
A New LP Algorithm for Precedence Constrained Production

Scheduling

Daniel Bienstock∗ Mark Zuckerberg†‡

May, 2015

Wed.May.27.1549AEST.2015@IGSM488074

Abstract

The precedence constrained production scheduling problem is the problem of scheduling
the performance of jobs over a number of scheduling periods subject to precedence constraints
among the jobs. The jobs can each be performed in a number of ways, and it also needs to be
determined which processing option (or options) is to be chosen for each job. There can also be
arbitrary side constraints among these variables. The side constraints typically represent either
period capacity constraints, or profile constraints on the aggregate product produced in each
period.

These problems, as they occur in the mining industry, typically have a small number of
side constraints - often well under 100, but may contain millions of jobs and tens of millions of
precedences. Thus despite the fact that the integrality gap is often small in practice, the LP
itself is beyond the practical reach of commercial software.

We present a new iterative lagrangian-based algorithm for solving the LP relaxation of this
problem. This algorithm can be proven to converge to optimality and in practice we have found
that even for problems with millions of variables and tens of millions of constraints, convergence
to proved optimality is usually obtained in under 20 iterations, with each iteration requiring
only a few seconds to solve with current computer hardware.

1 Introduction

1.1 Background

1.1.1 Problem Definition

The production scheduling problems with which we will concern ourselves are those in which, given
a collection of “jobs” and a number of “scheduling periods”, we need to decide which jobs should be
processed in which scheduling period(s); processing a job consumes resources that may be constrained
in each period and affects the profile of the products produced in each period, which may also be
constrained. Additionally there will be two further modeling details:

1. Precedence relationships may exist among the jobs.

2. There may be more than one way of processing any given job.

1.1.2 The Open Pit Mine Scheduling Problem

The practical motivating problem behind our study is the open pit mine scheduling problem. The
open pit mine scheduling problem seeks to determine the optimal schedule for the extraction of

∗Department of Industrial Engineering and Operations Research, Columbia University
†Technology, Geoscience and Engineering Group Function, BHP Billiton Ltd.
‡Department of Mathematics and Statistics, University of Melbourne

1

mineralized earth from an open pit mine. The principal structural constraint associated with open
pit mining – known as the “slope constraint” – is that for any point x in the orebody, for reasons
of structural stability a schedule may not extract material at x before it extracts an upward facing
(generally) circular cone that sits above x, i.e. that the slope of the resulting pit after x is extracted
must not exceed some given angle. (See [F06] for a more thorough description of the problem.)

In this model a “job” is the extraction of a unit of material, and the slope constraint is modeled
by precedence relationships between each unit and the units in its upward facing cone. There are,
moreover, a number of options as to what to do with the unit of material once it has been extracted.
It may be sent to waste (this can happen even if the material has positive value and can be blended
to produce a saleable product, in order to conserve valuable capacity in the processing plant), or it
may be processed in one of several possible ways.

The distinguishing feature of the mine scheduling problem is that the vast majority of the con-
straints are those that model the slope constraint as described. The number of “production planning”
constraints (i.e. resource capacity, product profile and similar constraints) is generally on the order
of the number of scheduling periods, which for strategic problems is usually small. Thus there may
be under 100 production planning constraints in a typical problem.1

To obtain a reasonably accurate model of the slope constraint however, it is necessary that the
scheduling units (the “jobs,” or discrete units of work to be scheduled) not be overly large (typically
no larger than 30 meters in any dimension), and in any case it is desired to keep the unit sizes
small in order to maintain selectivity. Moreover to approximate a circular slope constraint via unit
precedences typically requires a substantial number of precedence constraints per unit (often 20 or
more)2

Considering that a typical orebody can have a size that measures into the cubic kilometers,
there can be many orebodies that need to be simultaneously scheduled, and a schedule needs to
be produced for 10 to 20 periods or more, this can easily make for a problem with millions of
variables and tens of millions of precedence constraints. Thus despite the fact that in practice the
integrality gap between the integer programming solution and the linear programming relaxation is
often small,3 the linear programming problem itself is well beyond the reach of commercial linear
programming solvers.

For precedence constrained production scheduling problems that occur in the mining industry
some typical numbers are as follows:

• Typical number of periods : 10 – 20.

• Typical number of destinations : 2 – 5.

• Typical number of side constraints : 20 – 200.

• Typical number of scheduling units: 10, 000 – 10 million.

• Typical number of precedences : 1 million – 4 billion.

1.1.3 Previous Work

The traditional approach to the open pit mine planning problem, popularized in Gemcom’s Whittle
[W] mine planning software, is known as the “nested shells” method. This method, which is based on
the work or Lerchs and Grossman ([LG65]), is applicable to problems for which the side constraints
are comprised of a single capacity constraint for each period and the processing method is fixed for
each unit. It assumes that any block of ore is defined by a single value v, and that the objective

1This is true of the open pit mine planning problems that occur in the academic literature. In actual practice one
can also find problems with a larger number of side constraints, though the number is still usually well under 1000.
We will have more to say about such problems later on.

2The reader can verify that if, for example, units are cubes and the maximum slope angle is 45◦, then the naive
model in which for each cube c there are five precedence cubes in the shape of a plus sign above c would yield a square
precedence cone rather than a circular precedence cone.

3Again, this is true of most problems in the academic literature, though in actual practice the integrality gaps are
not always small.

2

value of that block in any period t is the present value in period 1 of v obtained in period t subject
to some discount rate.

In this method the problem is first converted to one in which there is only one scheduling period,
the capacity constraints are ignored and the only decision is whether or not each unit of earth is
to be extracted. The resulting problem is known as a maximum weight closure problem, or “Max
Closure”4. Formally,

Definition 1 : Max Closure Problem.
Given a directed graph G whose vertices are weighted, find a maximum-weight subset of vertics C
with the property that there exist no arcs (i, j) with i ∈ C and j /∈ C.

A number of algorithms have been proposed for Max Closure, beginning with that of Lerchs and
Grossman, and culminating in the very efficient method described in [H08] (also see [CH09]).

The solution to the max closure problem yields a collection C1 of units. If the coefficient values
of the units in the objective are monotonically increased then it can be shown that there exists an
optimal solution C2 to the new problem, for which C2 ⊇ C1. The standard method is to penalize
every unit by some constant λ times the capacity consumption of the unit (for some chosen capacity),
and then to increase λ parametrically. Repeating this procedure yields a sequence of nested sets

Cn ⊇ Cn−1 · · ·C2 ⊇ C1 (1)

for which it can be shown that the inner sets have a higher average value per unit of capacity
consumption than the outer sets. For the purposes of present value optimization, these shells thus
give a rough guide indicating that the inner shells should be extracted before the outer shells.
The entire parametric analysis can be carried out efficiently with a parametric max flow algorithm
([HC00]).

This is obviously a very rough approach though, and it can be fairly useless when there are
constraints other than capacity constraints, or when there are multiple capacity constraints, or
multiple processing options. Moreover it is often the case that there is a huge jump in size between
some set and the next set in the sequence, and the algorithm can give no guidance as to how to
break up the difference between the sets into manageable chunks.

More recently, as commercial integer programming software has become more powerful, mine
scheduling software packages have emerged that aggregate units of earth into a small number of
large scheduling blocks in order to yield a mixed integer programming problem of tractable size.
Nevertheless the degree of aggregation that is required in order to obtain a solvable problem can be
enormous – combining thousands of units in the original formulation into a single aggregated unit –
which can compromise the validity and the usefulness of the solution.

Other heuristic approaches have appeared in the open mine planning literature (see [HC00],
[F06] and more recently, [NRCWE10] for overviews). Regarding exact approaches, Caccetta and
Hill [CH03] announce a branch-and-cut based algorithm designed for large scale problems, but due
to commercial confidentiality considerations no details of their method are provided.

Recently, (and independent of our work,) there has been some new work relevant to the solution
of the LP relaxation of the open pit mine scheduling problem. [BDFG09] have suggested a new
approach in which blocks are aggregated only with respect to the digging decisions but not with
respect to the processing decisions, i.e. all original blocks in an aggregate must be extracted in a
common period, but the individual blocks comprising an aggregate can be processed in different
ways. This problem is referred to by the authors as the ”Optimal Binning Problem”. As long as
there is more than one processing option this approach still maintains variables for each block and
period and is therefore still very large, but the authors propose an algorithm for the LP relaxation of
this problem that is only required to solve a sequence of linear programs with a number of variables
on the order of the number of aggregates (times the number of periods) in order to come to a solution
of the large LP. Thus if the number of aggregates is small the LP can be solved quickly.

Another development that has come to our attention recently is an algorithm by [CEGMR12]
which can solve the LP relaxation of even very large instances of the open pit mine scheduling

4In the mining industry this problem is known as the “ultimate pit problem”.

3

problem very efficiently. This algorithm is only applicable however to problems for which there is a
single processing option and for which the only constraints are knapsacks and there is a single such
constraint in each scheduling period. The authors note however that more general problems can be
relaxed to have this form in order to yield an upper bound on the solution value.

From a broad perspective, the method we give below uses dual information in order to effectively
reduce the size of the linear program, which is a feature in common with [BDFG09], and in fact when
our method is applied to the “Optimal Binning Problem” (which can be shown to be a special case
of the precedence constrained production scheduling problem), the result is an algorithm broadly
similar to theirs. The relationship between the max closure problem and the LP is a theme in
common with the work of [CEGMR12].

1.2 Overview

In this paper we will present a new algorithm for provably solving the linear programming relax-
ation of the precedence constrained production scheduling problem. Our algorithm is applicable to
problems with an arbitrary number of process options and arbitrary side constraints, and it requires
no aggregation. We will show that the precedence constrained production scheduling problem can
be reformulated as a problem in which all constraints needed to model the slope constraint and the
multiple processing options are of the form

xi ≤ xj . (2)

A problem in which all constraints (other than the box constraints) are of this form is in fact a
max closure problem, and can be solved as a minimum s–t cut problem ([P76] and others). Thus the
mine scheduling problem can be thought of as a minimum s–t cut problem with a small number of
side constraints. This structure makes the problem amenable to lagrangian based approaches, since
by dualizing the side constraints we are left with a min cut problem, for which the aforementioned
sizes are well within the reach of published algorithms.

The algorithm we will present iteratively solves a lagrangian relaxation, which it uses to generate
a “small” LP (with a number of variables and constraints on the order of the number of side
constraints, depending on the exact implementation5), whose solution is in turn used to update the
lagrangian relaxation. The algorithm will be proven to converge, solving both the lagrangian and
the original LP.

On very large, real-world instances our algorithm proves very efficient. In practice convergence
is often in ten iterations or less, and thus the algorithm is suited to be embedded inside of a branch
and bound algorithm to solve the original IP.

1.3 Roadmap

In Section 2 we will formally describe the precedence constrained production scheduling problem, and
we show that it can be reformulated as a min cut problem with the same number of side constraints.
We will refer to this problem as the “General Precedence Constrained Problem” (GPCP). This
observation motivates the attempt to tackle our problem with some form of lagrangian formulation.
In Section 3 we develop a general algorithmic framework in which the structure of an optimal primal
solution is “guessed”, and then an LP incorporating the guess is solved, supplying a candidate set of
duals to be supplied to the lagrangian. If the guess is wrong, then the lagrangian solution with the
given duals can be shown to detect this and to imply a modification of the guess, leading to a new
– and strictly better – LP. The guess is thus a lever that connects the lagrangian and the primal
problems, enabling the progress in the one to improve the other. The result is an algorithm in which
lagrangian steps are iteratively coupled with LP steps to jointly optimize both the lagrangian and
the primal.

5The number of constraints in the small LP could conceivably be quadratic in the number of side constraints, but
it is typically of the same order as the number of variables in the small LP.

4

The algorithmic framework that we introduce – which we will refer to as an “Algorithm Template”
– expands earlier work ([B02]) in which structure was algorithmically extracted from lagrangian so-
lutions in the effort to obtain LP solutions. We will also indicate several other ways to characterize
the template, including a geometric interpretation as a method to approximate the lagrangian epi-
graph at its minimizer. In the appendix we develop this approach more fully, proving thereby that
the tempate converges pseudologorithmically in the case where only one constraint was dualized.
We also show that one of the ways in which to implement the template is equivalent to column
generation. In general the template is strictly monotonic, and under mild conditions it converges
finitely.

In Section 3.4 we show that the structure of the GPCP affords a natural “combinatorial” im-
plementation of the Algorithm Template. We define the algorithm and prove convergence. Along
the way we also prove that given an extreme point solution x to a min cut problem with k side
constraints, x contains no more than k distinct fractional values (we prove something stronger, ac-
tually), a result that plays an important role in the algorithm. In the appendix we also show that
a similar but more general result holds for all problems whose constraint sets are totally unimod-
ular matrices with the addition of side constraints, which may open the possibility that a similar
algorithm can be developed for min cost network flow problems plus side constraints.

In Section 4 we describe a variation of the algorithm in which the solution iterates (i.e. the
sequence of feasible points discovered by the algorithm) are all extreme points. We also describe a
method by which the solution returned by the algorithm in its standard formulation can be converted
to an extreme point solution by way of solving a single, typically small LP (i.e. of size on the order
of the number of side constraints), or by solving a number of guaranteed small LP’s.

In Section 5 we consider a variation of the algorithm in which rather than to obtain a single
lagrangian solution at each iteration, we obtain every lagrangian solution. Using a result of Picard
and Queyranne ([PQ80]) characterizing the full set of max closures of a graph, we show that it is
often possible to do this fairly efficiently. This results in a nice graph theoretical characterization
of the relationship between the full diversity of primal and lagrangian solutions, associated with the
algebra of max closures. We have not however, managed to obtain clear practical benefits from this
approach, and we discuss why this may be the case.

The underlying idea however, is that it may be possible to extract more information from the
lagrangian solutions than is obtained by the vanilla implementation of the algorithm. This idea is
one that we have been able to use profitably. In Section 6 we begin by describing a specialized
version of the PCPSP to which we refer as the “Parcel Assignment Problem” (which is essentially
equivalent to the “Optimal Binning Problem” of [BDFG09]). In this problem the decisions as to
when the jobs are to be performed are aggregated to a small number of “super” decisions, but
the decisions as to how they are to be performed are left as is. This problem is instructive as it
has a particularly natural implemenatation of the algorithm template (one which is, incidentally,
quite similar to the method employed by [BDFG09] for this problem) insofar as in this case the
shared structure between the lagrangian and the LP is quite obvious. It turns out however, that
the information that can be extracted from the lagrangian in the PAP case, can also be extracted
in the more general PCPSP case, and thus the two items of information can be combined into a
richer implementation of the algorithm. We then describe several other approaches along these lines
by which more information can be discovered early, thus expediting convergence.

In section 7 we present the results of computational experiments, and finally in Section 8 we
discuss directions for further research.

2 Precedence Constrained Production Scheduling and Max-
imum Closure

Definition 2 : Precedence Constrained Production Scheduling Problem.
In this problem we are given a set of jobs to be processed over T time periods, using a set of F
processing options (or “destinations”), while respecting a set of precedence relationships among the
jobs as well as additional “side”-constraints, and at minimum cost. Each job must be processed in a

5

single period,6 but its processing can be split among the various options. Formally,

(1) We are given a directed graph G = (N ,A), where the elements of N represent jobs, and the
arcs A represent precedence relationships among the jobs ((i, j) ∈ A means that job j must be
completed no later than job i).

(2) For each job j, time period t and processing option k, the cost of processing job j at time t
using option k is denoted cj,t,k.

(3) We denote by xj,t,k ∈ [0, 1] the fraction of job j processed in period t using option k, and by
yj,t ∈ {0, 1} the decision to process job j in period t; we assume the side-constraints can be
stated in the form Dx = d, where the rows of D are linearly independent.

Using this choice of decision variables the LP relaxation of the problem, which we will refer to as
PCPSP, is as follows:

(PCPSP): max cTx (3a)

Subject to:

t∑
τ=1

yi,τ ≤
t∑

τ=1

yj,τ , ∀(i, j) ∈ A, 1 ≤ t ≤ T (3b)

Dx = d (3c)

yj,t =

F∑
f=1

xj,t,f , ∀j ∈ N , 1 ≤ t ≤ T (3d)

T∑
t=1

yj,t ≤ 1, ∀j ∈ N (3e)

x ≥ 0. (3f)

Alternatively, we may represent the side-constraints as inequalities. In practice this is usually
the more natural and convenient model, and in fact the algorithm will usually perform better this
way for reasons we will point out later. Nevertheless, the analysis is simplified considerably by
assuming that these are equalities and that they are linearly independent, and so we will follow this
assumption throughout. Given a subset of vertices S in a directed graph we denote by δ+(S) the
set of arcs (i, j) of G with i ∈ S and j /∈ S.

Definition 3 : General Precedence Constrained Problem.
Given a directed graph G = (N ,A) with n vertices, a weight cj for each j ∈ N , and a (possibly
empty) system Dx = d of linear constraints on n variables, we consider the following linear program:

(GPCP): max cTx (4a)

Dx = d (4b)

xi − xj ≤ 0, ∀ (i, j) ∈ A, (4c)

0 ≤ xj ≤ 1, ∀ j ∈ N . (4d)

If the system Dx = d is empty then this problem is equivalent to the max closure problem on G with
weight vector c; see Definition 1.

This problem is more general than PCPSP:

6This requirement makes the problem easier to describe, but it is relaxed in the LP, and it is not generally strictly
required by the IP either.

6

Lemma 4 Any instance of PCPSP can be reduced to an equivalent instance of GPCP with the same
number of x variables and the same total number of constraints.

Proof. Consider an instance of PCPSP on G = (N ,A), with T time periods, F destinations and side
constraints Dx = d. Using (3d) the y variables can be eliminated. Consider the following system of
inequalities on variables zj,t,f (j ∈ N , 1 ≤ t ≤ T , 1 ≤ f ≤ F):

zj,t,f − zj,t,f+1 ≤ 0, ∀ j ∈ N , 1 ≤ t ≤ T, 1 ≤ f < F, (5a)

zj,t,F − zj,t+1,1 ≤ 0, ∀ j ∈ N , 1 ≤ t < T, (5b)

zj,T,F ≤ 1, j ∈ N , (5c)

zi,t,F − zj,t,F ≤ 0, ∀ (i, j) ∈ A, 1 ≤ t ≤ T, (5d)

zj,1,1 ≥ 0. (5e)

Given a solution (x, y) to PCPSP, we obtain a solution z to (5) by setting, for all j, t and f

zj,t,f =

t−1∑
τ=1

F∑
f ′=1

xj,τ,f ′ +

f∑
f ′=1

xj,t,f ′ . (6)

Conversely given z that satisfies (5) we can obtain a feasible solution (x, y) to PCPSP by using (6)
to write x as a function of z. Thus, for an appropriate system D̄z = d̄ (with the same number of
rows as Dx = d) and objective c̄T z, PCPSP is equivalent to the linear program:

min{c̄T z : D̄z = d̄, and constraints (5)}.

