper an algorithm is de-
scribed to solve the linear program. We will describe an algorithm that when applied to their
problem works quite similarly, but which is defined in quite a bit more generality. We will then
show that this more general algorithm can be adapted to the full precedence constrained production
scheduling problem.
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Definition 5 Let destination 0 be the processing plant and let destination 1 be waste. Define the
“processing value” of a parcel j in period t as

vj,t = cj,t,0 − cj,t,1 (11)

that is, the extra value to be gained by sending the job for processing.

Additionally, define the contribution of parcel j in period t toward the capacity constraint for pe-
riod t as wj,t.

Lemma 6 Suppose in period t, a parcel j with processing value vj,t and process plant consumption
wj,t and belonging to job J which is (partially) carried out in period t, has some proportion sent
to the processing plant. Then any parcel j′ belonging to any job J ′ that is (partially) performed in
period t and such that

vj′,t/wj′,t > vj,t/wj,t, (12)

will have all of its carried out proportion assigned to the processing plant.
Conversely, if parcel j had some proportion sent to waste in period t then any parcel j′ (partially)

performed in period t with vj′,t/wj′,t < vj,t/wj,t will have all of its carried out proportion assigned
to waste.

There therefore exists a cutoff value Vt for each period t such that every parcel j performed
(partially) in t with vj,t/wj,t > Vt will be sent to the process plant, and every parcel j performed
(partially) in t with vj,t/wj,t < Vt will be sent to waste.

The lemma says that in any period there must be some value per unit process capacity such
that all extracted parcels with better value per unit are sent to the process plant and all extracted
parcels with worse value per unit are sent to waste. The proof is straightforward, and in any case
follows from the proof of the following theorem.

Theorem 7 The optimal dual µt corresponding to the capacity constraint in period t is a cutoff Vt,
where “cutoffs” are as defined in Lemma 6.

Proof: Let µt be the optimal dual variable associated with the capacity constraint for period t.
Let δj,t be the optimal dual variable associated with the constraint yJ,t =

∑R
d=1 xj,t,d.

Let πj,t,d be the optimal dual variable associated with the nonnegativity constraint xj,t,d ≥ 0.
These are the only constraints in which the variable xj,t,d appears, and where d is the waste desti-
nation it does not appear in any capacity constraint. Thus where destination 0 is the process plant
and destination 1 is waste, the dual constraint associated with the variable is xj,t,0 is

cj,t,0 = µtwj,t,0 + δj,t − πj,t,0 (13)

and the dual constraint associated with the variable is xj,t,1 is

cj,t,1 = δj,t − πj,t,1. (14)

Subtracting the latter constraint from the former constraint yields:

vj,t = µtwj,t,0 − πj,t,0 + πj,t,1 (15)

If yJ,t > 0, then xj,t,0 + xj,t,1 > 0 and by complementary slackness

xj,t,0 > 0 ⇒ vj,t/wj,t,0 ≥ µt (16)

xj,t,1 > 0 ⇒ vj,t/wj,t,0 ≤ µt 2 (17)
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3.2 Generalized Cutoffs

Now we return to the general Parcel Assignment Problem for which we allow arbitrary destinations
and arbitrary side constraints.

Theorem 8 Given a general parcel assignment problem, let µ be the optimal dual values corre-
sponding to the side constraints, and given a parcel j and period t such that j has been (partially)
performed in period t, let Dj,t,d be the column of the side constraints corresponding to the variable
xj,t,d, and let D be the set of destinations d for which the expression

cj,t,d − µT Dj,t,d (18)

is maximized. The optimal primal solution must process the entire proportion of parcel j performed
in period t at destinations d ∈ D.

Proof: Let x be an optimal primal solution, let µ be the optimal dual vector associated with the
side constraints and let δ and π be as in the proof of Theorem 7. Then for each variable xj,t,d the
dual constraint is

cj,t,d = µT Dj,t,d + δj,t − πj,t,d. (19)

By the nonnegativity of π observe that for all destinations d

cj,t,d − µT Dj,t,d ≤ δj,t (20)

and by complementary slackness if xj,t,d > 0 we must have

cj,t,d − µT Dj,t,d = δj,t. 2 (21)

So the notion of ”cutoffs” can be generalized for the General Parcel Assignment Problem, and
the cutoffs are completely determined by the optimal duals of the side constraints.

Observation 9 Given the optimal side-constraints duals µ, and a variable xj,t,d, with parcel j in
job J , if d does not maximize (18) then xj,t,d can be replaced with 0, and if d uniquely maximizes
(18) then it can be replaced with yJ,t. Thus where the number of ”ties” is small (and we have found
this to typically be the case) and the number of jobs is small, the General Parcel Assignment Problem
collapses to a small LP when the optimal cutoffs are known.

3.3 Guessing Algorithms

Idea 10 What if we “guess” the optimal duals? This is tantamount to guessing cutoffs, and it yields
a small LP. While the resulting problem may be inaccurate, maybe its optimal duals will be a better
guess than we started with.

Definition 11 Given a vector µ with an entry for each side constraint, we shall say that µ induces
the “cutoff rule” that for each parcel j and period t, any destination d that does not maximize (18)
satisfies xj,t,d = 0. We will also use the term “applying the cutoff µ” to mean applying the cutoff
rule induced by µ.

Proto-Algorithm

Given a PAP, denoted P ,

1. Let k = 1, µ0 = 0.

2. Define the reduced LP P2(µk−1) by replacing variables as per Observation 9 and µk−1.

3. Solve P2(µk−1). Define xk to be the optimal solution, and set µk to be the optimal dual vector
corresponding to the side constraints.
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4. If k > 1 and µk = µk−1 then STOP.

5. Set k=k+1 and GOTO step 2.

Note that by adding error terms with large penalties to the side constraints in the original prob-
lem, all reduced problems P2(µk−1) will be feasible.

Lemma 12 Let P be a parcel assignment problem, and let L(P, µ) be the lagrangian relaxation of
P with the side constraints dualized with penalties µ. Every optimal solution to L(P, µ) satisfies the
cutoff rule (18) induced by µ.

Proof: Given a parcel j in job J and a period t, for each destination d the variable xj,t,d only appears
in L(P, µ) in the constraint

∑r
d=1 xj,t,d = yJ,t, and in the nonnegativity constraint xj,t,d ≥ 0, and

its objective value is
cj,t,d − µT Dj,t,d. (22)

It is therefore always optimal to choose xj,t,d′ = yJ,t for some d′ that maximizes (22), and it is
always suboptimal to choose xj,t,d′ > 0 if d′ does not maximize (22). 2

The lemma says that when lagrangian relaxation penalties are chosen equal to µ, then in any
optimal solution to the lagrangian relaxed problem the destination chosen for any parcel is one that
satisfies the cutoff rule induced by µ.

Consider now the restriction P2(µ) of the original problem in which we require the cutoff rule
induced by µ to be obeyed. Obviously this could only reduce the value of the lagrangian relaxation,
but since even without the restriction the cutoff rule is obeyed by the lagrangian with penalties µ,
it follows that any optimal solution to L(P, µ) is also optimal for L(P2(µ), µ) and conversely.

Observe now that the optimal solution value of the restricted LP in the kth algorithm iteration,
P2(µk−1), is equal to the minimum of its lagrangian L(P2(µk−1), µ) taken over all penalties µ, which
is L(P2(µk−1), µk). So if the algorithm reached a stopping condition, i.e. if µk = µk−1, then where
we write z(·) to refer to the optimal value of a problem, then

cxk = z(P2(µk−1)) = z(L(P2(µk−1), µk−1)) = z(L(P, µk−1)) ≥ z(P ) (23)

which proves that xk is optimal (the rightmost inequality follows from lagrangian duality). This
proves the following lemma.

Lemma 13 If the algorithm stops at some iteration k then xk−1 is an optimal solution to the
original problem P .

In practice we observed the following algorithm behavior:

• Extremely fast convergence – 4 to 5 iterations to a solution within .01% of optimality.

• Afterwards the algorithm often bounced rather than converged.

• Nevertheless we found that the algorithm always provided an improving direction µk+1 − µk

for the lagrangian of the problem.

We will now turn to explain the causes of this behavior.
The next lemma states that the value of the lagrangian of the original problem P and of the

lagrangian of the restricted problem P2(µ) do not only match at µ, they match everywhere inside
of a ball around µ. This follows from the fact that given parcel j, period t and destination d, if d
does not maximize cj,t,d − µT Dj,t,d, then neither will it maximize cj,t,d − νT Dj,t,d for any ν within
a small enough (but positive) radius of µ. Thus the restriction on P2(µ) enforcing the cutoff rule
induced by µ will not cut off any optimal solutions of the lagrangian of the original problem P at
any penalty vector ν close to µ. Formally,
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Lemma 14 Let P2(µ) be the restricted LP defined by applying cutoffs µ. There exists ε > 0 such
that for all ν : ‖ν − µ‖ < ε, every optimal solution to L(P2(µ), ν) is also an optimal solution to
L(P, ν) and conversely.

It now follows from the convexity of the lagrangian that the direction from µ to the optimal
lagrangian penalties µ∗ for the restricted problem L(P2(µ)), must also define an improving direction
for the lagrangian of the unrestricted problem L(P ), since L(P ) and L(P2(µ)) match inside of a
positive radius ball around µ.