Note: The idea behind the transformation in Lemma 4 is that the variable zj,t,f , which corresponds
to a node (j, t, f) in a GPCP, represents the proportion of job j performed either in a period before t,
or in period t at a destination h ≤ f . This is enforced by drawing arcs from each node (j, t, f) to the
node (j, t, f + 1), and from each node (j, t, F) to the node (j, t + 1, 1). The precedence constraints
in period t between jobs i → j in PCPSP are enforced by drawing arcs from node (i, t, F) to
(j, t, F), indicating that the proportion of job i performed by the end of period t is less or equal
to the proportion of job j performed by the end of period t. Note also that though the number of
precedences in the instance of GPCP is larger than in the original instance of PCPSP, nevertheless
we stress that the number of constraints (and variables) is indeed the same in both instances.

Observation 5 Given an instance of problem GPCP let µ ≥ 0 be a vector of dual variables for the
side-constraints (4b). Then the Lagrangian problem obtained by dualizing (4b) using µ,

max cTx + µT (d−Dx) (7a)

Subject to: xi − xj ≤ 0, ∀ (i, j) ∈ A (7b)

0 ≤ xj ≤ 1, ∀ j ∈ N . (7c)

is a maximum closure problem with |A| precedences.

Observation 6 Given an instance of PCPSP consider the Lagrangian problem obtained using a
given set of penalties µ corresponding to the side constraints. As per Lemma 4 and Observation 5
this Lagrangian problem is a max closure problem with node weights c−DTµ, i.e. penalized values
c. It is easy to see from the transformation in Lemma 4 that in this max closure problem all of the
nodes corresponding to triples (j, t, k) arising from a given job j and period t can be replaced by a
single node corresponding to a destination h that maximizes

∑
k≥h[c−DTµ]j,t,k.

Observation 7 The feasible space of the linear relaxation of the max closure problem, max wTx :
xi−xj ≤ 0, ∀(i, j) ∈ A, 0 ≤ x ≤ 1 is defined by a totally unimodular matrix with integer right-hand
side and integer bounds and is therefore an integral polytope.

7

The following result, together with Observation 7, shows that GPCP with no side constraints
(and thus the Lagrangian problem obtained by dualizing the side-constraints of GPCP) can be solved
with a min-cut algorithm.

Theorem 8 [P76] Given a graph G with weights wn associated with each node in the graph, define
the graph G′ as follows: Add a node s to the graph and an arc (s, n) with capacity wn for each node
n for which wn ≥ 0, and add a node t to the graph and an arc (n, t) with capacity −wn for each node
n for which wn < 0. The s side of a minimum s–t cut in G′ constitutes a maximum value closure
in G w.r.t. w.

Other constructions that demonstrate the reducibility of max closure to max-flow or min-cut can
be found in [J68], [Bal70] and [R70]. Further discussion can be found in [HC00], where the authors
note (at the end of Section 3.4) that max closure with an added cardinality constraint is an NP-hard
problem.

3 Solving GPCP

3.1 LP solutions, Lagrangian Solutions and Decomposition Theorems

Observation 5 together with Theorem 8 suggests that a Lagrangian relaxation algorithm for solving
GPCP – i.e., an algorithm that iterates by solving problems of the form (7) – would enjoy fast
individual iterations. This is correct: it has been observed in the literature that extremely large
max closure instances can be solved quite fast using the appropriate min-cut algorithms and our
experiments confirm this fact. However, in our experiments we also observed that the application
of traditional Lagrangian relaxation methods (such as subgradient optimization) to GPCP performs
quite poorly, requiring vast numbers of iterations and frequently not converging to solutions with
desirable accuracy.

Our approach, instead, relies on leveraging combinatorial structure that optimal solutions to
GPCP must satisfy. We do this however within a more general algorithmic framework. The prelim-
inary idea that we will develop in this section is that for any primal feasible solution, it is possible
to associate a family of “Lagrangian equivalent” solutions (which may include primal infeasible so-
lutions). These are defined by a decomposition which we will characterize here, and which will play
a fundamental role in the analysis that follows.

Notation 9 Let Dx = d be a fixed linear system with D ∈ Rq×n of full row rank. Given a polyhedron

P = P(A, b)
.
= {x ∈ Rn : Ax ≤ b, Dx = d}, (8)

(1) We write
LP(P) : max{cTx : x ∈ P}.

(2) For each vector µ ∈ Rq, the Lagrangian function defined by dualizing Dx = d with penalties µ
is the affine function

Lµ(x)
.
= (cT − µTD)x + µT d.

We will also write L(µ) to denote the optimization problem

max{Lµ(x) : Ax ≤ b}, (9)

and denote the value of L(µ) by L∗µ.

(3) We will say that a vector µ of duals for Dx = d is optimal for the dual of LP(P) if there
exists a vector λ of duals for Ax ≤ b such that the pair (λ, µ) is an optimal vector for the dual
of LP(P) (and likewise with λ).

8

(4) For any given x ∈ Rn, let I=
x denote the set of rows i of A such that aTi x = bi (where aTi

denotes ith row of A) and write A=
x and b=x to denote the corresponding submatrix of A and

subvector of b, respectively. We will drop the superscript when the dependence is clear. The
null space of A=

x will be denoted Nx
A.

(5) Given a vector µ of duals for the constraints Dx = d, and a vector y ∈ Rn, the penalized value
of y (with respect to µ) is (cT − µTD)y.

In Lemmas 10 - 14 we consider a fixed polyhedron P = P(A, b).

Lemma 10 Let x̂ be an extreme point of P. Then dim(N x̂
A) ≤ q.

Proof: We must have rank(A=
x̂) ≥ n− q from which the result follows.

Lemma 11 Let x̂ ∈ P, let xi ∈ Rn satisfy A=
x̂ x

i = b=x̂ , and let Θ be a matrix whose columns span
N x̂
A. Denote by s the number of columns of Θ. Then

(1) There exists α ∈ Rs such that
x̂ = xi + Θα. (10)

(2) If the columns of Θ are linearly independent and x̂ is an extreme point of P, then s ≤ q.

Proof: The first statement results from the fact that Āx̂(x̂ − xi) = 0, and the second statement
follows from Lemma 10.

We will see later that in the case of GPCP particular structure of the A matrix gives rise to a
combinatorial interpretation of Lemma 11 (additional discussions in the Appendix).

Lemma 12 Let x̆ ∈ Rn satisfy Dx̆ = d. Suppose we can write x̆ = xi + Θα for some xi ∈ Rn,
s ≥ 1, Θ ∈ Rn×s and α ∈ Rs. Suppose µ ∈ Rq satisfies cTΘ = µTDΘ. Then

cT x̆ = Lµ(xi). (11)

Proof:

cT x̆ = cTxi + cTΘα = cTxi + µTDΘα = cTxi + µTD(x̆− xi) = cTxi − µT (Dxi − d) (12)

= Lµ(xi). (13)

Remark: In other words, for any dual vector µ such that the penalized value of each column of Θ
(w.r.t. µ) is zero, the objective value of x̆ equals Lµ(xi).

By linear programming duality if x̆ ∈ P and µ is a vector of duals corresponding to the constraints
Dx = d, then x̆ and µ are optimal (for LP(P) and its dual, respectively) if and only if Lµ(x̆) = L∗µ.
The following results generalize this fact to the context of the decomposition in Lemma 11.

Lemma 13 Let x̂ ∈ P, let Θ be a matrix each of whose columns is in N x̂
A, and suppose µ̂ ∈ Rq is

a vector of duals for Dx = d. If x̂ and µ̂ are optimal for LP(P) and its dual, respectively, then
µ̂TDΘ = cTΘ.

Proof: If λ̂ is any optimal vector of duals for constraints Ax ≤ b, we have cT = µ̂TD+ λ̂TA, and so

cTΘ = µ̂TDΘ + λ̂TAΘ = µ̂TDΘ, (14)

as desired .

Lemma 14 Let x̆, xi, α and Θ be as in Lemma 11, and suppose µ ∈ Rq is a vector of duals for
Dx = d. Then x̆ and µ are optimal for LP(P) and its dual, respectively, if and only if µTDΘ = cTΘ
and Lµ(xi) = L∗µ.

9

Proof: Suppose that x̆ and µ are optimal for LP(P) and its dual. By Lemma 13

cTΘ = µTDΘ, (15)

and by Lemma 12 Lµ(xi) = cT x̆ = L∗µ. Conversely if Lµ(xi) = L∗µ and µTDΘ = cTΘ, then by

Lemma 12 cT x̆ = Lµ(xi), which by assumption equals L∗µ, establishing that (x̆, µ) is an optimal
pair.

Informally, the preceding results show that the columns of Θ, i.e. the vectors that span N x̆
A, are

interesting for a number of reasons:

(N.1) They preserve the set of binding constraints for the Lagrangian problem, i.e. for all x and α,
A=
x̆ x = A=

x̆ (x+ αΘ).

(N.2) They preserve the Lagrangian objective value, i.e. where µ is such that cTΘ = µTDΘ, Lµ(x) =
Lµ(x+ Θα).

(N.3) If DΘ is invertible, there is a a unique µ with cTΘ = µTDΘ, namely µT = cTΘ(DΘ)−1 .

Items (N.1) – (N.3) state that if DΘ is invertible, then Θ determines µ, and the family of vectors
{x̆ + Θα} are “equivalent’’ to x̆ in the sense that they have a common Lagrangian objective value
and attain constant A=

x̆ x value (and so are also feasible for Lµ for all α within a neighborhood of
0). For this reason we term the columns of Θ Lagrangian neutral vectors. Note that if DΘ is
invertible, then for any vector x′, we can find α′ so that x̃ = x′+ Θα′ satisfies Dx̃ = d, A=

x̆ x
′ = A=

x̆ x̃
and Lµ(x′) = Lµ(x̃). In other words, if DΘ is invertible then it is always possible to move from any
point x′ along lagrangian neutral vectors (thus maintaining lagrangian value and satisfaction of A=

x̆

constraints) to a new point x̃ that will also satisfy the D constraints. We will see this more formally
in the following section.

3.2 An Algorithmic Template

We begin with the following algorithmic idea used to address a problem LP(P). Suppose we have
made a guess as to some valid property that an optimal solution to LP(P) will satisfy, and we can
express this property as Hx = h. We could then solve the more constrained system

P2(H,h) : max{cx : Ax ≤ b, Hx = h, Dx = d}.

This approach can prove useful if problem P2(H,h) is significantly easier than LP(P), and if the
process of guessing does not entail a heavy computational load.

In our implementation we use an approximate guess, so that the system Hx = h may not be truly
valid (i.e. not satisfied by an optimal solution to LP(P)), and then correct the guess to make it
“more” valid. To perform this correction we can use an optimal primal and dual solution to problem
P2 = P2(H,h). Thus, let x̂ be optimal for P2, and let µ̂ be optimal dual variables for Dx = d (in
P2). If the guess is incorrect then L∗µ̂ > cT x̂, (or else, by weak linear programming duality, x̂ would
be optimal for LP(P) and the guess would have been correct). We will show soon that under mild
conditions the converse also holds (i.e. if the guess is correct then L∗µ̂ = cT x̂). When the guess is
incorrect we can still evaluate its merits and improve upon it by relying on the Lagrangian function;
we will assume that the Lagrangian relaxations (9) are “easy” to solve.

Thus, assume L∗µ̂ > cT x̂ and let x̄ be any optimal solution to L(µ̂). Observe that x̄ cannot satisfy
Hx̄ = h, because if it did we would have

max{(cT − µ̂TD)x + µ̂T d : Ax ≤ b, Hx = h} ≥ (cT − µ̂TD)x̄ + µ̂T d = L∗µ̂ > cT x̂,

while on the other hand since (x̂, µ̂) is an optimal pair for P2 we also have

cT x̂ = max{(cT − µ̂TD)x + µ̂T d : Ax ≤ b, Hx = h},

a contradiction.

10

Intuitively, the fact that x̄ does not satisfy Hx̄ = h exposes a flaw in the guess, as the whole
idea of the H constraints is a guess as to constraints that hold at an optimal solution, and we see
here that they do indeed cut off the optimal solution x̄ for the lagrangian with the optimal duals
that result from the guess. The natural correction then is to modify H so as not to cut off x̄. While
admittedly this assessment is based on the duals that emerged from an overly restrictive guess, they
still may provide useful, if approximate, information as to how the guess ought to be modified. We
will in fact show below in Theorem 17 that, under mild conditions, relaxing the constraints Hx = h
into a system H̄x = h̄ such that H̄x̄ = h̄ always leads to a feasible improving direction for LP(P)
at x̂.

First we present some auxiliary results, assuming a given polyhedron P = P(A, b) of the form
(8).

Lemma 15 Let y ∈ P and Θ be a matrix with columns in Ny
A. Suppose DΘ is nonsingular, and set

µT = cTΘ(DΘ)−1. Finally, let xµ ∈ Rn be such that Axµ ≤ b. Then there exists a vector x̆ of the
form x̆ = xµ + Θα (for some α) satisfying A=

y x̆ ≤ b=y , Dx̆ = d. Thus x̆ satisfies all the constraints

for LP(P) that are binding at y. Moreover, cT x̆ = Lµ(x̆) = Lµ(xµ).

Proof: Let α be such that Dxµ +DΘα = d and let x̆ = xµ + Θα. Then

A=
y x̆ = A=

y xµ +A=
y Θα = A=

y xµ ≤ b=y , and by construction

Dx̆ = d.

By Lemma 12, Lµ(xµ) = cT x̆, which equals Lµ(x̆) since Dx̆ = d.

Remark 16 Under the conditions of Lemma 15, there exists a scalar γ > 0 such that for all 0 < γ′ ≤
γ, y+γ′(x̆−y) is feasible for LP(P) and has objective (and Lagrangian) value cT y+γ′(Lµ(xµ)−cT y).
Thus, if Lµ(xµ) > cT y, there is a feasible improving direction along which, additionally, we have
Lµ(x) = cTx (as Dx = d holds for all x along the direction).

We will now prove the theorem.

Theorem 17 Let the system Hx = h be given, let x̂ be an optimal solution of P2(H,h), let ΘH be

a matrix with columns in the null space of
(
A=

x̂

H

)
, and let the system H̄x = h̄ be such that

{x ∈ Rn : H̄x = h̄} ⊇ {x ∈ Rn : Hx = h}. (16)

Assume DΘH is nonsingular, and let µT
.
= cTΘH(DΘH)−1 and xµ ∈ argmax{Lµ : Ax ≤ b}. We

assume:

(a) H̄xµ = h̄.

Then:
(1) Suppose Lµ(xµ) > cT x̂. Then, at x̂,

(i) There is a strictly improving direction for cTx which is feasible for P2(H̄, h̄) and

(ii) Along this direction Lµ(x) = cTx holds.

(2) Suppose x̂ is optimal for LP(P) as well. Then Lµ(xµ) = cT x̂ and thus µ is an optimal dual
vector for LP(P).

Proof: (1) Note first that the null space of H is a subset of the null space of H̄. The proof is as
follows: Assume there exists a vector θ with Hθ = 0 but H̄θ 6= 0. Considering that {x : Hx = h} 6= ∅
(it contains x̂), let y belong to this set, and so y also belongs to {x : H̄x = h̄} by (16). Thus y + θ
belongs to {x : Hx = h} but not to {x : H̄x = h̄}, which contradicts (16). It follows therefore that
H̄ΘH = 0. Observe now that x̂ ∈ P, that the columns of ΘH all belong to N x̂

A, and that Axµ ≤ b.

11

Letting Θ = ΘH , we can therefore apply Lemma 15 with the xµ of Lemma 15 chosen the same as
xµ here, to obtain the vector x̆ = xµ + ΘHα as defined there, and Lµ(x̆) = Lµ(xµ). Consider the
direction δ from x̂ to x̆. By Remark 16, δ is strictly improving for cTx and all points x along δ
satisfy Lµ(x) = cTx. To complete the proof we will show that all x along δ satisfy all constraints
for P2(H̄, h̄) that are binding at x̂, namely A=

x̂ x ≤ b=x̂ , Dx = d and H̄x = h̄. The former two follow
directly from Lemma 15. To prove the latter we must show that the opposite endpoint of δ, namely
x̆, also satisfies H̄x̆ = h̄. This is shown as follows:

H̄x̆ = H̄xµ + H̄ΘHα = H̄xµ = h̄. (17)

(2) If Lµ(xµ) > cT x̂ then by (1) x̂ would not be optimal for P.

Remarks:
1. Since Lµ(xµ) is an upper bound on LP(P), Theorem 17 and Corollary 16 show that P2(H̄, h̄)
contains points that are at least the fraction γ of the way from the value at x̂ to optimality.
2. Using (ii), the improving direction is also improving for the Lagrangian value, and by the same
amount.

Informally, the procedure suggested by Theorem 17 for solving LP(P) is as follows. Given con-
straints Hx = h (these are the constraints we currently “guess’’ to hold at optimality),

• Solve the problem P2(H,h) to get optimal primal x̂, and optimal dual µ̄.

• Get xµ̄ maximizing the lagrangian L(µ̄).

• Check if xµ̄ satisfies Lµ(xµ) = cT x̂. If so, then we are done, otherwise xµ̄ violates Hx = h.
Relax Hx = h to H̄x = h̄, where (H̄, h̄) is chosen so that H̄xµ̄ = h̄. Replace (H,h) with
(H̄, h̄), and repeat.

Theorem 17 implies that if at each step of this procedure, ΘH is a matrix with columns in the

null space of
(
A=

x̂

H

)
, and DΘH is nonsingular, then this procedure will yield a strictly monotonically

improving sequence of solutions to LP(P). The next set of results will show that with minor changes
to the problem, DΘH can in fact be assumed to be nonsingular. We remind the reader that q denotes
the number of rows of D.

Definition 18 : Random model. Let ε > 0 be small and d̄ ∈ Rq. A polyhedron P = P(A, b) (see
eq. (8)) where d is chosen randomly, with uniform probability, from within the ball

B(d̄, ε)
.
= {d ∈ Rq : ||d− d̄|| < ε}

will be called a random instance.

Lemma 19 Let y ∈ P, let Ă be a submatrix of A=
y (with corresponding subset of rows Ĭ and

subvector b̆ of b) such that
(
Ă
D

)
is nonsingular, and let Θ̆ be a matrix each of whose columns is

contained in the null space of Ă. With d chosen under the random model, the probability that
aTi Θ̆ 6= 0 for any i ∈ I=

y − Ĭ is zero.

Proof. Choose any i /∈ Ĭ. Then there exist unique vectors λ1, λ2 such that λT1 Ă + λT2 D = aTi . If,

additionally, aTi Θ̆ 6= 0 then λ2 6= 0. If furthermore i ∈ I=
y then λT1 b̆+ λT2 d = bi. This completes the

proof since, with λ2 6= 0, under the random model the measure of the set {d ∈ B(d̄, ε) : λT1 b̆+λT2 d =
bi} is zero.

Lemma 20 Let Ă be a submatrix of A such that
(
Ă
D

)
is n× n and nonsingular, and let Θ̆ ∈ Rn×s

be a matrix whose columns are linearly independent and such that ĂΘ̆ = 0. Then (1) s ≤ q and (2)
the columns of DΘ̆ are linearly independent, and so if s = q then DΘ̆ is q × q and invertible.

12

Proof: Since D has q rows it follows that Ă has n − q rows, which by assumption are linearly
independent, and so s ≤ q. Next we prove that the columns of DΘ̆ are linearly independent. Thus,

suppose π ∈ Rs is such that DΘ̆π = 0. Then
(
Ă
D

)
Θ̆π = 0, and since

(
Ă
D

)
is nonsingular, we have

Θ̆π = 0, which implies π = 0.

Lemma 21 Let x̂ ∈ P be an extreme point and let Θ be a matrix whose columns form a basis for
the null space of A=

x̂ . Then under the random model, DΘ is invertible with probability 1.

Proof: Since x̂ is an extreme point, there exists a submatrix Ă of A=
x̂ such that

(
Ă
D

)
is n× n and

invertible; thus every column of Θ belongs to the null space of Ă. If we can prove that Θ is a basis
for the null space of Ă then it will follow (since Ă has n−q rows) that Θ has q columns, and so DΘ is
invertible by Lemma 20. Thus suppose θ is in the null space of Ă. Applying Lemma 19 with y = x̂,
and Θ̆ the matrix with the single column θ, we have that under the random model A=

x̂ θ = 0 with
probability 1. But in that case by assumption θ is indeed spanned by the columns of Θ, as desired.

Lemma 22 If LP(P) has on optimal solution, then under the random model, with probability 1
there is a unique optimal dual µ̂ corresponding to Dx = d.

Proof: Let x̂ be an extreme point optimal solution to LP(P) and let Θ be a matrix whose columns
form a basis for the null space of A=

x̂ . By Lemma 13, if µ̂ is dual optimal for the constraints Dx = d,

µ̂TDΘ = cTΘ.

This completes the proof, since by Lemma 21, DΘ is invertible with probability 1 under the random
model.

Note now that each problem P2(H,h) is also of the form LP(Q), with Q defined as

Q .
= {x : Ax ≤ b, Hx = h, Dx = d} = P(Â, b̂), where (18)

Â =

 A
H
−H

 and b̂ =

 b
h
−h

 .

Thus applying Lemma 21 to LP(Q), we conclude that under the random model, DΘH in Theorem
17 can be assumed to be nonsingular,7 so long as the method used for solving the problems P2(H,h)
returns an extreme point solution, and so long as we assume that the pool H from which the H
constraints are drawn is fixed and finite. The reason we must assume the latter is that the H
constraints belong to the category of the A constraints of P , and therefore if the selection of the H
constraints is solely opportunistic, then the probability argument will fail.

The next theorem shows that the usefulness of having DΘ nonsingular goes beyond the fact that
it ensures monotonicity by Theorem 17.

Theorem 23 Let x̂ be an optimal solution to LP(P), and assume that x̂ satisfies some constraints
Hx = h. Let Θ be a matrix whose columns form a basis of N x̂

A, and let ΘH be a matrix whose

columns form a basis of the null space of
(
A=

x̂

H

)
.

(1) If DΘH is nonsingular, then µ = cTΘH(DΘH)−1 is the unique optimal dual solution to
LP(P).

7While in principle one can usually perturb the rhs microscopically without affecting the usefulness of the result,
there is in practice some price to doing so, as due to the finite precision of computers, the perturbation cannot be
arbitrarily small.

13

(2) If the constraints (H,h) belong to a fixed finite pool H, and x̂ is an extreme point solution to
LP(P), then under the random model, with probability 1, DΘ and DΘH are nonsingular, the
column space of Θ is the same as that of ΘH , and µ̃ = cTΘ(DΘ)−1 = cTΘH(DΘH)−1 is the
unique optimal dual solution to both LP(P) and P2(H,h).

Proof: (1) Note first that x̂ is obviously also an optimal solution to P2(H,h), in other words an
optimal solution to LP(Q), with Q defined as in (18). Applying Lemma 13 to LP(Q) implies that
µ is the unique dual-optimal for the constraints Dx = d for P2(H,h). Now let µ̄ be a vector of duals
for Dx = d that is optimal for LP(P). Then µ̄ must be optimal for P2(H,h) as well, since

cT x̂ ≤ max{(cT − µ̄TD)x + µ̄T d : Ax ≤ b,Hx = h}
≤ max{(cT − µ̄TD)x + µ̄T d : Ax ≤ b} = L∗µ̄ = cT x̂.

But since the unique optimal dual for P2(H,h) is µ, we conclude that µ̄ = µ.
(2) Noting that x̂ is an extreme point solution of P2(H,h) as well, it follows from Lemma 21 that
with probability 1, both DΘ and DΘH are nonsingular. This implies that both Θ and ΘH have the

same number of columns, and thus that the null spaces of N x̂
A and

(
A=

x̂

H

)
are the same. By Lemma

13, cTΘ(DΘ)−1 is the unique optimal dual solution to LP(P), and cTΘH(DΘH)−1 is the unique
optimal dual solution to P2(H,h), and since we have already shown that any dual solution of the
former is a dual solution of the latter, these must be the same.

The significance of Theorem 23 is that it shows that the dual solution obtained at any iteration
of the procedure outlined above is actually also the unique optimal dual solution of every relaxation
of P2(H,h) (restricting LP(P)) for which the optimal solution value does not increase. The second
statement of the theorem shows that after solving a problem of the form P2(H,h) to obtain a
solution x̂, we can tighten the formulation of H to anything that does not cut off x̂ without altering
the unique optimal dual solution. Essentially this indicates that the optimal dual is very robust. We
will also use this fact to strengthen the procedure outlined above to allow such tightenings to take
place before the third step, thus eliminating the requirement in the third step that the H̄ constraints
must be a relaxation of the H constraints. The robustness of the dual, particularly in the face of
these tightenings, can have great significance for the performance of the algorithm.8

It is convenient for us to prove one more result here, which we will need shortly.

Lemma 24 Assume LP(P) has an optimal solution. Let x be a feasible solution of LP(P) and
let Θ be a matrix whose columns form a basis for the null space of A=

x . Then the columns of DΘ
are linearly independent if and only if x is an extreme point solution.

Proof: Suppose x is an extreme point solution, and let Ă be as in Lemma 19. Note that whatever
is in the null space of A=

x is also in the null space of Ă, so we can always choose Θ̆ in Lemma 19 to

8This is plain to see in the case where the restricted problem’s primal solution is optimal for the unrestricted
problem, as in this case this property will guarantee dual optimality as well (since the primal solution remains, in
this case, an optimal solution for the original problem, it guarantees that the restricted problem’s dual solution is the
unique dual optimal of the original problem). More generally though, it indicates that the addition of H constraints
created no excess ambiguity in the choice of the dual. By this we refer to the fact that the definition of the optimal
dual, by Lemma 14, is µ such that µDΘ = cΘ and such that xi maximizes L(µ), where the primal optimal solution
x is decomposed as x = xi + Θα. These conditions are weakened by appending H constraints, and this creation of
ambiguity can be expected to cause problems. But where DΘ is nonsingular, the optimal dual space remains unaltered
by H constraints that do not reduce the optimal objective, and no excess ambiguity is introduced.

Moreover it may be the case that if the optimal dual space is a polyhedron rather than a single point, then extreme
point solutions of this polyhedron may very well take advantage of balancing that exists within the restricted problem
to move far out to a corner of the polyhedron, while these balances may not exist or may be slightly different in the
unrestricted problem, and thus these solutions may be highly suboptimal for the unrestricted lagrangian. Note also
that if DΘ is nonsingular then µ = (DΘ)−1cΘ, and so µ is defined by problem data and is insulated from being
drawn out to extremes.

In particular, a large dual solution obtained due to ambiguity resulting from the fact that the restricted problem
is not identical to the original problem is highly likely to be very far from the Lagrangian function’s minimizer. In
practice, for the GPCP, we have found that it is often the case that when DΘH is singular, then the duals that result
are very large, particularly after tightening are performed, and convergence is seriously degraded.

14

have Θ as a submatrix. Thus since the columns of DΘ̆ are linearly independent by Lemma 20, it
follows that the columns of DΘ are also. Suppose now that x is not an extreme point. Then there
must exist some vector h 6= 0 such that A=

x h = 0 and such that Dh = 0. But if A=
x h = 0, then

h = Θπ for some π, and since h 6= 0 it follows that π 6= 0 either. But then 0 = Dh = DΘπ, implies
that the columns of DΘ are not linearly independent.

Before we attempt to apply these ideas to GPCP in particular, we first crystallize them in the
form of an “algorithm template”.

Algorithm Template

4. Given an LP:

(P1) : max cTx

s.t. Ax ≤ b, Dx = d.

1. Set µ0 = 0 and set k = 1, and randomly perturb the vector d.

2. Solve L(P1, µk−1). Let wk be an optimal solution.
If k > 1 and L(P1, µk−1) = zk−1 or Hk−1wk = hk−1, STOP.

3. Let Hkx = hk be a linear system of equations that is satisfied by wk and
by xk−1 (if k > 1).

4. Define the restricted problem:

(P k2) : max cTx

s.t. Ax ≤ b, Dx = d, Hkx = hk.

5. Solve P k2 to obtain xk, a primal optimal vertex (with value zk) and µk, an optimal
dual vector corresponding to constraints Dx = d. If µk = µk−1, STOP.

6. Set k = k + 1 and goto Step 2.

Notes:
1. Ideally, imposing Hkx = hk in Step 4 should result in an easier linear program.
2. For ease of exposition, we have assumed that P k2 is always feasible and finite; though this is a
requirement that can be easily circumvented in practice (Theorem 26).
3. The requirement in step 3 that Hkx = hk is satisfied by xk−1 is less stringent than the requirement
in the procedure outlined after Theorem 17, which would have demanded that Hk+1x = hk+1 be a
relaxation of Hkx = hk. Strict monotonicity is still preserved though, as we will show in Theorem
26.

Theorem 25 (a) If the algorithm stops at iteration k in Step 2, then xk−1 is optimal for P1. (b)
If it stops in Step 5 then xk is optimal for P1.

Proof: (a) If L(P1, µk−1) = zk−1, then xk−1, µk−1 form an optimal pair by duality. If Hk−1wk =
hk−1, then we have

zk−1 = max{cTx + µTk−1(d−Dx) : Ax ≤ b, Hk−1x = hk−1} = cTwk + µTk−1(d−Dwk),

where the first equality follows by duality and the second by definition of wk in Step 2 since
Hk−1wk = hk−1. Also, clearly zk−1 ≤ z∗, and so in summary

z∗ ≤ cTwk + µTk−1(d−Dwk) = zk−1 ≤ z∗. (19)

(b) µk = µk−1 implies that wk optimally solves L(P1, µk), so that we could choose wk+1 = wk and
so Hkwk+1 = hk, obtaining case (a) again.

15

Theorem 26 If the pool H from which all H constraints are drawn is fixed and finite, then with
probability 1 the algorithm template converges finitely and strictly monotonically.

Proof: First we prove that if P1 itself is feasible and finite then we are entitled to assume that
each P k2 is feasible and finite, and if not that this can be detected. Note first that if any P k2 is
unbounded, then so is P1, and so the algorithm can stop if such a P k2 is encountered. Note next
that if P 1

2 is feasible, then every P k2 is feasible. A feasible initial P 1
2 can always be obtained (or

P1 can be determined to be infeasible) by first applying the algorithm to a “linear programming
Phase 1’’ type modified problem, in which Dx = d is replaced by Dx + v = d, and each Hx = h
is replaced by Hx+ w = h, where w and v are nonnegative artificial variables to be pushed by the
objective function to 0. For this problem, the initial restricted LP is always feasible for x = 0 and an
appropriate choice of w and v (if the signum of the artificial variables in the constraints was chosen
appropriately). If the optimal solution has w = 0 and v = 0, then the terminal (H,h) will define a
feasible P 1

2 problem for “linear programming Phase 2’’ (and otherwise we will have determined that
P1 is not feasible).

Now to the proof of monotonicity and termination: For each iteration k, define the matrix Θk to

have as its columns a basis for the null space of
(
A=

xk

Hk

)
. If the pool of H constraints is fixed and finite,

then by Lemma 21, with probability 1, each DΘk is nonsingular. Observe now that if constraints
Hkx = hk are tightened to Hkx = hk, Hk+1x = hk+1, then xk remains an optimal primal vertex
and thus Theorem 23 is applicable. Define Θk,k+1 to be the matrix whose columns form a basis
of the null space of A=

xk , Hk and Hk+1. By Theorem 23, DΘk,k+1 is nonsingular with probability
1. Since µk also remains an optimal dual solution (as in the proof of Theorem 23), and since the
system Hk+1x = hk+1 is a relaxation of the system Hkx = hk, Hk+1x = hk+1, Theorem 17 can be

applied to P2

(
Hk

Hk+1 ,
hk

hk+1

)
, with the former system playing the role of H̄ and the latter playing the

role of H. By Theorem 17, if the algorithm does not stop, there is therefore a strictly improving
feasible direction for P k+1

2 from the point xk, which establishes strict monotonicity. Since there are
only finitely many choices of H and strict monotonicity implies that there can be no repetition, the
algorithm must terminate finitely.

3.3 Interpreting the Template

3.3.1 Exploiting Decompositions Versus Column Generation

Note that the weakest way in which to implement the template would be to take Hk to be the
constraint that the solution vector must be a linear combination of wk and xk−1 themselves, or
in a somewhat stronger form, a linear combination of {wj , j ≤ k}. Note that in this form, if the
points wj are always chosen to be extreme point solutions of L(P1, µj−1), then this will satisfy the
condition of the finiteness of the pool H from which the H constraints are drawn, as the number of
extreme points of this set is finite.

This latter version, in which a single column, which is the solution to the P2 problem, is added
to the P1 problem in each iteration, is reminiscent of column generation. In fact, if we would also
require the solution to be a convex combination of the {wj , j ≤ k}, then this becomes a Dantzig
Wolfe decomposition exactly (as noted in [EGMM12], the lagrangian is the pricing problem for a
decomposition in which the columns are the extreme points of {x : Ax ≤ b} and the D constraints
are left in place). In this case the A constraints could be left out of the restricted problems P k2 , as
they would be satisfied for free by virtue of the convexity constraint. So if the A constraints alone
and the D constraints alone each make for an “easy’’ problem, then the lagrangians and the P k2
problems will also be easy. Dantzig Wolfe decomposition therefore turns out to be a special case of
the Algorithm Template. Considering this fact, it may follow that randomly perturbing the right
hand side vector of the constraints to be left in the master problem (the D constraints, in our case)
may be beneficial for general column generation approaches as well.

There is a natural interpretation of the template however, which will tend toward a different
kind of implementation. Observe first that the smallest collection of constraints H that are satisfied

16

at optimality is just the set of constraints that define the optimal face of P, i.e. they form a subset
of A. This point can actually be made somewhat sharper, as the following theorem shows.

Theorem 27 Let x be an extreme point solution of LP(P), assume d has been randomly perturbed,
and let Hx = h be a collection of constraints satisfied at x drawn from a fixed and finite pool H.
Then with probability 1, all H constraints are dominated by Āx = b̄.

Proof: Let Θ be a matrix whose columns are a basis of Nx
A, let ΘH be the matrix whose columns

are a basis of the null space of A=
x and H, and note that x remains an extreme point solution of

P2(H,h). If any H constraint is not in the span of A=
x , then ΘH must have fewer columns than Θ,

but by Lemma 21, both Θ and ΘH have the same column space with probability 1.

Thus ultimately we ought to be guessing at A=
x for an optimal x to constitute H, or equivalently,

at the nature of the decomposition xi + Θα of the optimal x. In practice, one would not choose
H that fixes a single extreme point, but rather only some A constraints, or other constraints that
are compatible with multiple sets of A constraints, and then let the solution of P2(H,h) determine
the best set of A constraints compatible with H to make tight in its solution, implicitly selecting
Θ. The guess would then ideally be updated by relaxing sufficiently many of the A constraints that
were required to be tight (i.e. which were in H) in order not to cut off the solution to the lagrangian
that was obtained at that iteration. The extra tightening that could be imposed after finding a
solution at an iteration, as in Theorem 23, would similarly be the imposition of equality upon those
A constraints that happen to be at equality in the current solution (i.e. including them into H).

This update can also be framed in terms of the decomposition. Given a solution xj at iteration
j and its decomposition xj = xi + Θjα, where Θj is the matrix whose columns form a basis of the

null space of
(
A=

xj

Hj

)
, if the lagrangian solution wj+1 at the next iteration does not satisfy the Hj

constraints, then there was no way to move along column vectors of Θj from xj to wj+1. DroppingHk

constraints violated by wj+1 could be thought of as allowing Θj to be modified (as it no longer needs
to be in the null space of the dropped constraints) in such a way as to to indeed make wj+1 accessible.
This suggests that we could use information we may know about the structure of what lagrangian
neutral vectors Θ and decompositions xi + Θα might look like to frame constraints compatible with
what we think an optimal decomposition might look like, and then use the lagrangian solution to
update these assumptions regarding the structure of the decomposition. We will see in Section 3.4
how we use precisely these ideas in framing an algorithm for GPCP using the Algorithm Template.

Returning to the issue of the desirability of choosing A constraints to be H constraints, observe
that in solving the restricted LP at the j’th iteration, P j2 , we obtain a solution xj which can be
decomposed as xi + Θjα, where, again, Θj is the matrix whose columns form a basis of the null

space of
(
A=

xj

Hj

)
. Now note that each of these column vectors is also in Nxj

A (i.e. the null space of

A=
xj), and thus could constitute a column of Θ (the matrix whose columns are a basis of Nxj

A), but

they may not span Nxj

A . Specifically, they span Nxj

A iff the Hj constraints are all dominated by A=
xj .

So in this sense an arbitrary choice of H amounts also to a matrix Θ, but one which is missing some
of its columns.

Observe further that if we have perturbed d, and this led to the desired result that DΘj is
nonsingular, and if all Hj constraints are dominated by A=

xj , then we can choose Θ = Θj , which
will imply that xj is an extreme point solution of P1 by Lemma 24. But if some Hj constraints are
not dominated by A=

xj , then Θ must have more columns than Θj and DΘ therefore must have more
columns than rows, which implies that xj is not an extreme point solution of P1 (also by Lemma 24).
Moreover the dual µj , returned in solving P j2 , is cΘj(DΘj)−1, but due to the extra columns in Θ,
this may not satisfy µjDΘ = cΘ. The conclusion is that having H constraints nondominated by Ā
constraints at a solution xj implies that xj is not an extreme point solution, that the decomposition
matrix Θj is missing some columns of Θ, and that µj may not satisfy µjDΘ = cΘ, which is
prerequisite to optimality.