We state this in greater generality as the following theorem:

Theorem 15 Consider an arbitrary linear program P1 defined by:

(P1) max vT y

subject to
Ay ≤ b (24)

Dy ≤ d (25)

and let L(P1, µ) be the lagrangian relaxation in which the constraints (25) are dualized with penalties
µ.

Assume that an optimal solution y(P1, µ) to L(P1, µ) also satisfies additional constraints Hy = h
and define a restricted LP

(P2) max vT y

subject to
Ay ≤ b (26)

Dy ≤ d (27)

Hy = h (28)

and note that L(P1, µ) = L(P2, µ). Assume now that for some ε > 0 and all ν : ‖µ − ν‖ < ε it
remains the case than an optimal solution y(P1, ν) satisfies (28). Let µ∗ be the optimal penalties
for the lagrangian L(P2), then either µ∗ optimizes L(P1) or µ∗ − µ defines a strictly improving
direction for L(P1).

Theorem 15 explains why the proto-algorithm always gave an improving direction.
It also gives insight into why it got close to optimality fast, but once close to optimality tended

to bounce:

Observation 16 • For the parcel assignment problem there are only a finite number of cutoff
rules Hx = h, one of which holds for every lagrangian penalty vector µ.

• Each such cutoff rule has an “ε validity ball” of positive size.

• While ε may be small, the rule may remain “mostly valid” over a fairly large region.

Thus when far from optimality, the algorithm gives excellent direction, as the lagrangian behavior
of the restricted LP’s that it solves is a reasonable approximation to the lagrangian behavior of the
original problem. When close however it lacks the precision to return the actual optimum, though
the iterates µk still define improving directions for the lagrangian.

3.4 Generalizing the Proto-Algorithm

3.4.1 A General Template

Theorem 15 suggests the following generalization of the proto-algorithm.
Given an arbitrary LP:

(P1) max cT x subject to

Ax ≤ b (29)

Dx ≤ d (30)
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• Assume that {x : Ax ≤ b} 6= ∅.
• Let L(P1, µ) be the lagrangian relaxation in which constraints (30) are dualized with penalties

µ.

Algorithm Template:

1. Set µ0 = 0 and set k = 1.

2. Solve L(P1, µk−1) to obtain optimal solution wk. If k > 1 and wk satisfies Hk−1(x) = hk−1

then STOP.

3. Find some constraint Hk(x) = hk that is satisfied by wk.

4. Define the restricted problem

(P2(k)) max cT x subject to

Ax ≤ b (31)

Dx ≤ d (32)

Hk(x) = hk (33)

5. Solve P2(k) to get optimal primal xk with value zk and optimal dual µk (corresponding to
constraints (32)). If µk = µk−1 STOP.

6. Set k=k+1 and GOTO step 2.

Note: We will assume that the system of constraints defined by (31) is feasible (so that the system
defined by (31) and (33) is also). For convenience we will also assume that adding in constraints
(32) maintains feasibility, though if this fails we could just add in slacks into the D constraints with
large penalties in the original formulation.

3.4.2 Stopping Conditions

Theorem 17 If the algorithm reaches a stopping condition then its current iterate xk is optimal.

Proof: If Hk−1(wk) = hk−1, then wk is a feasible solution to the lagrangian problem L(P2(k −
1), µk−1) with solution value z. Now letting z∗ be the optimal solution value for P1, and zk be the
optimal solution value for P2(k − 1), it follows from lagrangian duality that

z∗ ≤ z ≤ zk ≤ z∗. (34)

As for the other stopping condition, µk = µk−1 implies that wk optimally solves L(P1, µk), so that
we could choose wk+1 = wk and so Hk(wk+1) = hk, which is the first stopping condition. 2

Observation 18 At each iteration we are choosing constraints that hold for the solution to L(P1, µk−1)
and imposing them on the LP. If the algorithm reaches a stopping condition, then at the final itera-
tion the constraints imposed were valid both for the optimal lagrangian solution and for the optimal
LP solution.

So the algorithm essentially is searching for a set of constraints to simplify the LP, induced by a
lagrangian solution, that will hold both for the optimal lagrangian and the optimal LP.

Observation 19 (Heuristic Observation) If the constraints Hk(x) = hk induced by the la-
grangian solution L(P1, µk−1) describe the optimal LP solution with increasing accuracy as µk−1

gets closer to the optimal µ, then we can expect the algorithm to do very well, as we will see a
“virtuous cycle” effect.

Broadly speaking the heuristic observation generally holds for PAP and we do see a virtuous cycle
effect when far from optimality, but when close to optimality the duals provided by the algorithm
seem to overstep and the algorithm begins to bounce.
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3.5 Making the Algorithm Converge

3.5.1 Building a Lagrangian Net

Observe that by construction, the restricted problem’s lagrangian L(P2(k)) (seen as a function of the
penalties µ) matches the original problem’s lagrangian L(P1) at µk−1 and more generally at every
µ for which there is an optimal solution w to L(P1, µ) that satisfies Hk(x) = hk. If it would match
at µk also (which is the global minimizer of L(P2(k))), i.e. if there would be an optimal solution to
L(P1, µk) that satisfies Hk(x) = hk, then we would reach a stopping condition and would conclude
that xk is optimal.

But even if it does not match we can still modify those constraints that defined P2(k) so that
it will, i.e. we can “correct” the current iterate’s constraints Hk(x) = hk by loosening them to form
constraints Hk+1(x) = hk+1 for which a solution to L(P1, µk) indeed satisfies Hk+1(x) = hk+1.

Naturally in modifying H, we have also modified P2, and µk can no longer be assumed to be its
global optimizer, but we have still accomplished that for the new restricted problem P2(k + 1), the
lagrangian matches the unrestricted lagrangian both at µk − 1 and at µk. If we do this repeatedly
then as k increases, L(P2(k)) will match L(P1) at an increasingly large net of points {µj}.

So at every iteration either we attain optimality or this net gets strictly tighter and the constraints
Hk(x) = hk get strictly looser, and thus the algorithm cannot bounce.

3.5.2 Releasing the Net

But the constraints Hk may not only be too strong, they may also be unnecessarily weak, as we only
want constraints that are valid at the optimal lagrangian and not necessarily at every lagrangian.
We don’t necessarily want constraints that are valid at every lagrangian solution, just at the “good
ones”, and thus we would want to throw away the “bad points” from the net periodically.

One way to interpret this is as follows. We can think of the idea of solving L(P2(k)) to be
that even if L(P2) does not match L(P1) exactly, maybe the µk that optimizes L(P2(k)) will still
constitute an improvement for L(P1). Thus once we reach an iterate µk that improves L(P1) we
can ignore the old constraints Hk−1(x) = hk−1, throw away the net, and start again.

Note moreover that even if we fail to ensure that the constraints Hk(x) = hk are weaker than
the constraints Hk−1(x) = hk−1, so long as we ensure that they are weak enough so that xk−1 will
satisfy Hk(x) = hk, we will be assured that the LP solution values zk will be nondecreasing.

Observation 20 If constraints Hk(x) = hk are always chosen so that xk−1 satisfies Hk(x) = hk,
then the solution values zk are monotone nondecreasing. In particular this will hold if the constraints
Hk(x) = hk are weaker than the constraints Hk−1(x) = hk−1.

3.6 The Parcel Assignment Problem: Ensuring convergence

3.6.1 Cutoffs and Reduced Costs

The following theorem gives insight into the performance of the proto-algorithm on the parcel as-
signment problem, and suggests a way to make it converge along the lines of Observation 20:

First define the expression
E(µ, j, t, d) = cj,t,d − µT Dj,t,d (35)

Observation 21 The restricted General Parcel Assignment Problem with cutoff rule induced by µ
can be written as follows:

max cT x subject to
t∑

τ=1

yJ,τ ≤
t∑

τ=1

yJ′,τ , ∀(J, J ′) ∈ A, t = 1, . . . , T (36)

Dx ≤ d (37)

yJ,t =
R∑

d=1

xj,t,d, ∀j ∈ J, ∀J ∈ N , t = 1, . . . , T (38)
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T∑
t=1

yJ,t ≤ 1, ∀J ∈ N (39)

x ≥ 0 (40)

xj,t,d = 0, ∀j, t, d s.t. d does not maximize E(µ, j, t, d) (41)

• Let x∗ be an optimal primal solution to the restricted problem.

• Let (µ∗, δ∗, π∗) be an optimal dual vector with µ∗ corresponding to constraints (37), δ∗ corre-
sponding to (38) and π∗ corresponding to (40).

• Note that constraints (41) imply that those x variables that are restricted to zero can have
negative duals π∗.

• Note that π∗ are reduced costs for the unrestricted problem, and if π∗ ≥ 0 then x∗ is optimal
for the original problem as well.

Theorem 22 For each j, t, the destination d that minimizes π∗j,t,d maximizes E(µ∗, j, t, d).