17

Theorem 28 Let xj be the solution returned by the j’th iteration of the algorithm template, let

Θj be a matrix whose columns form a basis of the null space of
(
A=

xj

Hj

)
, and assume that DΘj is

nonsingular.

• A matrix Θ whose columns form a basis of Nxj

A can be chosen to contain all the columns of
Θj.

• xj is an extreme point solution of P1 iff Θ can be chosen to be Θj iff Hjx = h is dominated
by A=

xjx = b=xj .

• If Θ = Θj, then µj = cΘ(DΘ)−1.

In short, the presence of many nondominated H constraints in the P k2 solutions implies a de-
ficiency in the decomposition implied by H. Thus it would seem desirable that the H constraints
should either be A constraints themselves, or constraints that are likely to be dominated by A con-
straints in the P2 solutions. At the least they ought to be constraints that lend themselves toward
a characterization of a potentially optimal decomposition.

3.3.2 Virtuous Cycles: Using Lagrangian Relaxation to Expose Structure

The philosophy behind the template is that we would like the restricted problem to be an approxi-
mation of the original problem – and to this end we would try to choose H|h in such a way as we
believe would not cut off an optimal primal solution. The quality of the dual solution that emerges
from solving the restricted LP is broadly reflective of how good an approximation it was.

The lagrangian step uses this information to identify flaws in the approximation and to improve
it in the next iteration. How well the lagrangian will do will be affected by the quality of the duals,
but it always corrects some false assumptions, and Theorem 17 shows that it also always makes
concrete progress in the primal sense as well. The better approximation though now “should” again
lead to better duals, which would imply a virtuous cycle effect.

Observation 29 (Heuristic Observation) If the constraints Hk(x) = hk induced by the la-
grangian solution L(P1, µ

k−1) describe the optimal LP solution with “increasing accuracy” as µk−1

gets “closer” to the optimal µ, then we can expect to see a “virtuous cycle” effect.

In one sense we always have improving “accuracy” in Hk(x) = hk as we have strict monotonicity,
though in practice we would try to use Hk(x) = hk constraints that say something about the
structure of the solution, and which would be refined by the algorithmic template to make statements
about the structure that are increasingly accurate. We will see that in the GPCP, we will choose
Hk(x) = hk that say something about the graph defining the problem, and that the algorithm quite
literally refines these statements to make them a more accurate characterization of the optimal
solution.

Another related perspective on the algorithm emerges from general meta-observations regarding
lagrangian relaxation. Traditional lagrangian relaxation schemes (such as subgradient optimization)
can prove frustratingly slow to achieve convergence, often requiring seemingly instance-dependent
choices of algorithmic parameters. They also do not typically yield optimal feasible primal solutions;
in fact frequently failing to deliver a sufficiently accurate solutions (primal or dual). However, as
observed in [B02] (and also see [BA00]) Lagrangian relaxation schemes can discover useful “struc-
ture.”

For example, Lagrangian relaxation can provide early information on which constraints are likely
to be tight (and as indicated above, this can be crucial in identifying an optimal Θ), and on which
variables x are likely to be nonzero, even if the actual numerical values for primal or dual variables
computed by the relaxation are inaccurate. The question then in general is how to use such structure
in order to accelerate convergence and to obtain higher accuracy. In [B02] the following approach
was used:

18

• Periodically, interrupt the lagrangian relaxation scheme to solve a restricted linear program
consisting of P1 with some additional constraints used to impose the desired structure. Then
use the duals for the dualized constraints obtained in the solution to the restricted LP to
restart the Lagrangian procedure.

The restricted linear program includes all constraints, and thus could (potentially) still be very
hard – the idea is that the structure we have imposed renders the LP much easier. Further, the
LP includes all constraints, and thus the solution we obtain is fully feasible for P1, thus proving
a lower bound. Moreover, if our guess as to “structure” is correct, we also obtain a high-quality
dual feasible vector, and our use of this vector so as to restart the lagrangian scheme should result
in accelerated convergence (as well as proving an upper bound on P1). In [B02] these observations
were experimentally verified in the context of several problem classes.

The template described here can be interpreted in this context as an algorithm to systematically
extract structure from the lagrangian and from restricted LP’s symbiotically so as to solve the
lagrangian and the primal LP simultaneously.

3.3.3 Approximating the Lagrangian Graph

In the appendix we will describe yet another way to interpret the template in a geometric fashion
as a method of approximating the lagrangian. The main idea, stated roughly, is to consider the
lower surface of the convex solid defined by the epigraph of the lagrangian of P1 (i.e. the |D| + 1
dimensional “graph” of the lagrangian). Note first that the ”graph” of the lagrangian of each P k2 is
is an approximation of that of P1 which is everywhere at or below this surface, and the degree of
relevant ”error” in the approximation is the amount by which the lowest point on the P k2 graph is
smaller than that of the P1 graph. In each iteration the algorithm can be shown to effectively pick
this lowest point in the graph of P k2 , and ”pin” the graph at that point up to that of P1 (in the later
iterations). But by the convexity of these solids, doing so pulls the graph up not only at that point,
but more generally as well.

One result that emerges from this analysis is that the algorithm converges in a pseudologorithmic
number of iterations if there is only one D constraint. On its own this result is not necessarily
significant, as binary search on the lagrangian dual is also applicable in this case (though that would
not directly yield a primal solution), but it is still instructive in supplying insight into how the
algorithm works. More generally, this characterization also supports a “virtuous cycle” expectation,
in that the better the approximation that is provided to the P1 lagrangian graph by the P k2 lagrangian
graph, the closer may one expect the minimizer (which will be be pinned up) of the one to be to
that of the other. As above, this effect will likely be strongest if the approximations are based upon
combinatorial structure.

3.4 Applying the Template to GPCP

The discussion in Section 3.3.1 indicates that the principal idea behind the template is to systemat-
ically improve the estimate of the decomposition xi+ Θα (as per Lemma 11) of an optimal solution.
In the case of GPCP, xi and Θ have a particularly nice structure:

Theorem 30 Let LP(P) be defined by max cTx : Ax ≤ b, Dx = d, where Ax ≤ b defines a closure
problem for a graph G = (N ,A) (i.e. x ∈ RN , 0 ≤ x ≤ 1, xi ≤ xj , ∀(i, j) ∈ A). Let x be any
feasible solution, let A=

x be the submatrix of A constraints that are binding at x, and let b=x be the
corresponding right hand side vector. Then the integer portion of x, which we denote xi, satisfies
A=
x x

i = b=x . Let G(x) be the graph G with all nodes j for which xj is integer removed, and containing
only those arcs that are binding at x. The incidence vectors of the connected components of G(x)
are linearly independent, their span is the null space of A=

x , and x has a constant fractional value
within each component. Thus where Θ is the matrix whose columns are the incidence vectors {θ},
x = xi + Θα is a valid decomposition of x as per Lemma 11.

Proof: First we will prove that the incidence vectors of the connected components of G(x) form a
basis of the null space of A=

x . Let θ be an incidence vector of a nonempty component C of G(x).

19

Clearly the vectors θ are linearly independent as they are nonzero and their supports do not overlap
each other in any coordinate. A binding constraint (ai)Tx ≤ bi from A=

x ≤ b=x is either of the
form xj ≤ 1, −xj ≤ 0 or xi − xj ≤ 0. If (ai)Tx ≤ bi is of one of the first two forms, then node
j was removed in forming G(x), and so C cannot contain node j, and so (ai)T θ = 0. Considering
now constraints of the third type corresponding to an arc (i, j), suppose C contains i. Since C is
a connected component of G(x) and binding arcs were not removed, it must also contain j, and
similarly if it contains j it must contain i, and so again we have (ai)T θ = 0. Conversely, suppose
that θ 6= 0 is an arbitrary vector for which A=

x θ = 0. For any j such that θj 6= 0, the constraints
xj ≤ 1 or −xj ≤ 0 cannot be binding or else their corresponding row ai in A=

x would satisfy
(ai)T θ = ±θj 6= 0, and so any such node j has fractional x value and belongs to G(x). Observe
now that for any connected component C of Ḡ we must have θi constant for every i ∈ C. To see
this, suppose there is an arc (i, j) in C for which θi 6= θj . But since G(x) only includes the binding
arcs, the arc constraint xi − xj ≤ 0 belongs to the system A=xi = b=x , and its inner product with θ
would then be nonzero. We conclude that θ is a linear combination of the incidence vectors of the
components of Ḡ. Finally, since the incidence vectors of the fractional components are all in the
null space of A=

x , we can subtract off the constant fractional value of x in each such component to
arrive at xi without altering the value of A=

x x, justifying the statement that A=
x x

i = b=x .

Corollary 31 Under the conditions of Theorem 30, if x is an extreme point feasible solution, then
Ḡ has ≤ q components, and therefore x has ≤ q distinct fractional values, where q is the number of
side constraints.

Proof: This follows directly from Theorem 30 and Lemma 11.

We conclude that for any solution x, its decomposition is defined by the incidence vector of its
nodes at value 1, and the columns of Θ, which are the incidence vectors of the connected components
of the graph Ḡ, each of which also has constant x value. This affords a natural implementation for
the algorithm template:

The “assumption” that defines each iteration of the algorithm is the assumption
that certain collections of nodes have common values, which is essentially a guess as to the
optimal decomposition.9

Observe now that this simplifying assumption results again in a GPCP, but one with fewer nodes,
i.e. an easier problem. The idea then is to solve this problem to obtain x and the associated dual
µ, and check if x maximizes L(µ). If it does, then we’re done, otherwise the vector x̄ that does
maximize L(µ) must split some of the collections of nodes that we assumed had a common value
(Theorem 25), and so we would update our assumption by allowing these collections to be split as
per x̄.

A critical observation is that if we solved the restricted LP by the simplex algorithm, then its
solution was an extreme point, and therefore by Observation 31, it only contained a maximum of
q + 2 distinct values (where q is the number of side constraints). Thus in order to ensure that the
next iteration’s assumption (Hkx = hk) that the node set can be partitioned into some collection of
parts each with a common value, is compatible both with the lagrangian solution wk and with the
previous LP solution xk−1, we never need a partition with more than 2(q + 2) parts, and therefore
the restricted LP to be solved never needs to have more than O(q) variables.10 The number of
precedence constraints in the reduced problem is the number of arcs in the reduced graph. This can
conceivably be quadratic in the number of collapsed nodes (O(q2))), though it is typically O(q) as

9Note that for connected nodes in such a collection, this assumption is equivalent to the assumption that the arc
constraints in the smallest subgraph connecting them are all tight, i.e. these H constraints are actually A constraints.
Suppose such a collection contains a disconnected pair of nodes i and j. Then if the solution assigns an integer value
to the collection, then the assumption of a common value aligns either with the A constraints xi = 0, xj = 0 or with
the A constraints xi = 1, xj = 1. If the solution assigns a fractional common value to the collection then that will
not align with any A constraint, and will indicate that the resulting solution is not an extreme point. Later we will
consider an algorithm variant in which this cannot happen.

10In practice we will ensure that it refines the partition implied by the components of the graph Ḡ, which also
has ≤ q + 2 parts, though we will see later than in principle these should amount to the same thing, though in rare
circumstances they may not.

20

well. Note that these observations would not have held had we implemented the template as column
generation.

Before we describe the algorithm in detail, considering that the restricted problems will actually
be modelled as GPCP problems themselves on contracted graphs, rather than as the original GPCP
problem with additional constraints Hx = h, we will clarify the relationship between these two
equivalent ways of formulating the problem. The proofs are all either straightforward, or utilize the
same logic as used in the proof of Theorem 30.

Observation 32 Let LP(P) be defined by max cTx : Ax ≤ b, Dx = d, where Ax ≤ b defines a
closure problem for a graph G = (N ,A). Let C = {C1, . . . , Cr} be a partition of A with the i′th part
in the partition described by the incidence vector φi, and let Φ be the matrix with columns {φi}.

• The restriction that all nodes within a part in the partition C must have a common solution
value can be modelled by appending variables y1, . . . , yr corresponding to each part, with 0 ≤
y ≤ 1, and with new constraints Φy = x.

• Replacing x with Φy, the problem can be rewritten as max cTΦy : AΦy ≤ b, DΦy = d. After
removing the redundant rows from AΦy ≤ b we are left with the same closure problem on the
graph Ḡ that results when all nodes in each part Ci are contracted to a single node.

• Let (x, y) be a solution to the restricted problem, as we have defined it. Let Ḡ(y) be the graph
Ḡ after removing all nodes with integer y value and all nonbinding arcs in y and let G(x) be
the graph G after removing all nodes with integer x value and all nonbinding arcs in x. Then
Ḡ(y) is the contraction of the graph G(x).

• For all parts Ci ∈ C, define the expanded incidence vector φ̂i ∈ R|N |+|C| to be the same as
φi in the N coordinates, and to have a 1 in the coordinate corresponding to Ci, and zeros
elsewhere, and let Φ̂ be the matrix with columns {φ̂i}. Let {θi ∈ R|C|} be the incidence vectors
of the components of Ḡ(y), and let Θ be the matrix with columns {θi}. The matrix Φ̂Θ has a
column for each component of Ḡ(y), with its N coordinates constituting the incidence vector
of this component with respect to G, and its C coordinates constituting the incidence vector of
this component with respect to Ḡ.

• The columns of Φ̂Θ form a basis of the null space of the binding A constraints and the Φy = x
constraints, and thus Φ̂Θ is the matrix ΘH of Theorem 17.

• If we append on zero-valued columns to D corresponding to the y variables to form the matrix
D̂, then the matrix DΘH of Theorem 17 is therefore

D̂Φ̂Θ = DΦΘ = (DΦ)Θ (20)

which is just the side constraint matrix for the contracted problem times the Θ matrix of
Theorem 30 for the contracted problem.

3.4.1 The Algorithm

Here is an informal description of the algorithm. A formal description follows.

• At every iteration, solve the lagrangian with penalties µk−1 equal to the optimal duals for the
restricted LP, P k−1

2 , solved in the previous iteration.

• If the max closure solution wk obtained to the lagrangian itself satisfies the partitioning con-
straint Hk−1(x) = hk−1 then the solution xk−1 to P k−1

2 is optimal for the unrestricted problem.
Otherwise update the partition by splitting each part into the elements that were included in
the max closure wk and the elements that were excluded from the max closure wk.

• After any iteration we may collapse the current partition into a new partition with no more
than the number of side constraints plus 2 by replacing the current partition with the partition
suggested by xk.

21

GPCP Algorithm

1. Initializations: Set µ0 = 0. Set C0 = {N}. Set r0 = 0. Set z0 = −∞. Set k = 1. Designate
the GPCP problem as P1. Ensure that the rows of the side constraint matrix Dx = d are
linearly independent, and randomly perturb the right hand side d.

2. Use a max closure algorithm to obtain integer optimal solution yk to L(P1, µ
k−1), and define

I(yk) = {n ∈ N : ykn = 1} (21)

and define
O(yk) = {n ∈ N : yk = 0}. (22)

If k > 1 and the partition Ck−1 of N is represented as

Ck−1 = {Ck−1
1 , . . . , Ck−1

rk−1
} (23)

and no set Ck−1
j overlaps both I(yk) and O(yk) then STOP.

3. Let
L = {L1, . . . , Llk} (24)

be a partition of N refining {I(yk), O(yk)} and define the partition

{Li ∩ Ck−1
j : i = 1, . . . , lk, j = 1, . . . , rk−1} (25)

of N . Denote the nonempty sets in this partition as Ck = {Ck1 , . . . , Ckrk}, and define corre-
sponding incidence vectors φ1, . . . , φrk .

4. Solve the new GPCP problem P k2 defined by collapsing all nodes in each Ckj into a single
supernode and replacing the side constraints Dx ≤ d by DΦx ≤ d, where Φ is the matrix
whose columns are the vectors φj . Use a method that returns an extreme point solution.

Let xk be the optimal solution to P k2 represented in terms of the original graph, let µk be the
optimal duals corresponding to the side constraints, and let zk be the solution value.

5. If µk = µk−1 STOP.

6. (Optional) Let G(xk) be the graph obtained from G by removing all arcs that are nonbinding
in xk and all nodes i at which xki is integer. Let C = {Cr} be the partition of N which
contains a part for the nodes with xk value 1, a part for the nodes xk value 0, and a part for
each connected component of G(xk). (Note that the number of parts in C does not exceed 2
more than the number of side constraints.)11

Update Ck := C, and rk to be the number of parts in C.

7. Set k=k+1 and GOTO step 2.

Notes:
1. The perturbation performed at Step 1 is intended to ensure that DΘk, where Θk is the matrix
whose columns are the incidence vectors of the components of the graph G(xk) (where xk is rep-
resented with respect to the contracted graph), as defined in Theorem 30, is nonsingular at every
iteration k. As shown in Observation 32, DΘk is equal to DΘH of Theorem 17, where H represents
the partitioning constraints, and so this is essential for convergence, as well as for other reasons, as
outlined in Section 3.2. Often however, this matrix works out to be nonsingular even without any
perturbation.

11In Section 7 we will describe a variant of this procedure which may be superior in cases where no perturbations
are used.

22

2. The algorithm as written assumes that the side constraints are written as equalities. This simpli-
fies our analysis here, but in practice if the constraints are inequalities in their native form it is best
to leave them as such. This is because the number of components in each graph G(xk) is bounded
by the number of binding side constraints at xk, which is often far less than the overall number
of side constraints. A perturbation of the right hand side of the side constraints is still sufficient
to ensure that D̄Θk (as in Note 1) is nonsingular at every iteration, where D̄ is the matrix of rows
of D that are binding at the iteration’s solution. All the results we will prove here will therefore
continue to hold in this case as well. Note that where the side constraints are written as inequalities,
it is often more convenient for the perturbations to be relaxations, to avoid a situation in which the
perturbation makes the problem infeasible.
3. In Step 3 we pointedly described L as “a” partition refining {I(yk), O(yk)} rather than as the
partition {I(yk), O(yk)}. We will see later that it may be a better idea to use a finer partition than
{I(yk), O(yk)}.
4. In Step 4 it is not strictly necessary to use a method that returns an extreme point solution. It
can in fact be shown that the GPCP algorithm itself can be used to solve P k2 (i.e. it can be nested) so
long as the innermost nested problem is solved by a method that returns an extreme point solution.
5. While in general the algorithm relies on Step 6 to ensure that the restricted problems P k2 never
become too large, it is generally better not to perform this step as a matter of course, but rather only
when the restricted LP’s are becoming too large to solve quickly, as doing so can destroy some of the
structure that has been uncovered in the prior iterations. Following on from this observation, and
noting that the current iteration’s partition L is itself the refinement of several previously defined
partitions (e.g. previous {I(yk), O(yk)} partitions, or previous partitions {Cr} as defined in Step 6
(these can be defined regardless of whether or not a consolidation is performed)), it is possible to
restore some of the precision lost in a consolidation by refining the next iteration’s L with some of
those previously defined partitions.
6. The algorithm obtains at each iteration both an upper and a lower bound on the LP solution
value, and thus we could also terminate early if these bounds have converged within some tolerance.
7. As noted above, the fact that the number of distinct values (or fractional components) in an
extreme point solution cannot exceed the number of side constraints is crucial in ensuring that the
problems P k2 never need to become large. This fact can also presumably act as a contributing factor
in reducing the number of iterations to optimality, insofar as it ensures that though the lagrangian
solution at each iteration only implies a binary partition of the nodes, there do not need to be a
great many parts in the partition that defines the optimal LP solution, and therefore the optimal
solution can be obtained in a small number of steps. The exact extent to which it does in fact
contribute is not clear to us.

Theorem 33 If P 1
2 is feasible, the GPCP Algorithm converges with probability 1 in a finite number

of iterations to the optimal LP solution, even if Step 6 is performed at every iteration. If Step 6 is
only performed if zk > zk−1, then the algorithm will converge finitely even without performing any
perturbation.

Proof: By construction, it is clear that the partitioning constraints (i.e. the requirement in each
restricted problem that the nodes in each part of the associated partition have common value) at
each iteration k do not cut off the previous iteration’s restricted LP solution xk−1, nor the current
iteration’s lagrangian solution yk. Since the number of possible partitions is finite, the first statement
follows from Theorem 26. In the absence of perturbations however, there will be no guarantee of
strict monotonicity and this argument will fail. If however, Step 6 is only performed if zk > zk−1

then convergence is still guaranteed to be finite, as the number of partitions is finite and no partition
can repeat.

Observation 34 If the condition that P 1
2 is feasible in Theorem 33 is not met then we can first

solve a Phase 1 problem with the condition that the artificial variables are not aggregated in the first
iteration, so that the first iteration of that problem is always feasible. If the Phase 1 problem yields
a feasible solution x∗ to the original problem, then the partition defined by the components of G(x∗)
(or any refinement thereof) will result in a feasible restricted LP for the original problem.

23

The application of the Algorithm Template to GPCP casts a combinatorial perspective on a
number of the algorithm’s aspects. In particular, we saw in Theorem 30 that given a solution x,
the columns of the matrix Θ that form a basis of the null space of the binding precedence and box
constraints are just the incidence vectors of the components of the graph G(x) defined there. Next we
will show that the nonsingularity of the matrices DΘ, which played a crucial role in the convergence
and the dual behavior of the Algorithm Template, also has a combinatorial interpretation, which
can act as a combinatorial test of the nonsingularity of this matrix.

Lemma 35 Let x ∈ Rn be an extreme point solution to a GPCP associated with a graph G on n
nodes, for which the constraint matrix without the side constraints is Ax <= b, and there are q side
constraints Dx = d. Let A=

x be the submatrix of binding constraints from A at x. Let G(x) be the
graph with all nodes with integer x value and all nonbinding arcs removed, and let Θ be the matrix
whose columns are the incidence vectors of the components of G(x). Then DΘ is nonsingular iff
G(x) contains q components.

Proof: By Lemma 24, the columns of DΘ are linearly independent, and so DΘ is nonsingular iff
it is square, i.e. iff the number of columns of Θ – which is the number of components of G(x) – is q.

It is easy to see that under the conditions of Lemma 35, if we collapse the nodes within each
component of G(x), as well as the nodes with x value of 1 and the nodes with x value of 0 respectively,
the solution remains an optimal extreme point (just represented in a smaller space), and the number
of components of the new “G(x)’’ is unaltered. Therefore if G(x) had q components, then the new
“DΘ’’ matrix represented with respect to the collapsed graph is also nonsingular. In fact the new
DΘ matrix is actually exactly the same as the old one, which implies the following result.

Corollary 36 Under the conditions of Lemma 35, if G(x) has q components, the optimal dual
solution for the dual variables corresponding to constraints Dx = d, which is unique, is not altered
by the consolidation of nodes within components of G(x), or by the consolidation of nodes with
common integer x values.

This is a stronger result than that of Theorem 23, in which the addition of constraints compatible
with the optimal solution is only guaranteed with probability 1 not to affect the optimal dual space.12

We will close off the section by noting some other aspects of the combinatorial interpretation of
the algorithm in the GPCP context. By Lemma 14 and Theorem 30, the solution (xk, µk) obtained
by the algorithm at iteration k, when xk is expressed in terms of the contracted graph that defines
P k2 , is such that the set of nodes C1 with value 1 in xk is a max closure with respect to penalties
µk, with value equal to the LP objective value of xk. It is also such that the set of nodes in any
one component Ci of G(xk) (as defined in Theorem 30, again relative to the contracted graph) has
penalized value of exactly 0 – i.e. the penalty balances the value exactly.

Lemma 14 states that the solution xk, (when cast in the original space,) is optimal for P1 also if
and only if C1 remains a max closure with respect to penalties µk even when recast in terms of the
original uncontracted graph. It is easy to see from the properties of max closures that the solution
is therefore optimal for P1 if and only if there is no way peel off a subset of C1 which is closed in
the reverse graph and has negative value, or to append to C1 a closed subset of its complement with
a positive value (and similar statements can be made about each of the Ci sets). It follows that
if a solution (xk, µk) is optimal for the restricted problem P k2 but not for the original problem P1,
then this means that subject to the node consolidation at iteration k, there was no way to peel off
negative value reverse closed subsets off of the associated max closure, nor was there a way to append
positive value closed subsets to the max closure. But the fact that without node consolidation the

12In principle we could have allowed a consolidation of all components of G(x) with a common value without
invalidating the current solution, and by Theorem 23, with probability 1, this also would not alter the optimal dual
space. Note however, that if there is in fact more than 1 component in G(x) with a common value, then combining
them would eliminate a column from Θ, making the new DΘ singular, and losing the guarantee that the optimal dual
space is unaltered. Effectively this means that it is highly unlikely that G(x) would contain multiple components with
a common value. Nevertheless, due to finite precision computation this can happen, and it is therefore preferable to
set the consolidation rule so as to only consolidate nodes within a component of G(x).

24

closure is no longer a max closure means exactly that by splitting the aggregated nodes one can
indeed obtain such sets. Thus this means that the implicit assumption in the definition of problem
P k2 that it was acceptable to aggregate those nodes together was incorrect, as by splitting them one
can improve the value of the lagrangian and therefore of the primal (by Theorem 17).

Note also that the duals µk at iteration k, as an estimate of dual prices, give an estimate of the
scale of improvement to be obtained in modifying a solution. So splitting aggregated nodes so as
to maximize penalized value constitutes the “best’’ possible way of splitting the nodes subject to
this estimate. This also supports the notion that the more accurate µk is, the more effective the
algorithm steps will be, which would imply the virtuous cycle behavior described in Section 3.3.2.

4 Extreme Point Solutions

If the right hand side d of the side constraints is randomly perturbed, we will show that there is a
neat combinatorial characterization of whether or not a solution x to GPCP is an extreme point.
But first we need to state a preliminary result.

Lemma 37 Let x ∈ Rn be a solution to a GPCP associated with a graph G on n nodes, for
which the constraint matrix without the side constraints is Ax <= b. Let A=

x be the submatrix
of binding constraints from A at x, and let G(x) be the graph with all nodes with integer x value
and all nonbinding arcs removed, and assume that G(x) has r connected components. Define the
submatrix Ā of the binding rows A=

x to contain only those rows corresponding to box constraints and
to precedence constraints for arcs defining a spanning forest of G(x). Then Ā contains n− r rows,
all of which are linearly independent, and these rows span all rows of A=

x .

Proof: Each component of G(x) is spanned by a tree with one fewer arcs than nodes, and so if
there are t nodes in G(x), then these nodes contribute t − r rows to Ā. Each node in G outside of
G(x) (i.e. each node with integer x value) has exactly one associated row in Ā. So there are indeed
n− r rows in Ā. To see that the precedence constraints for a spanning tree are linearly independent,
say that a tree has h nodes, and say that we append a unit vector for one of the nodes s in the tree
to the set. Then we could obtain a linear combination of this unit vector es and the arc vectors
equalling the unit vector ev for any other node v in the tree by summing the vectors along the tree
path between s and v. Thus these h vectors span the h unit vectors and we conclude that the h− 1
arc vectors must be linearly independent. Since the components are all distinct from each other
and from the integer valued nodes, we conclude that all n − r rows are linearly independent. To
establish that the span of these rows includes all rows of A=

x , note that the additional rows of A=
x

are all associated with arcs within a component. But each such row can be obtained by summing
the rows corresponding to the tree path between that arc’s endpoints, which completes the proof.

Theorem 38 Let x be a solution to a GPCP associated with a graph G and with q side constraints
Dx = d, where d is chosen under the random model of Definition 18. Define the graph G(x) as in
Lemma 37. With probability 1, x is an extreme point iff the number of components of G(x) is q.

Proof: Letting A=
x be the binding precedence constraints at x, and letting Θ be the matrix whose

columns are the incidence vectors of the components of G(x), the columns of Θ form a basis of the
null space of A=

x by Theorem 30. If x is an extreme point, then by Lemma 21, DΘ is nonsingular
with probability 1, and so Θ must have q columns, so that G(x) must have q components. Con-
versely, assume that G(x) has q components, but that x is not at extreme point. Define Ā as in
Lemma 37, and let b̄ be the corresponding right hand side vector. By Lemma 37, Ā is comprised of
n− q linearly independent rows. Since we have assumed that D is comprised of q rows, but that x

is not an extreme point, it follows that
(
Ā
D

)
is not of full row rank. Define D(i) to be the matrix

made up of the first i rows of D, with corresponding right hand side vector d(i), and let i be minimal

subject to the condition that
(
Ā
D(i)

)
is not of full row rank. Then if we denote the i’th row of D as

Di, there are unique vectors λ1 and λ2 such that Di = λT1 Ā+λT2 D(i−1). Moreover, since Dix = di
is also binding at x, we must have λT1 b̄+ λT2 d(i− 1) = di. This completes the proof since, under the

25

random model, the measure of the set {d ∈ B(d̄, ε) : λT1 b̄+ λT2 d(i− 1) = di} is zero.

Theorem 38 implies an easy test for determining whether or not expanding nodes in a collapsed
graph will preserve the status of a solution as an extreme point: x will remain an extreme point
with probability 1 iff expanding nodes does not disconnect any of the components of G(x). The next
lemma shows that this statement can actually be made absolutely, without the “with probability 1’’
caveat.

Lemma 39 Let G = (N,E) be the graph associated with a GPCP for which the constraint matrix
without the side constraints is Ax <= b, and let G′ = (N ′, E′) be the graph G after collapsing
together some of the nodes. Let x′ ∈ RN ′ be a solution w.r.t. the collapsed graph G′, and let x ∈ RN
be x′ expressed w.r.t. the graph G. Let G(x) be the graph G with all nodes j for which xj is integer,
and all arcs that are nonbinding w.r.t. x removed, and similarly for G′(x′). If G(x) and G′(x′) have
the same number of connected components, and x′ is an extreme point, then x is an extreme point
as well.

Proof: This follows from Theorem 28, as for each component of G′(x′) to remain a single component
even when uncollapsed, means that the binding H constraints defining the collapsed problem are all
A constraints, as noted in footnote 9.

Thus if we solve a restricted problem P k2 with the simplex algorithm to obtain an extreme
point solution x′, this solution will remain an extreme point even when deconsolidated so long as
deconsolidating does not disconnect any components of G′(x′). We can guarantee that this will
always be the case if we always construct the consolidated graphs G′ such that each of its elements
represents a connected subgraph of G (i.e. by breaking up each aggregated node in a nominal graph
G′ into its connected components). This ensures that the H constraints that define each restricted
problem are all A constraints, as they all correspond to arcs in the graph. This proves the following
theorem:

Theorem 40 If the restricted LP’s {P k2 } solved by the GPCP algorithm at each iteration are all
constructed to have the property that each aggregated node represents a connected subgraph of the
original graph, and we solve each restricted LP with the simplex method, then all solutions obtained
will be extreme points of the unconsolidated problem.

In principle there are two possible advantages to structuring the problem so that all xk are
extreme points in the original space. One is that is might be supposed or hoped that this will aid
in convergence. This may be particularly the case in line with our observations in Section 3.3.1
indicating that H constraints should ideally be closely associated with A constraints, as in this case
all H constraints would actually be A constraints. The second is that each previous solution can
be used to construct a starting basis for the next iteration’s restricted LP. Regarding this latter
possibility, it is noteworthy that even if an iteration’s solution is not an extreme point w.r.t. the
original fully unconsolidated graph G, it will be an extreme point w.r.t. the partially unconsolidated
graph that will be in use in the following iteration if the refinement used to construct the next
iteration’s graph does not disconnect any components of G′(x′).

In practice however, we have not observed an unambiguous improvement in iterations to opti-
mality due to structuring the problems P k2 in this manner. This is perhaps due to the fact that
decomposing the units into their connected components can create a large number of scheduling
units, which can make the restricted problems hard to solve.

Regarding the second issue, the improvement is also often marginal, as commercial LP codes
already contain crossover algorithms to allow warmstarting from nonbasic solutions as well.

Of possibly far greater utility, however, is that we will show that these ideas can be used to
convert a nonbasic solution yielded by the algorithm into a basic one. This makes the algorithm
suitable for embedding into any IP algorithm which requires its LP subroutines to return basic
solutions:

26

Theorem 41 Given a possibly non-basic solution x to a GPCP defined on a graph G, let G(x) be
G after removing the nodes that are integer in x and the arcs that are nonbinding in x. Define the
graph G′ as follows: Collapse all nodes in G with x value 0 to a single node Z, all nodes with x
value 1 to a single node O and collapse the nodes in each component of G(x) to a single node. Now
for each node representing a component of G(x), decompose the node into its connected components
in G. (Do not do this for Z and O.) Define a new GPCP on G′ with the same side constraints,
and with additional constraints requiring node Z to have value 0 and node O to have value 1 (this
is equivalent to just removing these nodes from the problem). An extreme point solution x′ to this
problem in the consolidated space is also an extreme point solution in the original unconsolidated
space of value ≥ that of x.

Proof: The original solution x remains describable in G′, and so clearly x′ must have value ≥
that of x. Let G′(x′) be defined analogously to G(x). By Theorem 40 all we need to show is that
the connected components of G′(x′) remain connected even after G′ is decollapsed to G. Observe
first that for any collapsed node B in G′(x′), by construction B has fractional value, and therefore
its constituent nodes are all in G(x) (as the other nodes were all explicitly excluded from having
fractional value in the restricted problem). But this implies, again by construction, that B is a
connected set in G. Suppose now that node i in collapsed node I and node j in collapsed node J are
in a single component of G′(x′), and note that i and j must therefore have a common fractional x′

value. So there is an undirected path in G′(x′) connecting I and J . But since a path in G′(x′) corre-
sponds to a sequence of arcs between constituent members of collapsed nodes, there must also be a
G path connecting any constituent node in I to any constituent node in J . Thus since all nodes on
this path have common x′ value, it follows that i and j are in a common component inG(x′) as well.

The theorem shows that solving a single, typically small, restricted LP will convert an arbitrary
solution to an extreme point solution of no smaller value. It should be noted that there is no
guarantee that in decomposing the fractional components defined by x into connected sets we will
not generate a large number of units, but if x was optimal or near-optimal then in most cases it is not
likely that many independent unconnected nodes will happen to have the same fractional value in an
optimal LP solution. This has in fact been our experience in practice. Alternatively, the following
observation shows that the same result can be achieved by solving no more than q log n guaranteed
small LP’s (with no more than q+ 1 variables each), where q is the number of side constraints, and
n is the number of components in the unconsolidated graph G.

Observation 42 Let G be the graph associated with a GPCP with q side constraints, let Gk be the
collapsed version of G associated with the k’th iteration problem P2(k), let x be an extreme point
solution to P2(k), and let Gk(x) be the graph Gk after removing the nodes that are integer in x and
the arcs that are nonbinding in x. Note that there are q components in Gk(x), and assume that the
j’th such component is comprised of p > 1 components w.r.t. the uncollapsed graph G. Define the
graph G̃ having a single node Z representing all nodes with x value 0, a single node O representing
all nodes with x value 1, and a single node for each component of G(x) other than the j’th, and two
nodes for the j’th, one containing dp2e original components, and the other containing the remaining
bp2c original components. Define the GPCP associated with G′ with the additional constraints that
x(O) = 1, x(Z) = 0, and note that there are q+ 1 remaining unfixed variables, and that the solution
to this problem has value at least that of P2(k). Every extreme point solution to this problem will
assign an integer value to at least one of these q + 1 variables.

Thus it is typically easy to get an extreme point solution. The following results show that there
is also an easy “combinatorial” way to manually construct a basis representing an extreme point
solution using the forest defined in Lemma 37.

Lemma 43 Let x be an extreme point solution to a GPCP associated with a graph G and with q
side constraints Dx = d, and let G(x), A=

x and Ā be as in Lemma 37, with associated rhs b=x and b̄
respectively. Then the rows of Ā and of D are linearly independent and uniquely define x.

27

Proof: Since x is an extreme point, it is the unique solution to A=
x = b=x , Dx = d. By Lemma 37,

A=
x = b=x can be replaced with Ā, as A=

x and Ā have the same span. But since Ā has n − q rows,
and we need n rows to define an extreme point, all n rows in Ā and D must be linearly independent.

Thus given an extreme point solution for which the number of components equals the number of
side constraints (which is to be expected by Lemma 37), it is easy to construct a basis, as we know
that the n linearly independent constraints that define x are the side constraints and the precedence
constraints that constitute a spanning forest of the components.13 Note that the actual number of
nodes in the graph does not matter in this analysis. All we need to know is the q components, and
that x is extreme. Even if we subsequently coarsify the graph and increase the dimension, so long as
the components are not disconnected, we are still assured that x, even though it is now represented
in a higher dimension, is extreme, and it is defined by the precedence constraints that constitute the
spanning forest in the new graph together with the side constraints.14

5 The Algebra of Max Closures

Let x be an optimal solution to a GPCP defined by a graph G and side constraints Dx = d. The
following lemma follows from Lemma 14 and the decomposition x = xi+Θα defined in Theorem 30,
where xi is the integer part of x, and the columns of Θ are the connected components of the graph
G(x) defined by removing the nodes with integer x value and the nonbinding arcs:

Lemma 44 Let x be an optimal solution to a GPCP associated with a graph G, and let µ be optimal
duals corresponding to Dx = d. Then for any α ∈ (0, 1], {i ∈ G : xi ≥ α} is a max closure optimizing
the lagrangian problem L(µ) in which Dx = d is dualized with penalties µ.