Proof:
E(µ∗, j, t, d) + π∗j,t,d = δ∗j,t. 2 (42)

We conclude that changing the cutoff rule to µ∗ from µ, which means that the new destination
d chosen for each j and t will be that which maximizes E(µ∗, j, t, d), will lead to the best possible
solution in which the new destination chosen for each j, t is that which has the most negative reduced
cost in the current solution.

Thus the improvement can be very steep, but it can also overshoot its target. Evidently we need
a strategy that allows us to increase the values of the variables that were forced to zero by cutoffs µ
and which would be forced to their upper bound by cutoffs µ∗ (in line with Theorem 22), but which
does not require us to force all of them uniformly to their upper bound (and similarly for variables
that we wish to decrease). We wish to learn from µ∗ what changes may be necessary, but we should
try to conserve any information we might have learned from µ, or else we are at risk for bouncing.

3.6.2 Partitions Rather than Cutoffs

Idea 23 Instead of enforcing a cutoff at each iteration, and changing the cutoff from iteration to
iteration, let us imagine that a cutoff µ suggests for each job J and each period t a partition of
the variables xj,t,d, j ∈ J associated with each of the parcels into those that the cutoff suggests are
at their upper bound (those corresponding to a uniquely selected destination), those that the cutoff
suggests are at their lower bounds (those corresponding to unselected destinations) and those that
are tied. Aggregate all variables in each of these three parts of the partition into a single variable.2

3.6.3 Refining the Partition

Applying Observation 20 to Theorem 22 suggests that rather than change the cutoff, we refine the
current partition by intersecting each part in the partition with each part in the partition suggested
by using the optimal duals µ∗ as cutoffs. In this way the cutoff rule µ∗ is not applied strictly, but
merely indicates where extra flexibility is needed to separate variables from a set whose values should
be allowed to be different from that of the other variables in the set as per cutoff rule µ∗.

This step corresponds to the “building of the lagrangian net” in Section 3.5.1.
2We will not discuss ties extensively, but tied variables can be aggregated to a single variable as described. Alter-

natively if there are not many of them they can be left unaggregated, or they can be aggregated arbitrarily into one
of the other two sets.
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3.6.4 Aggregating the Partition

Observation 24 Given a partition, the aggregated problem is itself a parcel assignment problem and
its solution therefore itself satisfies some cutoff rule as per Theorem 8, i.e. the solution will lump
together all parts of the partition into three categories: those at their upper bound, those at their
lower bound, and those which are tied.

This new cutoff yields a “coarsification” of the current partition - i.e. it suggests a way to aggregate
together parts in the current partition while maintaining the feasibility of the current solution, as
the extra flexibility afforded by the finer partition was not used by the current solution.

This step corresponds to the “releasing of the lagrangian net” in Section 3.5.2.

3.6.5 Conclusions

Theorem 25 Applying the algorithm template to the parcel assignment problem we conclude
that:

Choosing “partitioning constraints” as our constraints H(x) = h, yields an LP which for each
job and period has as many variables as there are parts in the associated partition.

•• After each iteration the current partition can be coarsified (if desired) as per the cutoffs that
hold at the current solution, reducing the partition size back to 2 for each job and period (if
ties are aggregated arbitrarily).

• The solution values are monotonically nondecreasing.

• If the coarsification step is not performed then the partitioning constraints at each iteration
are weaker than those used in the previous iteration and therefore sub-optimal partitions will
never be repeated.

• There are finitely many partitions and therefore if the coarsification step is only performed at
an iteration in which the objective value strictly increased then the algorithm must converge.

4 An Algorithm for General Precedence Constrained Pro-
duction Scheduling

4.1 Precedence Constrained Production Scheduling and Maximum Clo-
sure

The effectiveness of the proto-algorithm applied in the previous sections to the parcel assignment
problem relies on the assumption that after removing (most of) the x variables (from Definition 2)
as per the cutoff rules that the resulting LP will be small, i.e. it relies on the assumption that while
the number of parcels may be large, the number of jobs is small. In general however this assumption
does not hold. Nevertheless we will see that an analysis of the solution structure of the general
precedence constrained production scheduling problem will show that analogous results can still be
obtained.

Definition 26 Given a directed graph G = (N, A) and a vector of node weights w ∈ RN , the
Maximum Weight Closure Problem is that of finding a set C ⊆ N of maximum weight such that
for all (i, j) ∈ A, i ∈ C ⇒ j ∈ C. It can be formulated as the following integer program: max
wT x : xi − xj ≤ 0, ∀(i, j) ∈ A, x ∈ {0, 1}N .

Observation 27 The feasible space of the linear relaxation of the max closure problem, max wT x :
xi−xj ≤ 0, ∀(i, j) ∈ A, 0 ≤ x ≤ 1 is defined by a totally unimodular matrix with integer right hand
side and integer bounds and is therefore an integer polytope.
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Theorem 28 The Precedence Constrained Production Scheduling Problem (PCPSP) can be recast
as the linear relaxation of a maximum weight closure problem with side constraints, with the same
number of variables and constraints overall and the same number of side constraints.

Proof (sketch): Define a linear system L1 in which for each j ∈ N , t = 1, . . . , T, d = 1, . . . , R,
there is a variable yj,t,d with bound constraints as follows:

yj,1,1 ≥ 0 (43)

yj,t,1 ≥ yj,t−1,R, if t > 1 (44)

yj,t,d ≥ yj,t,d−1, if d > 1 (45)

1 ≥ yj,T,R (46)

Define now a second linear system L2 in which there is a variable xj,t,d for each j ∈ N , t =
1, . . . , T, d = 1, . . . , R satisfying

x ≥ 0,

T∑
t=1

R∑

d=1

xj,t,d ≤ 1, ∀j ∈ N (47)

Then the feasible spaces of L1 and L2 are in one-to-one correspondence, and for each feasible x
there is a feasible y satisfying

yj,t,d =
t−1∑

t′=1

R∑

d′=1

xj,t′,d′ +
d−1∑

d′=1

xj,t,d′ (48)

Replacing the x variables in PCPSP by the y variables thus defined yields the desired result. 2

From now on we will no longer focus on PCPSP and will instead focus on what we now know to
be the equivalent problem: max closure with side constraints. We will refer to this problem as the
General Precedence Constrained Problem (GPCP).

Definition 29 The General Precedence Constrained Problem (GPCP) is defined as follows: Let
G = (N ,A) be a digraph,

maximize cT x subject to:
xi ≤ xj , ∀(i, j) ∈ A (49)

Dx ≤ d (50)

0 ≤ x ≤ 1

The following theorem together with Observation 27 says that the GPCP with no side constraints,
or equivalently, the GPCP with lagrangian relaxation of its side constraints, can be solved with a
min cut algorithm.

Theorem 30 [P76] Given a graph G with weights wn associated with each node in the graph, define
the graph G′ as follows: Add a node s to the graph and an arc (s, n) with capacity wn for each node
n for which wn ≥ 0, and add a node t to the graph and an arc (n, t) with capacity −wn for each node
n for which wn < 0. The s side of a minimum s–t cut in G′ constitutes a maximum value closure
in G w.r.t. w.

Other constructions that demonstrate the reducibility of max closure to max flow or min cut can
be found in [J68], [Bal70] and [R70]. Further discussion can be found in [HC00], where the authors
note (at the end of Section 3.4) that it can be shown by reduction from max clique that adding a
single cardinality constraint to a max closure problem is enough to make it NP-hard.
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4.2 Distinct Fractional Values and Decomposition Theorems

4.2.1 Distinct Fractional Values

The key structural feature of GPCP that will enable the application of the algorithm template of
Section 3.4.1 is given in the following theorem.

Theorem 31 Let P be the feasible space of any GPCP, and let x be an extreme point of P at
which q linearly independent side constraints are binding, then x contains no more than q distinct
fractional values.

Before we prove the theorem we need some lemmas.

Lemma 32 Let P = {x ∈ Rn : Ax ≤ b}. Let x be an extreme point of P . Let Āx = b̄ be the binding
constraints of P at x, and let Nx be the null space of Ā. Then Nx = {0}.
Lemma 33 Let P = {x ∈ Rn : Ax ≤ b, Dx ≤ d}. Let x be an extreme point of P . Let Āx =
b̄, D̄x = d̄ be the binding constraints of P at x, and assume D̄ has q linearly independent rows, and
let Nx be the null space of Ā. Then Nx can be spanned by q vectors.

Proof: Ā must have at least n − q linearly independent rows and thus its null space must have
dimension ≤ q. 2

Lemma 34 Let P be the feasible space of a GPCP with q side constraints. Refer to the portion of
the constraint matrix containing the precedence constraints and the constraints 0 ≤ x ≤ 1 as Ax ≤ b,
and to the side constraints as Dx ≤ d. Let x be an extreme point of P with k distinct fractional
values {α1, . . . , αk} and say that the indicator vector for x = αj is denoted θj, so that where xi is
the integer part of x (i.e. the floor of x), x is decomposed as

x = xi +
k∑

r=1

αrθ
r. (51)

Let Ā be the submatrix of A containing the binding constraints at x. Then the vectors θr are linearly
independent and belong to the null space of Ā.