Note that since unions of max closures are max closures and intersections of max closures are max
closures, there is a smallest max closure (which is contained in every max closure) and a largest max
closure (which contains every max closure).

Corollary 45 Let x be an optimal solution to a GPCP, and let µ be optimal duals corresponding
to Dx = d. Then every node i that is in the smallest max closure solving L(µ) satisfies xi = 1, and
every node i that is not in the largest max closure satisfies xi = 0.

This may lead to a suggestion for a strengthened implementation of the algorithm: Instead of getting
a single max closure solving the lagrangian L(µk), and partitioning into the nodes that are in the
closure and those that are not, we may consider getting the smallest and the largest max closures,
and partition into those that are in the smallest, those that are not in the largest, and the rest.

Consider further that in one sense it may be considered a weakness of the GPCP algorithm
that even if the algorithm were supplied an optimal dual vector µ, it cannot in general use that to
arrive at an optimal primal solution immediately, as any dual vector leads only to a partition of the
node set into two parts, while an optimal primal solution can require a partition into as many parts
as there are side constraints (plus two). With this in mind it may be sensible to look for a more

13Note that while this basis will uniquely define x, even if x is optimal, this basis may not technically be optimal, as
it may imply a dual infeasible vector (for the dual variables corresponding to the arcs). To attain dual feasibility one
may need to use a different spanning forest. This could be obtained by performing degenerate pivots of the network
simplex algorithm (the dual of max closure is min cost network flow).

14An alternative method which might work to obtain a basis in the absence of the of the condition that the number
of components is equal to the number of side constraints, but in the presence of a known basis for a more consolidated
graph, is as follows. Given a constrained closure problem with n variables which was derived by collapsing some nodes
in some prior graph, and an arbitrary basic feasible solution x∗ with n associated binding constraints, consider the
precedence constraints in this collection (i.e. those with nonbasic slack). Draw the graph generated by these arcs, and
note that this graph is a forest F , and now append all other arcs from the original problem to this graph except for
those that connect trees in F , to form a new graph G̃. If decollapsing nodes in G̃ does not disconnect any component
of G̃, then x∗ (represented w.r.t. the deconsolidated space) remains an extreme point solution, and it is defined by
any set of arcs that constitute a spanning forest of the decollpased G̃, the same set of x = 0 and x = 1 constraints as
previously (if a node i with xi = 0 or 1 was such a defining constraint previously, and i has been decollapsed, then we
include the constraint for each node that had been collaped to i), and the same set of side constraints as previously.

28

powerful version in which more information is extracted from a dual vector, so that an optimal dual
vector would lead to an optimal primal solution in one step.

A naive approach might then be to define a partition in which all nodes that are in the largest
max closure but not in the smallest max closure are left unaggregated, as in this case we could
certainly recover an optimal primal solution given an optimal dual. This is in general a bad idea,
as there can be very many such nodes. A more subtle view however would be to note that there is
more information in the dual vector than merely a single partition into two parts resulting from a
single solution to the lagrangian max closure problem, and that perhaps we ought to be considering
the set of all possible max closures solving the lagrangian problem.

Definition 46 A collection of sets that is closed under unions, intersections and complementations
is called an algebra. A set a in an algebra A is called an “atom” if for every h ∈ A, either a∩h = a
or a∩h = ∅, i.e. a is indivisible. Let G be a graph with associated node weights. Denote the smallest
max closure Cm and the largest max closure CM . Let C be the algebra generated by the max closures,
where the universal set with respect to complementation is defined to be CM , and let A = {ai} ⊂ C
be the set of atoms of C.

Lemma 47 The atoms of an algebra generated from a finite collection of sets A1, . . . , An are the
nonempty sets ⋂

i∈S
Asi ∩

⋂
j∈Sc

Acsj (26)

for all subsets S ⊆ {1, . . . , n}, and the atoms partition the universal set.

Corollary 48 Cm ∈ A, and the weight of any atom a ∈ A other than Cm is 0.

Proof: If expression (26) defining a contains no terms Ac then it is just the intersection of all max
closures, namely Cm. Otherwise, note that the intersection of the A terms is a max closure (if there
aren’t any A terms, then their “intersection” is the universal set, which is also a max closure), and
the intersection of the Ac terms is the complement of a max closure, and so a is of the form B ∩Cc,
where B and C are both max closures. Now B is the disjoint union of B ∩C and B ∩Cc, where the
former is also a max closure. So since the weight of B and the weight of B ∩ C are the same, we
conclude that the weight of B ∩ Cc is zero.

Corollary 49 • Every closed set of atoms including Cm is a max closure.

• If the nodes in each atom are collapsed to a single node, there are no directed cycles among
the atoms in the resulting graph.

• If C ∈ C is the union of Cm and the closure of an atom a 6= Cm, then C − a is also closed.
Thus every atom is the difference of two max closures.

• The collection A is the coarsest one such that every max closure can be written as a union
thereof.

Proof: The first statement follows directly from Corollary 48. The second follows from the fact that
had a directed cycle existed, then no closure could separate any atom in the cycle from the others,
but Lemma 47 states that every atom has a different profile of max closures to which it belongs.
The third statement follows from the second, since had C−a not been closed, then since C is closed
(as it is a union of closed sets), there must be an arc from some atom in C − a to a. But as Cm is
itself a closure, this arc must emanate from the closure of a itself, yielding a direct cycle. The fourth
statement follows from the third.

Theorem 50 [PQ80] Given a graph H with designated source node s and sink node t, let H̃ be the
residual graph of any maximum s-t flow in H. Any closure in H̃ separating s from t is a minimum
s-t cut in H and conversely.

The following, also due to ([PQ80]) now follows directly from Theorem 8 (due to ([P76]).

29

Corollary 51 Let G be a graph with associated node weight vector w. Define a graph H on the
same node set, but with an additional “source” node s with an edge of capacity wi to each node i
for which wi > 0, and an additional “sink” node t with an edge of capacity −wi from every node i
for which wi < 0, and an edge of an infinite capacity for each edge in G. Determine a max flow x
in G̃ from s to t, and obtain the residual graph H̃. Collapse the closure of s in H̃ to a single node,
which we will call Cm (as this set minus the node s is the smallest max closure of G), collapse all
strongly connected components to single nodes and delete the anticlosure of t from H̃. The closures
of the resulting graph G̃ which include Cm are exactly the max closures of the original graph G (when
decollapsed). Note that the (decollapsed) node set of G̃ is the largest max closure.

Lemma 52 Under the conditions of Corollary 51, the atoms of the algebra A defined in Definition
46 are exactly the nodes of G̃.

Proof: Note that since we collapsed all directed cycles, and since Cm is in no directed cycle, we
can use the same argument as in Corollary 49 to show that each node u in G̃ other than Cm is the
difference between two max closures, and therefore it must be a union of atoms. But had u been a
union of more than one atom, then since each atom is also the difference between two max closures,
it would follow that the nodes of G̃ would not be able to distinguish between these two closures,
contradicting Corollary 51. To see this, assume that u contains two atoms a1 and a2, and that a1

is the difference between closures C1 and C2, i.e. C2 is the disjoint union of C1 and a1. Then had it
been possible to write C2 as a union of nodes from G̃, then these nodes must include u in order to
include a1. This implies that a2 is in C2, as well, which in turn implies that a2 is in C1 (as the only
difference between C1 and C2 is a1). But then it would be impossible to describe C1 as a union of
nodes from G̃, as it must exclude u in order to exclude a1, but it cannot exlude u without excluding
a2.

Corollary 53 The partition of the node set of G defined by the graph G̃ of Corollary 51, along with
CcM , is the coarsest partition that can describe every max closure.

This then suggests a modification of the GPCP algorithm in which instead of using the partition
into two parts yielded by a single solution to L(µk), we use the partition yielded by the Picard-
Queyranne procedure which captures all solutions to L(µk). The following lemma follows directly
from Lemma 51 and Corollary 53.

Lemma 54 If Step 3 of the GPCP algorithm is performed using the partition yielded by the Picard-
Queyranne procedure, and if µk is optimal, then the solution to the next restricted problem P k+1

2 will
be an optimal solution to the original problem P1.

As noted at the beginning of the section (and elsewhere), an optimal primal solution x can be
decomposed as xi + Θα, where xi is the integer part of x and the columns of Θ are the incidence
vectors of the components of G(x) (the graph after removing integer nodes and nonbinding arcs),
and these components have lagrangian value 0 w.r.t. the optimal duals µ. The results here reflect
the fact that these components are actually unions of atoms, and thus by fully representing the
diversity of the lagrangian solutions we can capture the full primal solution.

The first hesitation however, is that there may be many more atoms than components, and thus
using the Picard-Queyranne procedure may generate large restricted LP’s. It can be shown however
that the atoms essentially represent the diversity of the primal solution, i.e. every primal solution,
with its distinct set of components, can always have its components decomposed into the same atoms
(and so no primal solution assigns multiple values to the elements of any one atom). Moreover the
atoms represent this diversity efficiently, in the sense that under certain conditions, there are primal
optimal solutions that assign different values to each atom within a component. This leads to the
conclusion that if the optimal primal is unique, then we may very well be able to guarantee that the
number of atoms is small.

We will not pursue these ideas in detail here though, as in practice we have not been successful in
using this variation to obtain unambiguous algorithmic improvements. We believe that the reason
for this is primarily that the advantages of being able to capture all of the lagrangian solutions

30

manifest for the most part when the algorithm is near optimality anyway. When far from optimality
the optimal lagrangian solutions tend to be unique (as the zero valued sets that are associated with
multiple optimal solutions do not tend to appear otherwise), so that no extra information is yielded.
But when close to optimality the existing algorithm can usually do a more targeted job of finding
the relevant unions of atoms anyway. (Note that slight changes in the duals will push near-zero
valued sets in or out of the lagrangian max closures).

Nevertheless the idea that we may be able to extract more information from the lagrangian
solution than merely the binary partition described in the standard version of the GPCP algorithm
is one that we have managed to use successfully. In the next section we will discuss this in some
detail.

6 Parcel Assignment Problems, PCPSP and Rich Partition-
ing

In the mining industry, a “job” is the extraction of a particular unit of earth. It is often the case
that for the purposes of defining the extraction schedule over periods of time on the order of a year
or more, that it is acceptable for the units of earth considered to be somewhat coarse. Thus block
sizes of 30× 30× 30 m3 may be acceptable. But blocks of such a size can be highly heterogeneous,
and thus for the purposes of the processing decisions it is desired to subdivide these large blocks
into smaller units. These units are called “parcels” in the mining industry, and they can be thought
of as “sub-jobs”.

For the purposes of the model, the extraction of a portion of a unit of earth is treated as the
extraction of that portion of each parcel within the unit, i.e. there is a single “dig’’ decision specifying
the proportion of the entire larger unit to be extracted in a period, and which is inherited by all
of its parcels. The processing decisions however, are separate for each parcel. Allowing for parcels
yields the following generalization of Definition 2.

Definition 55 The Precedence Constrained Production Scheduling Problem With Parcels is defined
as follows:

Given a directed graph G = (N ,A), where the elements of N represent jobs, and the arcs A represent
precedence relationships among the jobs.

For each job j ∈ N , given a set of parcels (sub-jobs) P (j)

Given R processing options for each parcel.

Given T scheduling periods.

Let yj,t ∈ {0, 1} represent the choice to perform job j in period t.

For each J ∈ N and j ∈ P (J), let xj,t,d ∈ [0, 1] represent the proportion of parcel j performed
in period t, and processed according to processing option, or “destination”, d

Let cTx be an objective function, and let Dx = d be a collection of arbitrary “side” constraints.

The LP relaxation of the problem, which we will refer to as PCPSP-Parcel, is as follows:

maximize cTx subject to:

t∑
τ=1

yi,τ ≤
t∑

τ=1

yj,τ , ∀(i, j) ∈ A, t = 1, . . . , T (27)

31

Dx ≤ d (28)

yJ,t =

R∑
d=1

xj,t,d, ∀j ∈ P (J), J ∈ N , t = 1, . . . , T (29)

T∑
t=1

yj,t ≤ 1, ∀j ∈ N (30)

x ≥ 0

Note that it is easy to see that the parcels of a single job can be modelled as separate jobs, but
with a directed precedence cycle connecting them (e.g. if P (J) = {j1, j2, j3} then A would contain
arcs j1 → j2 → j3 → j1). Thus the addition of parcels is not truly a generalization but rather a
notational convenience.

We consider a variety of the problem for which the number of parcels remains large but the
number of jobs is small (so that only the number of constraints (29) will be large). The physical
interpretation of such a problem as a mine scheduling problem would be that a planner has somehow
aggregated together the earth in the orebody into a small number of very large units, and has
determined that the extraction schedule can be assumed to be defined in terms of those units. The
planner however has made no predetermination as to how the original component units and parcels
within each of those units is to be processed. We will refer to problems of this variety as “Parcel
Assignment Problems” to emphasize that the principal difficulty is the assignment of a processing
option to each parcel (i.e. constraint 29).

Definition 56 A Precedence Constrained Production Scheduling Problem With Parcels for which
the number of parcels is “large” but the number of jobs is “small” will be referred to as a Parcel
Assignment Problem.

We first consider what is perhaps the easiest version of such a problem.

6.1 Cutoffs

Definition 57 The Simple Parcel Assignment Problem is a parcel assignment problem for which:

• There are two processing options denoted as

1. Process Plant

2. Waste Dump

• There is one side constraint per period, which is a periodic capacity constraint on “process
plant” (i.e. a nonnegative knapsack constraint with nonzero coefficients corresponding only to
x variables for “process plant” in the given period). Waste is uncapacitated.

• The value of a parcel sent to waste never exceeds the value when sent to the process plant.

The Simple Parcel Assignment Problem is almost the same as the problem considered in [BDFG09]
(in their problem there are two capacity constraints per period). In that paper an algorithm is de-
scribed to solve the linear program, which works out to be basically the same algorithm that results
from applying our Algorithm Template.

Definition 58 Let destination 0 be the processing plant and let destination 1 be waste. Define the
“processing value” of a parcel j in period t as

vj,t = cj,t,0 − cj,t,1 (31)

that is, the extra value to be gained by sending the job for processing.

Additionally, define the contribution of parcel j in period t toward the capacity constraint for pe-
riod t as wj,t.

32

Lemma 59 In an optimal solution to a Simple Parcel Assignment Problem, suppose in period t, a
parcel j with processing value vj,t and process plant consumption wj,t and belonging to job J which
is (partially) carried out in period t, has some proportion sent to the processing plant. Then any
parcel j′ belonging to any job J ′ that is (partially) performed in period t and such that

vj′,t/wj′,t > vj,t/wj,t, (32)

will have all of its carried out proportion assigned to the processing plant.
Conversely, if parcel j had some proportion sent to waste in period t then any parcel j′ (partially)

performed in period t with vj′,t/wj′,t < vj,t/wj,t will have all of its carried out proportion assigned
to waste.

There therefore exists a cutoff value Vt for each period t such that every parcel j performed
(partially) in t with vj,t/wj,t > Vt will be sent to the process plant, and every parcel j performed
(partially) in t with vj,t/wj,t < Vt will be sent to waste.

The lemma says that in any period there must be some value per unit process capacity such
that all extracted parcels with better value per unit are sent to the process plant and all extracted
parcels with worse value per unit are sent to waste. The proof is straightforward, and in any case
follows from the proof of the following theorem.

Theorem 60 The optimal dual µt corresponding to the capacity constraint in period t is a cutoff
Vt, where “cutoffs” are as defined in Lemma 59.

Proof: Let µt be the optimal dual variable associated with the capacity constraint for period t.
Let δJ,t be the optimal dual variable associated with the constraint yJ,t =

∑R
d=1 xj,t,d.

Let πj,t,d be the optimal dual variable associated with the nonnegativity constraint xj,t,d ≥ 0.
These are the only constraints in which the variable xj,t,d appears, and where d is the waste desti-
nation it does not appear in any capacity constraint. Thus where destination 0 is the process plant
and destination 1 is waste, the dual constraint associated with the variable is xj,t,0 is

cj,t,0 = µtwj,t,0 + δJ,t − πj,t,0 (33)

and the dual constraint associated with the variable is xj,t,1 is

cj,t,1 = δJ,t − πj,t,1. (34)

Subtracting the latter constraint from the former constraint yields:

vj,t = µtwj,t,0 − πj,t,0 + πj,t,1 (35)

If yJ,t > 0, then xj,t,0 + xj,t,1 > 0 and by complementary slackness

xj,t,0 > 0⇒ vj,t/wj,t,0 ≥ µt (36)

xj,t,1 > 0⇒ vj,t/wj,t,0 ≤ µt (37)

6.2 Generalized Cutoffs

Now we return to the general Parcel Assignment Problem for which we allow arbitrary destinations
and arbitrary side constraints.

Theorem 61 Given a General Parcel Assignment Problem, let µ be the optimal dual values corre-
sponding to the side constraints, and given a parcel j in job J and a period t such that J has been
(partially) performed in period t, let Dj,t,d be the column of the side constraints corresponding to the
variable xj,t,d, and let D be the set of destinations d for which the expression

cj,t,d − µTDj,t,d (38)

is maximized. An optimal primal solution must process the entire proportion of parcel j performed
in period t at destinations d ∈ D.

33

Proof: Let x be an optimal primal solution, let µ be an optimal dual vector associated with the
side constraints and let δ and π be as in the proof of Theorem 60. Then for each variable xj,t,d the
dual constraint is

cj,t,d = µTDj,t,d + δJ,t − πj,t,d. (39)

By the nonnegativity of π observe that for all destinations d

cj,t,d − µTDj,t,d ≤ δJ,t (40)

and by complementary slackness if xj,t,d > 0 we must have

cj,t,d − µTDj,t,d = δJ,t. (41)

So the notion of ”cutoffs” can be generalized for the General Parcel Assignment Problem, and
the cutoffs are completely determined by the optimal duals of the side constraints.

Observation 62 Given optimal side-constraints duals µ, and a variable xj,t,d, with parcel j in job
J , if d does not maximize (38) then xj,t,d can be replaced with 0, and if d uniquely maximizes (38)
then it can be replaced with yJ,t. Thus where the number of ”ties” (i.e. instances in which the
destination maximizing (38) is not unique) is small (and we have found this to typically be the case)
and the number of jobs is small, the General Parcel Assignment Problem collapses to a small LP
when the optimal cutoffs are known.

Observation 63 In general, given any set of side-constraints duals, we never need more than one
variable to describe all variables associated with any given block-period pair in the lagrangian problem,
i.e. the yJ,t variable. This is because any tie in the selection of the destination maximizing (38) can
be broken arbitrarily for the lagrangian, as all choices satisfy the nondualized constraints, and thus
the x variables can be deleted from the problem altogether. This applies for the PCPSP as well, as
indicated in Observation 6.

6.3 Lessons of PAP

Based on the preceding analysis, the application of the Algorithm Template to PAP is quite obvious:
The simplifying Hkx = hk constraints will be just the requirement that the cutoffs are as per the
current iteration’s dual vector µk. We obtain this without even explicitly solving the lagrangian,
and it results in a very small restricted problem P k2 which can be readily solved.

We have tested this implementation of the algorithm, and in our experience, even if one does
not relax the H constraints to ensure compatibility with the previous iteration’s solution (Step 3 of
the Algorithm Template), it usually very nearly attains the optimal solution within a small number
(5 – 10) of iterations.15 The most straightforward way to maintain compatibility with the previous
solution is rather than to replace all of the variables associated with a given job j and period t with
a single variable representing the choice to process all parcels as per the current duals, to replace
them instead with two variables, one representing the choice to process at destinations as per the
previous solution, and one representing the choice to process at destinations as per the current duals.
These two variables act essentially as two “destinations’’ for job j in period t.

In any case, the key observation that is relevant to GPCP is the fact that the dual solution
actually contains cutoff information in every period. This is masked if one looks only at the solution
to the lagrangian. In that case we would see that in whichever period the lagrangian solution
performed a job, it chose the destination as per the duals, but we would have missed the fact that
optimal destination information is also provided for the periods in which the solution did not perform
the job.

The lesson is therefore that there is another partition hidden in the lagrangian solution besides
the partition into nodes that are in the solution and nodes that are not. This is the partition
between the destinations that are best as per the duals, and those that are not.

15Without fully carrying out Step 3 however, it does not usually converge. It should be noted though, that given a
near optimal dual, and considering the fact that given an optimal dual one can obtain an optimal primal by solving
a small LP, it is often possible to obtain convergence even without Step 3.

34

We will now briefly outline how the GPCP algorithm can be modified to take account of this
partition. To simplify the presentation we will ignore the parcels, and treat this as a regular PCPSP,
though the analysis will hold in the presence of parcels also. If we apply the transformation described
in Lemma 4, the nodes of the GPCP are each (job, period, destination) triples, and recall that there
is an arc from each such triple (j, t, d− 1) to (j, t, d). Recall also that the solution value x(j, t, d) is
taken to mean the fraction of job j performed either before period t (and sent to any destination),
or performed in period t and sent to a destination ≤ d. Equivalently, x(j, t, d)− x(j, t, d− 1) is the
proportion of job j performed in period t and sent to destination d. Therefore the only way for
a restricted problem to admit a solution in which j was sent to destination d in period t is if the
restricted problem separates between nodes (j, t, d− 1) and (j, t, d).

Definition 64 Given a PCPSP modelled as a GPCP as in Lemma 4, and given a vector of penalties
µ, define the function BD(j, t, µ) to be the mapping, given µ, from job and period to the most valuable
destination in the lagrangian sense (i.e. that which maximizes (38), with ties broken arbitrarily). The
“Best Destination Partition” associated with µ is the binary partition that separates all nodes (j, t, d)
for which d ≥ BD(j, t, µ) from those for which d < BD(j, t, µ).

Lemma 65 Under the conditions of Definition 64, if Step 3 of the GPCP algorithm is modified
so that C refines the Best Destination Partition associated with µk−1 as well, then if P k2 admits
solutions in which a job j may be performed in a period t, then it will admit solutions for which j
performed in t can be processed at the destination BD(j, t, µ).

6.4 Hidden Partitions and Apriori Partitioning

Another example of a partition that we may perceive to be implicit in the lagrangian solution of a
PCPSP, is a non-binary partition of the jobs. Say that the lagrangian solution performed job j in
period t and job j′ in period t + 1, and let us ignore destinations to simplify the presentation. If
we look only at the collection of nodes (j, t) in the max closure, we could not distinguish between
(j, t + 1) and (j′, t + 1), as both belong to the max closure, though one belongs because it was
performed in that period, and the other belongs because it was performed in the previous period.
Thus if the LP solution were to try to perform j in period t+1, it would have no scope to separate j
from j′. Here again we may wish to separate such elements from one another in line with the hidden
partition implicit in the lagrangian solution.

Definition 66 Given a PCPSP modelled as a GPCP as in Lemma 4, and given a vector of penalties
µ, and a max closure x solving L(µ). If the set of jobs is denoted B, and there are T periods, then B
can be partitioned into the collection {Bi, i = 1, . . . , T + 1}, where each Bi is the collection of jobs
performed in period i (i.e. j such that x(j, i) = 1 and either i = 1 or x(j, i − 1) = 0), and BT+1 is
the collection of jobs never performed. The “Lagrangian Job Partition” is the partition of the nodes
(j, t) (ignoring destinations for ease of exposition) into collections {Ni, i = 1, . . . , T + 1} where each
Ni = {(j, t) : j ∈ Bi, 1 ≤ t ≤ T}.

Another type of partition with which we may wish to refine C in Step 3 of the GPCP algorithm, is
what we call an “apriori” partition. The motivating idea is that the algorithm essentially moves from
the coarse to the fine, discovering along the way where nodes need to be separated from one another
to maximize value and meet the constraints. We may happen to know up front that certain classes
of nodes act independently of one another and are likely to need to have different values assigned.
PCPSP in particular is a scheduling problem, and the side constraints are usually periodic (i.e. each
side constraint usually only entails variables associated with a single period). This means that the
variables associated with different periods are very likely to need to be separated in many cases, and
an apriori partition by periods allows the algorithm to work in parallel discovering structure within
each period individually.

It is also evident that to get the most out of the Best Destination Partition and the Lagrangian
Job Partition, we ought to separate the nodes of different periods from one another, as the promise of
those partitions is predicated on the ability to make different decisions about blocks or destinations

35

in different periods. Note in particular that the algorithm described above for the Parcel Assignment
Problem maintains separate variables for each period (and each job) in the restricted problems.16

Definition 67 Given a PCPSP with T periods modelled as a GPCP as in Lemma 4, the ”Period
Partition” separates the nodes into sets {P1, . . . , PT } with each Pi = {(b, t, d) : t = i}.

In some cases it may make sense to partition also by destination, particularly if many constraints
only concern a single destination. If destinations however are defined abstractly then this may not
help much. Still another apriori partition that might be considered is into the graph’s connected
components, as separate components may be expected to take different solution values in an optimal
solution.

Our overall assessment based on our practical experience is that “hidden partitions” are broadly
helpful, as they arise from the lagrangian itself and represent a genuine application of the algorithm
template, while apriori partitioning should be used with care, depending on the particular problem
characteristics. The balance ultimately that needs to be achieved is to get as much as possible out
of each algorithm iteration without making the restricted LP’s too large to solve quickly, and to
prefereably avoid having to perform the consolidation step (Step 6) too frequently, as this can be
destructive of information.

In this context we note however, that though utilizing the richer partitioning described will make
the problems {P k2 } larger, it is possible (as noted in Section 3.4) to solve them with GPCP itself,
rather than with simplex or another standard solver. For large problems (i.e. ones with far more
nodes than side constraints) this is often the most effective strategy.

In the following section we will describe our implementation and outline our computational
results.

7 Computational Experiments

In this section we present experimental results. All these tests (with one exception) were conducted
using a single core of a dual six-core Xeon X5690 with respective CPU speeds of 3.47 GHz and 3.46
GHz, and with 192 GB of memory, running Windows 7. The LP solver we used for the subproblems
was Cplex 12.5 and the min cut solver we used was our implementation of Goldberg and Tarjan’s
preflow push algorithm ([GT88]) (though the overall tenor does not change when using Hochbaum’s
pseudoflow algorithm ([H08])).

We cut off all optimizations at 50000 seconds, though to get some idea of how long it would
take Cplex to actually solve these problems we tried to run the concurrent optimizer on the “zuck
medium” problem in MineLib until optimality. This test was performed on a different computer than
the others, a dual quad-core Xeon X5580 with respective CPU speeds of 3.2 GHz and 3.19 GHz, and
with 96 GB of memory, running Windows Server 2008R2. The computer shut down unexpectedly
after running the problem for over 16 days. Only the simplex log was shown (and in fact, judging
from the CPU time and usage it seems that only primal simplex (applied to the dual problem) was
running), and this showed an iteration value that was still about 6% away from optimality.

For all Cplex and Gurobi runs we attempted first to use the concurrent optimizer and all available
threads, though for a number of runs there was insufficient memory to run the concurrent optimizer
without resorting to virtual memory, in which case we used dual simplex. This is indicated by the
placement of a * after the solution time in our tables. For some runs we were not able to even build
the problem in memory for either Cplex or Gurobi, and this is indicated by a ** after the solution
time. In two instances Gurobi encountered an error in constructing the problem (perhaps due to
the size), and this is indicated by ***. The version of Gurobi used was 5.6.

The auxiliary linear programs solved at each iteration of our algorithm were solved with dual
simplex when no warmstart information was available, and with primal simplex when either a
starting basis or a starting solution was available. When the number of nodes in an auxiliary
problem exceeded 8000 or the number of arcs exceeded 40000 then the algorithm was nested, i.e. we

16Applying the GPCP algorithm to PAP with apriori partitions into jobs and periods, and the Best Destination
partition, in addition to the regular lagrangian partition, will yield the algorithm described in Section 6.3.

36

used our algorithm (warmstarted) to solve the auxiliary problem. When homogeneous constraints
were present however, the bar was made higher, as these tended to be more numerically challenging
for our algorithm. In these cases the algorithm was nested when the number of nodes exceeded
15000 or the number of arcs exceeded 75000, and if more than 50 homogeneous constraints were
present then no nesting was performed at all unless perturbations were present as well.

The tests were performed on the publically available MineLib library ([EGMN12]) of mine plan-
ning problems (except for Mclaughlin Limit, as this is apparently just a truncated version of Mclaugh-
lin, and P4HD, for which no PCPSP formulation is given). A basic preprocessing step was performed
on all models with only knapsack side constraints, in which a single pass of max closure was per-
formed. It can be shown that any block which is not selected by a max closure procedure (ignoring
the side constraints) will not be selected in any period by the LP either, and so these blocks can
be eliminated. The time to perform this preprocessing step is not recorded in the tables, though it
never took more than a few seconds. We also did not count the time taken to generate the problems.
In all cases but Mclaughlin this also took only a few seconds, though due the size of the Mclaughlin
data set it took about 7 minutes to generate that problem.

Additionally we tested four additional real world problems provided by BHP Billiton17, to which
we refer as ‘LargeProblem’, ‘Coal1’, ‘Coal2’ and ‘ManySC’, which we felt were more challenging
in various dimensions than the MineLib problems. ’LargeProblem’ is constructed by taking three
copies of the block set of a real mine which possesses a fairly dense precedence graph to begin with,
and defining 100 (short) scheduling periods. This yields a problem with a very large number of
variables and constraints.

The other three problems are distinguished primarily for having more, and more complex, side
constraints and more destinations than most problems treated in the literature, while having on
the other hand fewer decision variables and a less dense precedence structure. These essentially
correspond to more advanced stages in the planning process, when the number of decisions is reduced,
but the complexity of the questions is greater. The two coal problems have a large number of side
constraints (between 3000 and 4000, about 400 per period), a large number of which are blend
constraints (i.e. homogeneous side constraints), and therefore pose more difficulty for the algorithm
than do the other problems.18 ‘ManySC’ has even more side constraints (nearly 7000, about 1100
per period), but only 12 of them are homogeneous. Additionally, as indicated, these latter three
have a relatively small number of variables and precedence constraints (as compared to the other
problems), and so they are altogether a less natural fit for our algorithm.

In all problems, the side constraints were modelled as inequality constraints.
We present data for seven implementations of the algorithm:

1. The ’“vanilla” version of the algorithm, in which L in Step 3 of the algorithm is defined
by the binary partition {I(yk), O(yk)} defined by the lagrangian solution, and in which no
perturbation is performed.

2. The vanilla version with perturbation.

3. The vanilla version with gradual “constraint tightening” (we will explain what this is soon).

4. “Rich partitioning”, in which L is defined as the refinement of the partitions {I(yk), O(yk)},
the “Best Destination Partition” defined in Definition 64, the “Lagrangian Job Partition”
of Definition 66, and the “Period Partition” defined in Definition 67. No perturbation is
performed.

5. Rich partitioning with perturbation.

6. Rich partitioning with perturbation and gradual constraint tightening.

17Data was masked.
18In practice, homogeneous constraints seem to pose more difficulty for the algorithm than nonhomogeneous con-

straints. It may be that the dual information associated with such constraints is more unstable and less meaningful
due to its zero contribution to dual objective. This may particularly be the case when the left hand side is zero due
to having no nonzero contributions.

37

7. “Tuned” settings.

As we noted when we described the algorithm, node consolidation (Algorithm Step 6), in general,
increases the number of iterations to optimality, but decreases the restricted LP sizes. The basic
principle of node consolidation is therefore to only consolidate when “necessary”. This directive can,
of course, be implemented in many different ways, with greater or lesser “intelligence”, though for
the purposes of this presentation we used a few simple rules.

• For the “vanilla” partitioning implementations, we consolidated whenever the number of nodes
in the restricted problem exceeded 2500, but when consolidating we “kept” the previous six
“solution partitions” (i.e. the {Cr} partitions defined in Algorithm Step 6) and the six “best”
(measured by lagrangian objective value) lagrangian partitions {I(yk), O(yk)} encountered so
far (even if by doing so we exceeded 2500 nodes).

• For the “rich” partitioning implementations, we consolidated whenever the number of nodes
in the restricted problem exceeded 5000, but when consolidating we “kept” the previous four
“solution partitions” (i.e. the {Cr} partitions defined in Algorithm Step 6), the four “best”
lagrangian partitions {I(yk), O(yk)} encountered so far, and the four “best” “Best Destination
Partition” (again measured according to lagrangian objective value).

Some more intelligence that could have been incorporated into the rules, but which was not included
in any but the last implementation (“Tuned”), would be

• To enforce a minimum gap in the number of iterations between consolidations.

• To reduce the incidence or scope of consolidations if the algorithm is making slow progress.

• To associate thresholds with the number and types of partitions kept through consolidations.

• To link the thresholds with the number of binding side constraints.

Perturbations were implemented as relaxations. For ≤ knapsack constraints, the perturbation
was 10−7 times the right hand side. For other constraints, we considered 10−6 times the maximum
absolute coefficient, 10−5 times the median absolute coefficient, and 10−9 times the sum of the
absolute coefficients. The relaxation was either the maximum of these three, or 100 times their
minimum, whichever was less.

Considering that the constraints that give the most difficulty tend to be the homogeneous ones,
in the absence of homogeneous constraints, the perturbations were reduced by a factor of ten. If at
any iteration a dual solution was detected to have dimension ≥ 10 (i.e. the number of fractional
components in the iteration solution was at least 10 less than the number of linearly independent
binding side constraints), this was taken as an indication that the perturbations were too small, and
they were increased by a factor of 10. In order not to change the original problem too drastically,
however, this was done a maximum of once in any solve. Note that in the presence of perturbations
the dimension is meant to be zero, but numerical tolerances can change this. In particular the
number of fractional components is highly dependent on the numerical tolerance of the definition of
“equality”.

After solving a problem with perturbations, we used the terminal partition and penalties to
warmstart the problem with the perturbations removed, so as to obtain a solution to the non-
perturbed problem. After removing perturbations the optimality gap was relaxed from 0 to 10−5, to
reflect the fact that in the absence of any perturbations problems may become prohibitively difficult
to solve to full optimality, though in most cases the terminal gaps were still quite close to 0. In
practice this last step may not be necessary. Even if it is desired to remove the perturbations, when
solving an IP the attempt to remove the perturbation may often be postponed to the terminal node.

The implementations with gradual constraint tightening begin with substantial relaxations of the
homogeneous constraints, and milder relaxations of the other constraints, which are progressively
tightened as the relaxed versions of the problem approach solution. The idea is to accelerate the
algorithm by starting with simpler versions of the problem, so as to give the algorithm preliminary
guidance in its choices of duals and partitions.

38

The reasoning here is that for hard problems that are far from optimality, the solutions to the
restricted problems do not immediately begin to converge, and the resulting diversity in the iteration
solutions increases the size of the restricted problems rapidly. But once the solutions begin to con-
verge, this diversity decreases, and the growth is slowed. It is therefore to the algorithm’s advantage
that structure is recognized early, and needless diversity in solutions is avoided. Another benefit
of this approach is that since the relaxations are fairly large, they also act as large perturbations,
which reduces the risk of the perturbations falling under the “numerical radar” of the computer.

This approach is useful primarily for situations in which there is a large number of homegeneous
side constraints, and so we only report results for this implementation for instances with homoge-
neous side constraints. Considering that there are any number of – basically similar – ways in which
this may be implemented, we will not describe the details of our particular implementation. Our
comprehensive test result file however, includes data that indicate the evolution of the relaxations
as the algorithm progresses.

The final implementation, “Tuned”, attempts to apply intelligence in selecting the various levers
to push, as described above. It also segregates nodes whose values are fixed, though this is largely not
relevant in any of these models. In general the results show that in most cases we haven’t managed
to squeeze that much more out of the lemon in this way than in using the simple implementations
described above.

Comprehensive test results, showing iteration by iteration progress, for these as well as a number
of other problem instances, and for these as well as some other implementations, can be obtained
at http://www.columbia.edu/ dano/. Full data sets for all test cases may also be downloaded from
this site.

We present here summary performance data for the problem instances. Some of the entries are
self-explanatory, the others have the following meaning:

• Blocks. The units of earth whose extraction we wish to schedule. These are the jobs in
Definition 2. If a block was fixed to be extracted in a particular period or not at all then it
was not counted. For problems in which blocks contain multiple parcels, this is the number of
parcels.

• Variables. The number of unfixed (block, period, destination) triples, or unfixed quadruples
(block, parcel, period, destination) if a problem has multiple parcels per block. Note that this
is typically less than the product of blocks, periods and destinations, as not every block may
be available in every period and at every destination.

• Problem arcs. The number of arcs in the graph that the algorithm creates to represent the
scheduling problem (as per Theorem 4 and Definition 3). Together with the side constraints,
the ≥ 0 bound constraints on each block in the first period and destination, and the ≤ 1
bound constraints at the last period and destination, these correspond with the full set of
constraints when the problem is recast as per Definition 3. Note that while Theorem 4 states
that the restatement of the problem does not alter the number of variables or constraints,
the number of problem arcs is usually larger than the reported number of constraints in the
original formulation, as there is a problem arc corresponding to the ≥ 0 bound constraint for
each block at every intermediate period and destination, but the bound constraints are not
traditionally included in the reported number of constraints.