Proof: First we prove that Āθr = 0. Given a precedence constraint xi − xj ≤ 0, if the constraint
is binding then xi = xj . Thus if xi = αr, so that θr

i = 1, then xj = αr also, and so θr
j = 1 also,

and so θr
i − θr

j = 0, and by the same token if xi 6= αr then xj 6= αr and again θr
i − θr

j = 0. If a
constraint xi ≥ 0 or xi ≤ 1 is binding then naturally θr

i = 0 for all r as it is not fractional. As to
linear independence, this is clear from the fact that the supports of the θr vectors are disjoint. 2

Lemmas 33 and 34 prove Theorem 31 as a corollary, since there cannot be more θr vectors than
there are linearly independent rows in D̄.

4.2.2 A Decomposition Theorem for TUM problems with Side Constraints

The result stating that the number of distinct fractional values in any extreme point solution to
GPCP is no more than the number of binding side constraints can be interpreted as saying that the
amount of “fractionality” in the extreme point solution is a (very slowly increasing) function of the
number of binding side constraints. In this section we will prove a similar result for all problems for
which the constraint matrix is totally unimodular, but for which extra side constraints exist.

Theorem 35 Let P , A, Ā, D, q, x and Nx be as in Lemma 33, and assume additionally that A is
TUM and that b is integer. Define

Ix = {y ∈ Rn : yi = 0, ∀i s.t. xi is integer} (52)

and let {θ1, . . . , θq} be any spanning set for Nx ∩ Ix. Then there exists an integer vector xi that
satisfies:
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1. Axi ≤ b

2. Āxi = b̄

3. xi
j = xj , ∀j : xj is integer

and a vector α ∈ Rq such that

x = xi +
q∑

r=1

αrθ
r. (53)

In the special case of the GPCP, we can choose xi satisfying the additional condition

4. xi
j = 0, ∀j : xj is fractional.

Proof: Let us refer to the integer coordinates of x as xI and to the corresponding columns of A
as AI , and to the fractional coordinate of x as xF , and to the corresponding columns of A as AF .
Let h be the number of columns in AF . Note that b−AIxI is integer, and so by TUM there exists
integer y ∈ Rh satisfying AF y ≤ b − AIxI , ĀF y = b̄ − ĀIxI . Defining now xi = (xI , y) then xi is
integer; it is equal to x everywhere that x is integer, and it satisfies Axi ≤ b and Āxi = b̄. Clearly
x− xi belongs to Ix, and moreover Ā(x− xi) = 0 so that it belongs to Nx as well, and so it can be
decomposed as

x− xi =
q∑

r=1

αrθ
r (54)

which proves (53).
For the special case of GPCP we have already described a decomposition (51) for which xi equals

x everywhere that x is integer and is zero elsewhere. 2

Observation 36 Sets {θ1, . . . , θq}, as defined in Theorem 35, exist for which all values for each θr

are integers between −m and m, where m is the row rank of Ā. Thus Theorem 35 implies that x can
be decomposed as an integer vector (matching with x wherever x is integer) and a linear combination
of no more than q integer {−m, . . . ,m} vectors, where q is the number of binding side constraints
at x.

Proof: Let x and Ā be is as in Theorem 35, and let Ã be the same as Ā but with all columns from
Ā for which xi is integer removed, and with a minimum collection of rows removed so as to make
Ã of full row rank. Note that Ã is also TUM and where Nx and Ix are as in Theorem 35 then the
null space of Ã is Nx ∩ Ix. Let us say that Ã is a m′ × p matrix (m′ ≤ m). Find a collection of m′

linearly independent columns of Ã, and denote the nonsingular matrix thus defined as B and the
remaining columns as N . The null space of A is spanned by the vectors {(B−1N j , ej)T }, where N j

is the jth column of N and ej is the jth unit vector in Rp−m. Since B is TUM, B−1 is a 0, 1,−1
matrix, and N j is 0, 1,−1 as well, and so these vectors are all integer with absolute value ≤ m′. 2

The special case of network flow problems with side constraints is particularly interesting.

Corollary 37 Let P be the feasible space of a minimum cost network flow problem with integer data
and side constraints. Let x be an extreme point of P , and let q be the number of linearly independent
side constraints that are binding at x. Then x can be decomposed into an integer flow satisfying all
network flow (but not necessarily side) constraints and equal to x wherever x is integer, and a sum
of no more than q fractional cycle flows, where none of these cycles includes any edge for which x
was integer.

Proof: Let Ix and Nx be as defined in Theorem 35, and let A be the node-arc incidence ma-
trix. Restricting ourselves to Ix is equivalent to just removing some arcs from the graph, and any
y ∈ Ix : Ay = 0 is a circulation, which can be decomposed into cycle flows in the reduced graph.
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Nx ∩ Ix can therefore be spanned by cycle flow vectors, and the result now follows from Theorem
35. 2

It should be noted though that while there are no more than q distinct fractional cycle flows in
the decomposition of x, the number of distinct fractional values in x can be exponential in q.

4.3 Applying the Algorithm Template

4.3.1 Partitioning Constraints for GPCP

The result stating that the number of distinct fractional values in an extreme point solution is
no more than the number of binding side constraints (Theorem 31) suggests a way in which the
algorithm template can be applied to GPCP:

Idea 38 Let the constraints Hk(x) = hk defined in the algorithm template in Section 3.4.1 be
partitioning constraints that partition the node set into parts such that every node in a part has a
common solution value.

Formally, let Θ be the matrix whose rth column θr is the indicator vector for the rth part in the
partition; add variables yr to the problem for each part in the partition, and add the constraints

x = Θy. (55)

Obviously however, the point of these constraints is that adding them explicitly in this manner is
equivalent to just collapsing the nodes in each part into a single node, which is what we would do
in practice.

Theorem 31 says that we never need more than a small number of parts (no more than two more
than the number of side constraints) in order to capture the optimal solution. We do not know what
the optimal partition is, but if we had a way of “guessing” then we never need our guessed partitions
to have a large number of parts, and thus each would collapse the problem to a small LP.

Recall now from Sections 3.5.1 and 3.6.3 that in order for the algorithm to converge we need to
refine the partition yielded by each iteration’s guess so that it is compatible with the solution yielded
for the previous iteration’s partition. One way to do this is to refine the new guessed partition by
intersecting each part with each part of the previous iteration’s partition. This could quickly lead
however to a partition with a very large number of parts, and thus we need a way to “coarsify”
an iteration’s partition so that it will still be compatible with its optimal solution but will have a
smaller number of parts (as in Sections 3.5.2 and 3.6.4).

Here is another place where the small number of distinct values in the solution is crucial. Observe
that after collapsing the nodes in each part into a single node, the restricted problem obtained is
still a GPCP, and thus the number of fractional elements in its optimal extreme point solution is
always small. Since the optimal solution to the restricted problem did not need more parts than
it has distinct solution values, this says that we can recoarsify the partition to have no more parts
than two more than the number of side constraints.

We still need to discuss what our “guesses” should be, but first we formalize what we know so
far.

Lemma 39 Given a GPCP, and given a partition of the elements defined by a matrix Θ whose rth

column θr is the indicator vector for the rth part in the partition, then if we collapse each part in
the partition to a single element

• The resulting problem is itself a GPCP in which the arcs are obtained for the collapsed graph
in the natural way, and the side constraints are

DΘ ≤ d. (56)

• DΘ has the same number of rows as D and as many columns as there are parts in the partition.
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• The optimal solution x to this restricted problem induces a feasible solution to the unrestricted
problem which can itself be decomposed as

x =
q∑

j=1

αjθj (57)

where α is the vector of the distinct values in x, θj is the indicator vector for x = αj, and q is
no more than 2 more than the number of side constraints.

• If we combine elements in the partition to form a new partition in which each part is the
support of θj , j = 1, . . . , q (from expression (57)), then x is still an optimal solution to the
restricted problem defined by this new partition.

4.3.2 Guessing Partitions

The algorithm template states that every iteration k is defined by the lagrangian with penalties µk,
and that we ought to obtain our restricting simplifying constraints from the lagrangian solution. So
considering that the simplifying constraints we are looking for are partitionings, we are looking for
a partitioning of the elements that is induced by the lagrangian solution. The lagrangian problem
however is just a conventional max weight closure problem (Observation 27), and its solution is a
closure, i.e. a subset of the nodes. The most natural partition induced by the lagrangian solution is
thus certainly the partition of the node set into that closure and its complement. Later we will see
why this partition is particularly appropriate, though for now we just note that it is natural.

There are thus two natural ways in which the partitioning constraints may be updated at each
iteration based on the lagrangian solution as per the algorithm template:

Idea 40 Using the notation of the algorithm template of Section 3.4.1, given optimal primal xk for
P2(k − 1), decomposed as per expression (57), and optimal duals µk−1, and an optimal lagrangian
solution wk generated from µk−1, create a new partition as follows: Start with the partition C in
which each part is the support of θj , j = 1, . . . , q, and refine it by splitting each part into its portion
that is included in the max closure defined by wk and into its portion that is excluded from the max
closure defined by wk.

Alternatively,

Idea 41 Refine the previous iteration’s partition by splitting each part into its portion that is included
in the max closure and into its portion that is excluded from the max closure.

Refining the partition as per Idea 41 yields partition constraints Hk(x) = hk that are weaker
than Hk−1(x) = hk−1, and refining the partition as per Idea 40 yields partition constraints, which
while not necessarily weaker than Hk−1(x) = hk−1, are still such that xk−1 satisfies Hk(x) = hk,
and which are therefore still sufficient to maintain algorithm monotonicity.

Observation 42 If there are p side constraints then applying Idea 40 yields a partition with no more
than 2(p + 2) parts, and applying Idea 41 yields a partition with no more than twice the number of
parts in the previous iteration’s partition.

4.3.3 The Algorithm

Here is an informal description of the algorithm. A formal description follows afterwards.

• At every iteration, solve the lagrangian with penalties µk−1 equal to the optimal duals for the
restricted LP, P2(k − 1), solved in the previous iteration.

• If the max closure solution wk obtained to the lagrangian itself satisfies the partitioning con-
straint Hk−1(x) = hk−1 then the solution xk−1 to P2(k − 1) is optimal for the unrestricted
problem. Otherwise update the partition by splitting each part into the elements that were
included in the max closure wk and the elements that were excluded from the max closure wk.
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• After any iteration we may collapse the current partition into a new partition with no more
than the number of side constraints plus 2 by replacing the current partition with the partition
suggested by xk and expression (57).

GPCP Algorithm

1. Initializations: Set µ0 = 0. Set C0 = {N}. Set r0 = 0. Set z0 = −∞. Set k = 1. Designate
the GPCP problem as P1.

2. Get optimal solution yk to L(P1, µk−1), and define

I(yk) = {n ∈ N : yk
n = 1} (58)

and define
O(yk) = {n ∈ N : yk = 0}. (59)

If k > 1 and Ck−1 is represented as

Ck−1 = {Ck−1
1 , . . . , Ck−1

rk−1
} (60)

and no set Ck−1
j overlaps both I(yk) and O(yk) then STOP.

3. Let
L = {L1, . . . , Llk} (61)

be a partition of N refining {I(yk), O(yk)} and define the partition

Ck = {Li ∩ Ck−1
j : i = 1, . . . , lk, j = 1, . . . , rk−1} (62)

of N . Denote the nonempty sets in Ck as {Ck
1 , . . . , Ck

rk
}, and define corresponding incidence

vectors θ1, . . . , θrk .

4. Solve the new GPCP problem P2(k) defined by collapsing all nodes in each Ck
j into a single

supernode and replacing the side constraints Dx ≤ d by DΘx ≤ d, where Θ is the matrix
whose columns are the vectors θj .

Let xk be the optimal solution to P2(k) represented in terms of the original graph, let µk be
the optimal duals corresponding to the side constraints, and let zk be the solution value.

5. If µk = µk−1 STOP.

6. (Optional) If zk > zk−1, let α1, . . . , αq be the distinct values in xk (and note that q is no more
than the number of side constraints plus 2), and for each r, let σr be the indicator vector for
xk = αr, and decompose x as x =

∑
αrσ

r.

Let C = {Cr} be the partition of N in which each Cr is the support of σr.

Update Ck := C, and rk = q.

7. Set k=k+1 and GOTO step 2.

Lemma 43 If P2(1) is feasible then the algorithm converges.

Proof: The fact that xk is always a feasible solution to P2(k + 1) implies that if P2(1) is feasible
then so is every P2(k), and it also implies that the solution values {zk} increase monotonically.
Since a coarsification step (step 6) can only be performed at an iteration k for which zk > zk−1,
monotonicity implies that a suboptimal partition can never be repeated. Since there are finitely
many partitions the algorithm must terminate, and by Theorem 17 it terminates with an optimal
solution. 2

Note that the algorithm can be formulated such that we always have P2(1) feasible by putting
slacks into the side constraints with large penalties in the original problem P1.

Note also that in principle the algorithm allows us to choose at each Step 3 in each iteration any
partition L that refines the partition {I(yk), O(yk)}.
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4.4 Analyzing the GPCP Algorithm

The algorithm performs extremely well in practice. Problems with millions of variables and tens of
millions of constraints converge in 10 – 25 iterations. Max closure problems moreover can be solved
very quickly with max flow algorithms, and so even with problems of this size each iteration solves
in a matter of seconds.

The algorithm only guarantees finite convergence, but there are features of GPCP that enhance
the algorithm’s performance, which will be discussed in this section.

4.4.1 The Connection Between the LP Solution and the Lagrangian Solution

Observation 44 We had three observations in our initial discussion of the algorithm template that
were relevant to how one ought to choose the constraints Hx = h to be applied at each iteration.
These are summarized as follows:

• As per Observation 18, considering that the algorithm will be applying these constraints to
the LP, and can only terminate if it finds constraints that are satisfied both by the lagrangian
solution (with optimal penalties) and by the optimal LP solution, then the constraints we pick
should be a feature that, at least for the lagrangian with optimal penalties, will characterize
both the lagrangian solution as well as the optimal LP solution.

• In line with our heuristic observation (Observation 19), we should be looking for a feature of the
lagrangian solution which even when drawn from a lagrangian solution with suboptimal penalties
may still approximately characterize the optimal LP solution, and which can be expected to
better approximate it as the penalties get closer to optimal.

• In line with Observation 16, we should choose a feature of the lagrangian solution that we can
expect to remain fairly unchanged even as the penalties change, especially when far from the
optimal penalties.

We will show now that the choice of constraints Hx = h that the GPCP algorithm makes is a
good one from the perspective of Observation 44.

Note first that the partitioning paradigm in implementing the algorithm template is to derive a
partition from the lagrangian solution and to use that partition to refine our current partition. In
one sense then, the first “good constraint choice criterion” of Observation 44 is satisfied for free,
as we only use the lagrangian solution to refine the partition, and we never use it to impose a new
constraint.

Nevertheless, the more detailed the features that we derive from the lagrangian solution to refine
the partition that we will apply to the LP solution, and the more characteristic they are of the
optimal LP solution (at least where the lagrangian penalties were optimal), the stronger the LP
approximation will be. The algorithm for PAP can be thought of as setting the gold standard in this
regard. In that case the feature that we borrow from the lagrangian solution and apply to the LP is
the cutoffs, i.e. the rules that govern where extracted parcels are to be processed. These rules apply
both to the lagrangian solution (with optimal penalties) and to the optimal LP solution, and they
completely determine the LP solution (except for the “tied” variables, of which there are typically
few, and which can be left unaggregated) in the sense that when applied to form a restricted LP,
the solution yielded is an optimal solution to the original LP .

We will prove a theorem that shows that in the case of GPCP we have a similar situation.
The lagrangian of the GPCP is a max closure problem and its solution is a closure. The theorem
shows that in a similar manner to the PAP situation, there is also a close relationship between these
lagrangian max closures (when given optimal penalties) and the optimal LP solution for the GPCP.

First we prove a few lemmas.

Lemma 45 Given a graph G with node weights and given two max closures C and C ′. The union
C ∪ C ′ as well as the intersection C ∩ C ′ are also max closures.
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Proof: Given an arbitrary set of nodes S, denote the sum of the weights of the nodes in S as w(S).
Since C ∪ C ′ = (C − C ′) ∪ C ′ is also a closure, by maximality of C ′ we must have w(C − C ′) ≤ 0,
which implies that w(C ∩ C ′) ≥ w(C). But by maximality of C, since C ∩ C ′ is also a closure,
it must be that w(C ∩ C ′) = w(C) = w(C ′), and w(C − C ′) = 0. But this in turn implies that
w(C ∪ C ′) = w(C ′) = w(C). 2

Corollary 46 Given a graph G with node weights, there is a unique inclusion minimal max closure
Cm and a unique inclusion maximal max closure CM , and for every max closure C we have Cm ⊆
C ⊆ CM .

Theorem 47 Let x be an optimal solution to a GPCP with optimal duals µ corresponding to the
side constraints. Let

x = xi +
q∑

r=1

αrθ
r (63)

be the decomposition of x into its integer and fractional parts as in Lemma 34. Assume further that
α1 > α2 > · · · > αq, and let Ci be the support of xi and for each θj let Cj be its support. Then

1. Ci is a max closure for the lagrangian problem with penalties µ.

2. For each j = 1, . . . , q, Cj has penalized value of zero, and

3. for each j = 1, . . . , q, Ci ∪⋃j
r=1 Cr is also a max closure.

Proof: It is clear that for all j, Ci ∪ ⋃j
r=1 Cr is a closure, since any arc originating at a node in

that set must point to a node with a solution (x) value ≥ αj , which is also in that set.
Let D̄x ≤ d̄ be the matrix of binding side constraints at x, and let Āx ≤ b̄ be the binding prece-

dence constraints. Let ρ be the vector of optimal duals corresponding to the precedence constraints;
let δ be the vector of optimal duals corresponding to the constraints x ≤ 1, and let π be the vector
of optimal duals corresponding to x ≥ 0. Note first that for all r, Āθr = 0 as proven above in
Lemma 34, and we also have δθr = πθr = 0 since these duals can only be nonzero for integer valued
variables and for all such coordinates θr is zero. Therefore,

cx = c(xi +
q∑

r=1

αrθ
r) = (64)

cxi +
q∑

r=1

αr(ρA + µD + δ − π)θr = (65)

cxi + µD

q∑
r=1

αrθ
r = (66)

cxi + µD(x− xi) = cxi + µDx− µDxi = (67)

cxi + µd− µDxi. (68)

Expression (68) is the objective value of the lagrangian with penalties µ evaluated at xi, and since
the optimal value of this lagrangian problem is cx we conclude that xi is indeed optimal for that
lagrangian. Finally, since cθr = µDθr we conclude that the penalized value of θr is zero, which
proves the remainder of the theorem. 2

Theorem 47 and Corollary 46 imply the following corollary.

Corollary 48 Given optimal lagrangian penalties µ, for all nodes n included in the minimal max
closure we have xn = 1 in every optimal LP solution, and for all n not included in the maximal max
closure we have xn = 0 in every optimal LP solution.
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The feature then which is clearly shared by the optimal lagrangian solution (with optimal penalties)
and the optimal LP solution is that they both distinguish between the elements contained in the
minimal max closure and the elements not contained in the maximal max closure. The algorithm
captures this feature by refining the partition at each iteration of the algorithm by splitting each
part in the partition into the part which lies in the current iterate’s lagrangian max closure, and the
part that does not.

4.4.2 Partitionings for PAP and Partitionings for GPCP: A Qualitative Analysis

The partitions used by GPCP are thus broadly similar to the cutoff induced partitions we had for
PAP in that the elements that lie inside of the smallest max closure and those that lie outside of
the largest max closure (which correspond loosely to the (parcel, period, destination) triples that lie
“above” or “below” cutoff) are completely determined for the LP as well. But in this case there are
two disadvantages:

1. We do not in general know what the smallest max closure Cm and the largest max closure
CM are, and so we cannot avoid aggregating the elements in CM − Cm.

2. There are typically very many elements in CM−Cm, and so we do not want to avoid aggregating
them. In particular, all elements that are fractional in any optimal extreme point LP solution
are in this category, and there are typically many such elements.3

Even if we make no effort to avoid aggregating the elements in CM −Cm however, the algorithm
is still well suited to identify the collections of elements in that set with a common value. Consider
that Theorem 47 and Corollary 46 also imply the following corollary.

Corollary 49 Given optimal lagrangian penalties µ, and the collection of max closures for the
associated lagrangian problem, define the algebra A generated by {C − Cm : C is a max closure}
where complementation is defined with respect to CM − Cm. Then

1. The atoms of A are all sets with zero (penalized) value.

2. Where arcs are inherited from the underlying graph, every closed nonempty collection of atoms
defines a max closure for the underlying graph (after adding the smallest max closure back in)
and conversely.

The atoms of the algebra A are the candidate sets that may or may not be included in the max
closure, and these are also the candidate sets that can be assigned common fractional values in the
optimal LP solution. Minute changes in the optimal penalties will drive some of these atoms into
negative value and some into positive value, which means that solving lagrangian problems with
penalties in the vicinity of the optimal solution will tend to identify these sets as well.

Thus despite the fact that even optimal penalties µ do not give us sufficient information in the
lagrangian solution to construct the full LP solution (unlike the case for the PAP), it is still the case
that by solving several closure problems the algorithm can identify all of the sets of elements which
have a common value in the optimal LP solution. This will in fact happen because any suboptimal
LP solution based on a suboptimal partition will yield duals µ for which every optimal lagrangian
solution will split a part in that suboptimal partition (or else we would have reached a stopping
condition, which would mean that the LP solution was not suboptimal). The partition induced by
improving µ will thus give increasingly good approximations of what the optimal LP solution needs
to split. Each iteration of the algorithm thus uncovers relevant places in which the current partition
suffers as a result of not separating between elements in different atoms, and it splits accordingly.

3Note that for PAP it is also true that all parcel, period, destination triples (j, t, d) for which xj,t,d is strictly
between 0 and the proportion of j extracted in t are “tied” and not fixed to a destination, but there are usually very
few such elements. This is easiest to see in the case of the “simple” PAP where the two destinations are waste and
processing plant, and the side constraints are periodic plant capacity constraints. Only the parcels whose value per
unit capacity are exactly equal to the cutoff value can be split. So unless the values are very lumpy this will not
happen often.
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Note that here once again we benefit from the fact that the optimal LP solution needs not have
a large number of distinct fractional values, so that one need not necessarily perform many such
steps in order to obtain an optimal LP solution.

As for the latter two “good constraint choice criteria” of Observation 44, it seems reasonable to
expect that the separations between elements inside and outside of the max closure yielded by the
lagrangian solutions taken even at suboptimal penalties will also approximate separations that the
LP needs to make, and that this will improve as the penalties approach optimality.

Finally it also seems reasonable to expect that the partitions yielded by the lagrangian max
closure, which ultimately reflect the structure of the underlying graph, will not change drastically
with changes in the penalties. There may be large “balanced” sets corresponding to the elements
with a common fractional value in the optimal LP solution, which can move entirely in or entirely
out of the max closure with small changes in the penalties when the penalties are near optimal, but
once these have been captured in the partition already then any other changes could be expected to
be generally small.

4.4.3 Improving the Partition: A Sensitivity Analysis

Lemma 50 Let P2(k) be the restricted LP at the kth iteration of the GPCP algorithm, and let µk

be the optimal duals for P2(k) corresponding to the side constraints, the optimal solution xk, when
written in the original space, can be decomposed as

xi +
q∑

r=1

αrθ
r, (69)

where xk has q distinct fractional values α1, . . . , αq, xi is the integer vector which equals xk at every
coordinate for which xk is integer, and θr is the indicator vector for xk = αr. Denote the support of
xi as Ci, and the support of each θr as Cr and assume α1 > · · · > αq. Then Ci and every

Ci ∪
j⋃

r=1

Cr (70)

are all closures and the penalized value of each Cr w.r.t. µk is 0. Moreover if Ci is a max closure
w.r.t. µk then xk is optimal for the unrestricted problem as well.

Proof: The last statement that if Ci is a max closure then xk is optimal for the unrestricted prob-
lem, is a result of the fact that in this case we could consider Ci and {Cr} to constitute the current
iteration’s partition, and Ci would be an optimal lagrangian solution to the lagrangian relaxation in
the next algorithm iteration. Since none of the sets Cr or Ci overlap both Ci and its complement,
we would hit a stopping condition. The rest of the lemma follows from Theorem 47. 2

So if after solving the restricted problem we find that the closure Ci induced by the solution xk

is a max closure for the lagrangian at µk then we are done. Otherwise Ci is not a max closure, and
so there must exist either closed subsets R of Ci in the reverse graph with negative value that may
be excluded from the closure, or else, letting C0 denote the collection of nodes with value 0 in x,
there must exist closed subsets C of C0 or some Cr of positive value that may be included into the
closure.

We will show that slicing off the appropriate R and/or C sets to obtain a max closure can be
seen as advantageous to the LP solution from a sensitivity analysis perspective.

Lemma 51 Let Ci and {Cr; r = 1, . . . , q} be as in Lemma 50, and let C0 represent the elements
for which xk in Lemma 50 was zero, and let the columns of the matrix Θ = (θi, θ0, θ1, θ2, . . . θq) be
the indicator vectors for the parts in the partition {Ci, C0, {Cr, r = 1, . . . , q}}. Then the restricted
GPCP for which all elements in each Cr are required to have the same value can be written as
follows:

max cx : x−Θy = 0, AΘy ≤ 0, Dx ≤ d, 0 ≤ y ≤ 1. (71)
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The optimal duals corresponding to the D constraints are still µk, and if we let δ be the optimal
duals corresponding to the x−Θy = 0 constraints, we obtain

c = µkD + δ. (72)

Definition 52 Given a set T of nodes in a graph, we shall say that a subset S ⊆ T is “closed with
respect to” T , if no arcs point from S to T − S.

By a rough sensitivity analysis, for a given element e, δe is positive if an increase in xj would
raise the objective, and negative if an increase in xj would decrease the objective.

In this sensitivity analysis sense we would say that it is ”beneficial” to split C0 and/or some
Cr sets by increasing the value of all elements in some C ′ ⊆ (Ci)c closed w.r.t. (Ci)c (so that the
new solution remains precedence feasible) if (c − µkD)θC > 0 (where θC is the indicator vector of
C). Similarly it would be ”beneficial” to split Ci and/or some Cr sets by decreasing the value of all
elements in some R′ ⊆ (C0)c closed w.r.t. (C0)c in the reverse graph if (c− µkD)θR′ < 0.

At each iteration after performing the max closure step, the algorithm (in its most basic imple-
mentation) splits the parts in its current partition into the portion of each part that belongs to the
max closure and into the portion of the part that does not belong to the max closure.

The first statement in the following lemma says that there is no way to alter this split which is
“beneficial”. Intuitively this is obvious, since “beneficence” is measured by (c − µk)D which is the
objective function of the lagrangian.

The second statement says that given any set C ′ whose elements’ solution values it would be
“beneficial” to increase, if C ′ is such that it could only be less beneficial to have chosen one of its
subsets instead, then C ′ is a subset of C̄ − Ci, where C̄ is the lagrangian’s max closure. A similar
result holds for sets of elements R′ whose elements it would be beneficial to decrease.

The lemma thus implies that in this sense every improvement in the partition is captured by
the algorithm’s choice, as every improving C and R (that only get worse if a portion is left out) is
subset to the C and R suggested by the max closure.

The lemma relies ultimately on the property of max closure problems that every closed set of
positive value contributes to every max closure, and therefore every improvement in the current
partition is captured by the new max closure.

Lemma 53 Under the conditions of Lemma 51, let C̄ be a max closure for the lagrangian problem
with penalties µk, and let

C = C̄ − Ci (73)
R = (C0)c − C̄. (74)

For any set S of nodes in the graph, denote its incidence vector as θS. There is no R̃ ⊆ C̄ that is
closed w.r.t. C̄ in the reverse graph for which (c−µkD)θR̃ < 0, and there is no C̃ ⊆ R̄ that is closed
w.r.t. R̄ in the reverse graph for which (c− µkD)θC̃ > 0.

Moreover, if some C ′ ⊆ (Ci)c which is closed with respect to Ci)c, satisfies that there is no R̃ ⊆ C ′

that is closed w.r.t. C ′ in the reverse graph for which (c − µkD)θR̃ ≤ 0, then C ′ ⊆ C. Similarly if
some R′ ⊆ (C0)c is closed with respect to (C0)c, and satisfies that there is no C̃ ⊆ R′ that is closed
w.r.t. R′ in the reverse graph for which (c− µkD)θC̃ ≥ 0, then R′ ⊆ R.

Proof: Suppose that there is a R̃ ⊆ C̄ that is closed w.r.t. C̄ in the reverse graph for which
(c − µkD)θR̃ < 0. Then C̄ − R̃ would be a closure, and if we denote its incidence vector as x and
the incidence vector of the max closure C̄ as x̄, then

(c− µkD)x = (c− µkD)x̄− (c− µkD)θR̃ > (c− µkD)x̄ (75)

which contradicts the optimality of x̄. The proof for the statement regarding C̃ is similar. For the
second part of the lemma, suppose that H = C ′ − C 6= ∅, then by assumption, since H is closed
w.r.t. C ′ in the reverse graph (i.e. no arc points from a node in C ′∩C to a node in C ′−C), we have
(c− µkD)θH > 0. But H is disjoint from C̄, which implies that (c − µkD)(x̄ + θH) > (c − µkD)x̄,
and C̄ ∪H = Ci ∪ C ∪ C ′ is closed, which contradicts the optimality of C̄. The proof for the case
R′ −R 6= ∅ is similar. 2

25



4.4.4 Lagrangian Improvement and LP improvement: A More General Analysis

Recall from Lemma 50 that the integer part xi of the solution xk of the restricted problem P2(k)
is typically a suboptimal solution to the lagrangian of the unrestricted problem with penalties µk.
In iteration k + 1 we evaluate an optimal solution yk+1 to this lagrangian. In this section we will
show that the direction from xi to yk+1 corresponds with an improving vector for xk as well which
under certain conditions is guaranteed to be feasible, and that the algorithm allows the LP solution
to move in that direction.

Lemma 54 Let P be a GPCP with an extreme point x∗. Let k be the number of distinct fractional
values in x∗. Recall from Theorem 31 that there must therefore be at least k binding side constraints
at x∗. Assume now that the number of binding side constraints is exactly k. Then where Θ is the
matrix whose columns are the indicator vectors for the distinct fractional values in x∗, and D̄ is the
matrix of binding side constraints, D̄Θ is nonsingular.

Proof: Consider the restricted problem in which all elements in the support of each θr have a
common value, and in which all elements e for which x∗e is integer are restricted to that integer
value. For each of the k distinct values αr we therefore have one variable yr. We can now perform
the substitution x = xi + Θy, where xi is a constant integer vector with a 1 in positions (and only
in positions) where x∗ is 1. Notice that the bound constraints are just 0 ≤ y ≤ 1, and for any arc in
the original graph (i, j), if x∗i and x∗j were both fractionally valued, then i is in the support of some
θp and j is in the support of some θq, and so the associated precedence constraint xi ≤ xj is just
replaced by yp ≤ yq. If however x∗i and x∗j are both integer then they both are fixed and there is
no constraint, and if x∗i alone is fractional then x∗j is 1 and we can throw away the constraint, and
similarly if x∗j alone is fractional. Thus this restricted problem is also a GPCP, and the binding side
constraints are

DΘy ≤ d−Dxi. (76)

Observe now that y∗ with y∗r = αr is an extreme point solution with the same binding constraints,
and thus D̄Θ must have k linearly independent rows by Theorem 31. The lemma now follows from
the fact that DΘ has k columns. 2

There is no guarantee that the number of binding side constraints will not exceed k but this is
typically the case.

Lemma 55 Let xk be the optimal solution obtained to the algorithm’s restricted LP in the kth

iteration P2(k) (with xk represented in the original space). Let µk be the optimal duals for the side
constraints in P2(k), and let

xk = xi + Θα (77)

be its decomposition into integer and fractional parts as in Lemma 34. Then where D̄ are the binding
side constraints, c is the objective vector and Θ is as in Lemma 54,

cΘ = µkDΘ (78)

and
cxk = cxi + µk(d−Dxi) (79)

Proof: Consider the restricted problem in which all nodes with a common value in xk are collapsed
to a single node, and in which the new “super” nodes corresponding to the xk values 0 and 1 are
eliminated (as in the proof of Lemma 54). Clearly if we represent xk in this reduced space then it is
still an optimal extreme point solution. Note moreover that no precedence constraints are binding
(since all variables in the reduced space have distinct value), and no bound constraints are binding
(since all values are fractional), and µk is still the optimal dual vector corresponding to the side
constraints. The objective function for this problem is cΘ, and the side constraints are given by
(76). Duality therefore implies (78). Where y = Θxk is xk represented in the reduced space, then
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multiplying both sides of (78) by y gives 79 by (76) and complementary slackness. 2

Expression (79) says that the LP solution xk is equal to the lagrangian value of its associated
closure Ci in the lagrangian problem L(P1, µk). If Ci is optimal for that problem then the algorithm
reaches a stopping condition and xk is optimal for the unrestricted LP.

The following theorem says that moving δ > 0 distance in any lagrangian feasible direction θ
from the closure xi associated with xk, gives the same improvement to the lagrangian solution as the
improvement given to the LP solution by moving δ in the θ direction from xk plus some corrective
movement in the fractional values Θγ, and this movement from xk is feasible for the LP if δ is small
enough and D̄Θ is nonsingular. Thus in particular if θ is the vector such that xi + θ maximizes the
lagrangian L(P1, µk), then moving in the direction θ from xk maximizes the improvement in the LP
as well (though naturally the distance δ we can move while maintaining feasibility, while positive,
may be small).

Where θ is defined such that xi + θ optimizes the lagrangian problem L(P1, µk) (i.e. xi + θ is
the vector we refer to as yk in the algorithm), then where Ci is the support of xi and C is the
optimal closure (the support of xi + θ), θ is the vector with 1 in positions corresponding to elements
in C − Ci and −1 in positions corresponding to elements in Ci − C and zeros elsewhere. To allow
the solution to move from xk to xk + Θγ + δθ we need only update the partition by splitting each
part in the partition into those elements that were included in C and into those elements that were
excluded from C. This is exactly what the algorithm does.

Moreover, this argument holds for all of the closures defined by xk (all of which have the same
value, which is cxk) and not just for xi. In particular, where α1 > · · · > αq are the distinct fractional
values in xk and θr is the incidence vector for xk

j = αr, then for any r ∈ {1, . . . , q}, if θ is defined
such that xi +

∑r
j=1 θj + θ = yk then to move from xk to the appropriate xk +Θγ + δθ we need only

update the partition by splitting each part in the partition into those elements that were included
in C and into those elements that were excluded from C.

Theorem 56 Under the conditions of Lemma 55, given any vector θ such that xi + θ is lagrangian
feasible (for the lagrangian with penalties µk), the lagrangian value of xi + θ is

cxk + (c− µkD)θ. (80)

If DΘ is nonsingular, then there exists a scalar δ > 0 and a vector γ such that xk + Θγ + δθ is
feasible for P1, and

c(xk + Θγ + δθ) = cxk + δ(c− µkD)θ. (81)

Proof: The lagrangian value xi + θ is

c(xi + θ) + µk(d−D(xi + θ)) = cxi + µk(d−Dxi) + cθ − µkDθ = cxk + (c− µkD)θ (82)

where the final equality follows from (79).
Define γ by

γ = −δ(D̄Θ)−1D̄θ. (83)

Observe first that for any coordinate e for which xk
e = 0 we must have θe ≥ 0 and for any coordinate

e for which xk
e = 1 we must have θe ≤ 0 or else xi + θ would not have been lagrangian feasible. The

columns of the matrix Θ moreover only have nonzero elements corresponding to fractional xk
e , so for

small enough δ > 0, xk + Θγ + δθ still satisfies all bound constraints. For any binding precedence
constraint ax ≤ 0, we have aΘ = 0 by Lemma 34. Writing this binding precedence constraint as
xh ≤ xj , if xk

h and xk
j are fractional then xi

h = xi
j = 0 and so θh ≤ θj or else xi + θ would not

have been lagrangian feasible, and clearly for the same reason we would have θh ≤ θj if xk
h and xk

j

are integer (as in that case they match xi on those values). Thus xk + Θγ + δθ satisfies all binding
precedence constraints and for small enough δ it satisfies the other precedence constraints as well.
As for the side constraints,

D̄(xk + Θγ + δθ) = d̄ + D̄Θγ + δD̄θ = d̄ (84)
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by (83), and so for small enough δ they are also satisfied, which completes the proof of feasibility.
The objective value is

c(xk + Θγ + δθ) = cxk + cΘγ + δcθ = by (78) (85)

cxk + µkDΘγ + δcθ = by (83) (86)

cxk − δµkDθ + δcθ = (87)

cxk + δ(c− µkD)θ. 2 (88)

5 Computational Experiments

In this section we present results from some of our experiments. A more complete set of results will
be presented in the full paper. All these tests were conducted using a single core of a dual quad-core
3.2 GHz Xeon machine with 64 GB of memory. The LP solver we used was Cplex, version 10.2 and
the min cut solver we used was our implementation of Hochbaum’s pseudoflow algorithm ([H08]).

The tests reported on in Tables 1, 2 and 3, are based on three real-world examples provided by
BHP Billiton4, to which we refer as ’Mine1’, ’Mine2’ and ’Mine3’ and a synthetic but realistic model
called ’Marvin’ which is included with Gemcom’s Whittle [W] mine planning software. ’Mine1B’ is
a modification of Mine1 with a denser precedence graph. Mine3 comes in two versions to which we
refer as ’big’ and ’small’. Using Mine1, we also obtained smaller and larger problems by modifying
the data in a number of ways, as follows:

• Mine1 very small, small, medium, large. These are all derived by aggregating the blocks
in Mine1 into larger units to reduce the number of scheduling units.

• Mine1 x7 small. The two ”x7 small” cases consist of 7 copies of the block graph for Mine1,
but with blocks aggregated into larger units. The ”global capacity” case has a single mining
capacity per period and a single processing capacity per period and the ”separate capacities”
case has a separate mining constraint for each of the seven block graphs in addition to the
processing capacity constraint in each period.

• Mine1 full. No aggregation; the actual Mine1 case.

• Mine1 double, triple. Obtained by taking 2 and 3 copies of Mine1 (resp.) but binding them
by common capacity constraints.

• Mine1 triple 23, triple 34 and triple 100. Identical to the Mine1 triple case except that
the number of periods was increased from 12 to 23, 34 and 100, respectively.

Some of the row entries in these tables are self-explanatory; the others have the following meaning:

• Blocks. The units of earth whose extraction we wish to schedule. These are the jobs in
Definition 1.

• Block arcs. The number of arcs in the job (block) precedence graph G, as in Definition 1.

• Problem arcs. The number of arcs in the graph that the algorithm creates to represent the
scheduling problem (as per Theorem 28 and Definition 29).

• Binding side constraints at optimum. The number of side constraints at the optimum
solution as computed by our algorithm.

• Iterations, time to 10−5 optimality. The number of iterations (resp., the CPU time)
taken by algorithm until it obtained a solution it could certify as having ≤ 10−5 relative
optimality error.

4Data was masked.
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• Iterations, time to combinatorial optimality. The number of iterations (resp., the CPU
time) taken by algorithm until it terminated, obtaining a solution it could certify as optimal as
per the algorithm’s termination criteria. Notice that this implies that the solution is optimal
as per the numerical tolerances of Cplex.

• Lagrangian time. The total CPU time expended by the Lagrangian procedure until termi-
nation at optimality.

• Subproblem LP time. The total CPU time expended solving auxiliary linear programs until
termination at optimality.

Finally, an entry of ”—” entry means that Cplex was unable to terminate the task after 100000
seconds of CPU time.

We ran our algorithm in all cases with the same settings, with the exception of the ’Mine3
large’ case, for which we reduced the frequency at which coarsification (Step 6 in the algorithm) is
performed. This reduced the number of iterations required until algorithm termination from 61 to
39, though it only reduced the overall solution time from 1680 seconds to 1592 due to the extra time
spent solving the larger auxiliary linear programs at each algorithm iteration.

6 Further Work

The algorithm applied to PCPSP converges very quickly in practice. Problems with millions of
variables and tens of millions of constraints typically converge in under 20 iterations, with each
iteration requiring only seconds to solve. But though the observed convergence is fast, and we have
derived a variety of results that indicate why this should be expected, we do not yet have a proof of
fast convergence.

Another area for further research is whether and how the results obtained for the general prece-
dence constrained problem could be applied to other problems whose constraint matrix is a totally
unimodular matrix with some extra side constraints. Minimum cost network flow problems in partic-
ular share the structure in which the lagrangian could be solved with a fast combinatorial algorithm,
as well as the structure that the extreme point LP solutions are only a “little” fractional when the
number of side constraints is small.

Finally, the integer programming relevance of the result that the number of distinct fractional
values in the extreme point LP solution cannot exceed the number of binding side constraints – as
well as the parallel results for network flow and more general TUM problems – needs to be further
investigated.
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Marvin Mine1B Mine2 Mine3 small Mine3 big

Blocks 9400 29277 96821 675 108264
Parcels 9400 29277 96821 2975 177843
Block arcs 145640 1271207 1053105 1748 2762864
Periods 14 14 25 8 8
Destinations 2 2 2 8 8
Variables 199626 571144 3782250 18970 3503095
Variables
Cplex presolved 197666 568890 — 17056 —
Constraints 2048388 17826203 26424496 9593 19935500
Constraints
Cplex presolved 2047939 17822237 — 9353 —
Problem arcs 2229186 18338765 3001354 24789 23152350
Side
constraints 28 28 50 120 132
Non-knapsack
side constraints 0 0 0 10 13
Binding side const.
at optimum 14 11 23 33 44
Cplex
time (sec) 55141 — — 52 —

Algorithm Performance

Iters. to 10−5

optimality (sec) 8 8 9 14 30
Time to 10−5

optimality (sec) 10 60 344 1 1117
Iters. to
comb. optimality 11 12 16 15 39
Time to comb.
optimality (sec) 15 95 649 1 1592
Lagrangian
time (sec) 13 83 621 0 725
Subproblem
LP time (sec) 1 0 6 1 709

Table 1: Sample problems
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Mine1 very Mine1 Mine1 x7 small Mine1 x7 small Mine1 Mine1
small small global cap separate cap medium large

Blocks 105 469 3025 3025 3280 7892
Parcels 755 2650 17072 17072 7636 15003
Block arcs 222 1311 8229 8229 22671 113703
Periods 12 12 12 12 12 12
Destinations 2 2 2 2 2 2
Variables 14282 52916 378236 344852 160944 292800
Variables
Cplex presolved 14274 52909 378224 344845 160944 292560
Constraints 8834 37845 268963 244425 327628 1457684
Constraints
Cplex presolved 8834 37845 268963 244425 327628 1457539
Problem arcs 22232 87618 627178 569184 477632 1727565
Side
constraints 24 24 24 96 24 24
Non-knapsack
side constraints 0 0 0 0 0 0
Binding side const.
at optimum 12 11 15 50 11 11
Cplex
time (sec) 2 43 3643 4379 12904 98440

Algorithm Performance

Iters. to 10−5

optimality (sec) 6 7 9 18 6 8
Time to 10−5

optimality (sec) 0 0 2 23 1 7
Iters. to
comb. optimality 7 8 11 18 7 11
Time to comb.
optimality (sec) 0 1 3 23 2 11
Lagrangian
time (sec) 0 0 1 1 1 8
Subproblem
LP time (sec) 0 0 0 16 0 0

Table 2: Mine1 problems, I
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Mine1 Mine1 Mine1 Mine1 Mine1 Mine1
full double triple triple 23 triple 24 triple 100

Blocks 29277 58554 87831 87831 87831 87831
Parcels 29277 58554 87831 87831 87831 87831
Block arcs 985011 1970022 2955033 2955033 2955033 2955033
Periods 12 12 12 23 34 100
Destinations 2 2 2 2 2 2
Variables 489552 979104 1468656 2814924 4161192 12238800
Variables
Cplex presolved 487584 — — — — —
Constraints 11849433 23698842 35548251 68053636 1000559021 295591331
Constraints
Cplex presolved 11847000 — — — — —
Problem arcs 12280407 24560814 36841221 70692852 104544483 307654269
Side
constraints 24 24 24 46 68 200
Non-knapsack
side constraints 0 0 0 0 0 0
Binding side const.
at optimum 11 15 16 33 50 151
Cplex
time (sec) — — — — — —

Algorithm Performance

Iters. to 10−5

optimality (sec) 7 10 12 11 10 9
Time to 10−5

optimality (sec) 45 108 192 391 608 2737
Iters. to
comb. optimality 9 14 17 14 16 20
Time to comb.
optimality (sec) 61 155 280 507 1018 6500
Lagrangian
time (sec) 54 132 244 439 863 5496
Subproblem
LP time (sec) 0 4 5 12 52 570

Table 3: Mine1 problems, II
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