• Constraints. As indicated, these refer to the number of constraints in the PCPSP formulation,
and they do not include bound constraints.

• Variables, Constraints Cpx presol. Note that Cplex presolve in many cases formed the
dual, so these are the statistics for the reduced dual problem.

• Nonzero duals at optimality. The number of side constraints with positive dual values in
the final iteration of the “tuned’’ implementation.

• Iterations, time to 10−5 optimality. The number of iterations (resp., the CPU time)
taken by the algorithm until it obtained a solution it could certify as having ≤ 10−5 relative

39

optimality error. For runs with perturbations, this refers to the time at which this threshold was
reached for the perturbed problem. For runs with gradual constraint tightening, it refers to the
time at which this threshold was reached once the relaxation multipliers for the homogeneous
constraints reached 10 (i.e. when their assigned relaxations were a factor of ten greater than
what was chosen for the runs without gradual constraint tigtening), which is the final value
they are assigned before being turned off.

• Iterations, time to optimality. The number of iterations (resp., the CPU time) taken
by the algorithm until it terminated, obtaining a solution it could certify as optimal as per
the algorithm’s termination criteria, or for which the gap was ≤ 0. Notice that this implies
that the solution is optimal as per the numerical tolerances of Cplex. For perturbed problems
this is the time until the problem with its perturbation reached optimality, i.e. the time at
which all perturbations and relaxations were switched off. Note that for perturbed problems,
if optimality was only certified at the following iteration’s lagrangian (at which point the
perturbations were removed), then the time recorded here does not include this certification
time.

• Iterations, time to termination. This is only different than the previous item for perturbed
implementations, or for problems that timed out. It records the total time and iterations in-
cluding those performed after removing all perturbations, until termination at either optimality
or time out.

• Gap at termination. Gap between upper and lower bounds at termination. This can be
nonzero due to numerical tolerances. Also, as mentioned above, for perturbed problems the
optimality tolerance is reduced to 10−5 after removing perturbations. Also, if a problem timed
out prior to obtaining optimality, then this records the gap at termination.

• Lagrangian time. The total CPU time expended by the Lagrangian procedure until termi-
nation.

• Subproblem LP time. The total CPU time expended solving auxiliary linear programs until
termination. This may exceed the time out of 50000 seconds if the cut off time was reached in
the middle of an iteration.

Finally, an entry of ”—” for an elapsed time means that the operation timed out after 50000 seconds
of CPU time.

Some general observations regarding performance:

• For problems in which there were no homogeneous side constraints, perturbations made essen-
tially no difference.

• While this information is not recorded here, a look at the detailed log will show that for the
problems in the current data set with no homogeneous side constraints, the dimensionality
of the dual solutions was always zero even with no perturbations. In our expanded data
set there was one instance of a problem with no homogeneous side constraints which had
positive dual dimension occasionally, but here too the dimensionality was usually well under
10. For other problems, in particular for the coal problems, the dimensionality in the absence
of perturbations could reach the hundreds, but perturbations were usually sufficient to reduce
it to zero, or at least to well under 10. In general, and this is borne out in our expanded data
set as well, high dual dimensionality was associated with slow convergence and sometimes
with greater numerical difficulties. Interestingly however, while ‘ManySC’ recorded high dual
dimensionality without perturbation, and close to zero dimensionality with perturbations,
solution times over all implementations were fairly comparable, showing only about a 25%
improvement in speed for the perturbed implementations with rich partitioning.

• For problems with a large number of periods and slow lagrangian performance, rich partitioning
made a dramatic difference. The reason for this is, as we will see in the next section, that

40

vanilla partitioning is guaranteed to require at least as many iterations for most problems as the
number of periods, and in fact the 100 period problem required between 150 and 200 iterations
to solve for all vanilla partitioning implementations. The rich partitioning implementations
however were within a 10−5 factor of optimality within 10 iterations and reached optimality
within 20.

• The two coal problems encountered extreme numerical difficulty when no perturbations were
added. Larger perturbations tended to help more, which probably contributed to the fact that
the gradual tightening implementation worked best for these problems. In the absence of any
perturbations individual iterations often took longer to solve than did the full unconsolidated
problem (though the full problem was solved with concurrent Cplex, rather than a warmstarted
primal simplex). In general, the presence of homogeneous constraints was often associated with
greater numerical difficulties, and the presence (and magnitude) of perturbations with reduced
numerical difficulties, and potentially dramatically faster solution times.

• Even with many thousands of side constraints and a configuration with a relatively low num-
ber of variables and constraints, the tuned algorithm was still competitive (or outperformed)
concurrent twelve-threaded Cplex and Gurobi, and it outperformed their respective simplex
algorithms by wide margins.

• Another implementation that we considered was one in which rather than to use solution
partitions (i.e. the {Cr} partitions defined in Algorithm Step 6) defined by the fractional
components in the solution graph, we used a variant defined by the solution basis. In the
standard solution partition, a part is defined for the nodes at zero value, and a part is defined
for the nodes at 1 value. The remaining graph then has all nonbinding arcs removed, and then
a part is descibed for each component. In this variant, a part is defined for nonbasic variables
at zero, a part for nonbasic variables at 1 (and if an arc constraint connecting a nonbasic
variable to a basic variable has nonbasic slack, then the basic variable is lumped together with
the nonbasics). In the remaining graph we remove all arcs with basic slack, and then define a
part for each component of the resulting graph.

This procedure produces a partition that refines the standard solution partition, as it may
break up some of its components (if a binding arc has degenerate basic slack), or may include
some integer valued nodes in its component graph (if they are degenerate basic). It can be
shown that the resulting graph always has as many components as there are nonbasic side
constraints (and so the number of parts is always “small’’).

If there are perturbations then the two partitions should be identical, but due to numerical
tolerances they may not be. The more interesting case however, is in the absence of per-
turbations, as the “basis partition’’ we have described here can in that case be significantly
finer than the standard solution partition, and therefore contain more information. It actually
contains all the information associated with its dual, as it uniquely defines it, and in fact the
algorithm in some cases ran considerably faster for this variant when no perturbations were
used. For example, the vanilla algorithm with no perturbations in its original version ran for
the full 50,000 seconds on Coal1, terminating with a 7% gap after 1581 iterations, while with
this variant it obtained optimality after 13,385 seconds and 312 iterations. Note though that
it still could not solve Coal2 within 50,000 seconds, and in general it still underperformed by
far the implementation with perturbations.

In the presence of perturbations this implementation also improved solution times in some
cases, but the differences were more marginal. The biggest improvements were in Coal1 and
Coal2, for which tuned solve times reduced to 1665 seconds and 581 seconds, respectively.
Further details can be found in the comprehensive log file.

41

8 Further Work

From a theoretical standpoint we know that the GPCP algorithm converges finitely, and we also know
that the algorithm template converges pseudologorithmically when there is only one side constraint.
It is also easy to construct examples where the algorithm requires as many iterations to optimality
as there are side constraints.

Lemma 68 Consider the problem maxx1 + · · ·+xk subject to xi ≤ 1/(i+1), i = 1, . . . , k. This is a
GPCP with no arcs and k side constraints. The GPCP algorithm solves this problem in k iterations.

A more interesting example is due to Goycoolea et al [EGMM12], as it applies to most of the classical
open pit mine planning problems in the academic literature.

Lemma 69 Consider a PCPSP with T timeperiods for which all side constraints are knapsacks of
the form ax ≤ b, and for which each individual constraint has nonzero coefficients only for variables
x(b, t, d) associated with a single period t. Assume further that for each period t after the first,
there is a “discount factor” δt, 0 < δt < 1, such that for every node (b, p, t), the objective function
contributions satisfy c(b, p, t) = δt(c(b, p, t − 1)). If the GPCP algorithm is applied with L in Step
3 defined in its “vanilla” version as {I(yk), O(yk)}, then the algorithm requires at least t steps to
obtain a solution in which any blocks are extracted in period t.

We have seen in the computational experiments that when richer partitioning schemes are used
convergence can be much faster in this example (the 100 period problem terminated in under 20
iterations), but the example is still instructive.

In principle, the algorithm needs to discover which variables need to be separated from one
another. Each constraint individually could drive this in its own way, but if the constraints are not
tight then they have zero dual and cannot drive anything. Thus the algorithm first needs to discover
that a constraint is relevant, and we have now seen that in principle this can require at least as
many iterations as there are side constraints. Then it needs to pin down which variables exactly
should be separated - and this step even with a single constraint alone can be pseudologorithmic.

In practice the algorithm is very quick. Problems with millions of variables and tens of millions
of constraints typically converge in under 20 iterations (for the rich partitioning implementations),
even when there are hundreds of side constraints. As we have seen in the computational results, there
are even problems with many thousands of side constraints that converge in under 20 iterations.
Qualitatively this may perhaps be expected due to the virtuous cycle effect that the algorithm
exploits, but quantitatively we still do not have any tight characterization of convergence properties.

Another area for further research is whether and how the results obtained for the general prece-
dence constrained problem could be applied to other problems whose constraint matrix is an “easy
problem” plus some extra side constraints. Minimum cost network flow problems in particular share
the structure in which the lagrangian could be solved with a fast combinatorial algorithm, as well
as the structure that the extreme point LP solutions are only a “little” fractional when the number
of side constraints is small (as discussed in the Appendix).

Finally, the integer programming relevance of the result that the number of distinct fractional
values in the extreme point LP solution cannot exceed the number of binding side constraints – as
well as the parallel results for network flow and more general TUM problems – needs to be further
investigated.

A Decomposition for TUM Problems with Side Constraints

We saw in Section 3.4 that the decomposition x = xi + Θα defined in Lemma 11, when applied
to GPCP with graph G and q side constraints, amounts to the statement that an extreme point
solution of the LP relaxation of GPCP can be decomposed into its integer portion plus a fractional
combination of no more than q indicator vectors of various subgraphs of G. We show here that a
similar result holds for all problems defined by a totally unimodular constraint matrix with additional
side constraints.

42

Lemma 70 Under the conditions of Lemma 11, assume further that A is totally unimodular and
that b is integer. Then xi can be chosen to be integer and to satisfy:

1. Axi ≤ b

2. xij = xj , ∀j : xj is integer

Proof: Let us refer to the integer coordinates of x as xI and to the corresponding columns of
A as AI , and to the fractional coordinates of x as xF , and to the corresponding columns of A
as AF . Let h be the number of columns in AF . Note that b − AIxI is integer, and so by TUM
there exists integer y ∈ Rh satisfying AF y ≤ b− AIxI , ĀF y = b̄− ĀIxI . Defining now xi = (xI , y)
then xi is integer; it is equal to x everywhere that x is integer, and it satisfies Axi ≤ b and Āxi = b̄.

The lemma says that any extreme point LP solution x, can be decomposed as an integer solution
satisfying the A constraints and matching x wherever x is integer, plus a linear combination of no
more than q vectors from the null space of Ā. In this sense, each side constraint from D adds only
a one “unit of fractionality” to the solution.

Observation 71 Under the conditions of Lemma 70, vectors {θ1, . . . , θs}, as defined in Lemma 11,
exist for which all values for each θr are either 0, 1 or −1. Thus any extreme point solution x can be
decomposed as an integer vector (matching with x wherever x is integer) and a linear combination
of no more than q (0, 1,−1) vectors.

Proof: All we need to show is that the null space of Ā is spanned by (0, 1,−1) vectors. Choose a
maximal linearly independent subset of the rows of Ā, and call this matrix Ă. Note that removing
linearly dependent rows does not affect the null space, so we need only show that the null space
of Ă is spanned by (0, 1,−1) vectors. Say that Ă is an m × n matrix, and choose m linearly inde-
pendent columns of Ă to form the basis B, and let the remaining n − m columns be denoted by
the matrix N . The null space of Ă is spanned by the vectors {(B−1N j

A,−ej)T }, where N j
A is the

j’th column of N and ej is the j’th unit vector in Rn−m. But since Ă is TUM, it can be shown
that B−1N is also TUM (see [S86] page 272, Theorem 19.5), and so these are all (0, 1,−1) vectors.

The special case of network flow problems with side constraints is particularly interesting.

Corollary 72 Let P be the feasible space of a minimum cost network flow problem with integer data
and side constraints. Let x be an extreme point of P , and let q be the number of linearly independent
side constraints. Then x can be decomposed into an integer flow satisfying all network flow (but
not necessarily side) constraints and equal to x wherever x is integer, and a sum of no more than q
fractional cycle flows, where none of these cycles includes any edge for which x was integer.

Proof: Let A be the node-arc incidence matrix, along with the bound constraints. The node-arc
incidence constraints are always binding, and therefore the vectors y ∈ Nx

A all satisfy Ay = 0, i.e.
they are circulations, which can be decomposed into cycle flows. The result now follows from Lemma
59.

It should be noted though that while there are no more than q distinct fractional cycle flows in
the decomposition of x, the number of distinct fractional values in x can be exponential in q.

B A Geometric Interpretation of the Algorithm Template

Definition 73 Consider an optimization problem

(P) : max{cx : x ∈ Rn, Ax ≤ b,Dx = d} (42)

where D has m rows, and for each µ ∈ Rm, let

L(µ) = max{cx− µ(Dx− d) : x ∈ Rn, Ax ≤ b} (43)

43

be the lagrangian relaxation of (P) with respect to the D constraints, and let

L = {y ∈ Rm+1 : ym+1 ≥ L(y1, . . . , ym)} (44)

be the epigraph of L. Consider also a sequence of optimization problems

(P i) : max{cx : x ∈ Rn, Ax ≤ b,Dx = d,Hix = hi} (45)

with lagrangians

Li(µ) = max{cx− µ(Dx− d) : x ∈ Rn, Ax ≤ b,Hix = hi} (46)

and epigraphs
Li = {y ∈ Rm+1 : ym+1 ≥ Li(y1, . . . , ym)} (47)

where each Hi is a matrix and each hi is a vector such that all x satisfying Hix = hi also satisfy
Hi+1x = hi+1, and such that the following property is satisfied: Let {µi, i > 1} be a sequence of dual
vectors corresponding to the D constraints such that µi is dual optimal for (P i−1), and let {x̄i} be a
sequence such that x̄i is an optimal solution to L(µi), and assume that for all 1 ≤ j ≤ i, x̄j satisifies
Hix̄j = hi. In words, each subsequent (P i) is an increasingly relaxed restriction of (P) chosen so
that all prior lagrangian solutions x̄j satisfy the current restriction Hix = hi.

We will assume throughout that Ax ≤ b contains constraints of the form li ≤ xi ≤ ui, i =
1, . . . , n, where l and u are finite.

Lemma 74 For all µ ∈ Rm, Li(µ) ≤ Li+1(µ) ≤ L(µ), and for all j ≤ i, Li(µj) = L(µj).

Proof: The first statement follows from the fact that Li is a restriction of each subsequent Li+1 and
also of L, and the second follows from the fact that for each j ≤ i, the solution x̄j that maximizes
L(µj) also satisfies Hix̄j = hi and therefore maximizes Li(µj) as well.

Lemma 75 The sets L and Li are all convex. Every point on the surface of L or Li therefore lies
on at least one face of the set.

Proof: Note first that the function L(µ) is convex, since

L(λu+ (1− λ)v) = max
x:Ax≤b

{cx− (λu+ (1− λ)v)(Dx− d)} = (48)

max
x:Ax≤b

{λ(cx− u(Dx− d)) + (1− λ)(cx− v(Dx− d)} ≤ (49)

λ(max
x:Ax≤b

{cx− u(Dx− d)}) + (1− λ)(max
x:Ax≤b

{cx− v(Dx− d)}) = (50)

λL(u) + (1− λ)L(v). (51)

It now follows that for any two vectors u, v ∈ L, where we write u = (ū, um+1) and v = (v̄, vm+1),

λum+1 + (1− λ)vm+1 ≥ λL(ū) + (1− λ)L(v̄) ≥ L(λū+ (1− λ)v̄)⇒ (52)

(λū+ (1− λ)v̄, λum+1 + (1− λ)vm+1) ∈ L (53)

which proves that L is convex, which implies that every point on its surface lies on a supporting
hyperplane of the set. The argument for Li is similar.

Corollary 76 Given i > 1, for every point (µj , L(µj)), j ≤ i, there is a face of Li containing that
point.

Notation 77 We will describe hyperplanes in Rm+1 as being of the form z = aµ + b where z
represents the m+ 1’st coordinate, a and µ are in Rm and b is scalar.

44

Lemma 78 Let F be a face of Li containing (µi, L(µi)), then F is also a face of L and of every
subsequent Lk, k > i.

Proof: Represent the halfspace associated with F as z ≥ aµ + b. As (µi, L(µi)) is on the surface
of L, the only way F can fail to be a face of L is if there exists y = (ȳ, ym+1) ∈ L such that
ym+1 < aȳ + b. But were this to be the case then by definition of L, Li(ȳ) ≤ L(ȳ) ≤ ym+1 < aȳ + b
which implies that (ȳ, Li(ȳ)), which is in Li, also fails to belong to F , which is a contradiction. The
argument for Lk, k > i is the same.

Thus for each subsequent Li, the epigraph of the lagrangian is tangent to L at an additional
point. We will see the consequences of this soon, but first we will note that the faces of the epigraph
can also be cast as subgradients and “violation vectors”.

Observation 79 Let F be a face of L defined by z ≥ aµ+b containing a point (µ̃, z̃) ∈ L. Then a is
a subgradient of L at µ̃. Conversely if a is a subgradient of L at µ̃ then L has a face z ≥ aµ+L(µ̃)−aµ̃
tangent at (µ̃, L(µ̃)). Similar statements hold for each Li and Li.

Proof: If (µ̃, z̃) ∈ L lies on F then it is on the surface of L, which implies that aµ̃+ b = z̃ = L(µ̃)
(or else it would be in the interior). Thus since F is a face, for each ν ∈ Rm we have L(ν) ≥ aν+b =
aµ̃+ b+ a(ν − µ̃) = L(µ̃) + a(ν − µ̃), which shows that a is a subgradient of L at µ̃. Conversely if
a is a subgradient of L at µ̃ then every point (ν, z′) ∈ L satisfies z′ ≥ L(ν) ≥ L(µ̃) + a(ν − µ̃) =
aν + L(µ̃)− aµ̃.

Definition 80 Given a vector x satisfying Ax ≤ b, the “violation vector” a ∈ Rm of x is defined by
aj = dj −Djx, j = 1, . . . ,m, where Dj is the j’th row of D.

Lemma 81 Let µ ∈ Rm, and let {x1, . . . , xt} be the set of all extreme point optimal solutions to
L(µ), and let {avi , i = 1, . . . , t} be the associated violation vectors. Then for some ε > 0, there
exists an ε ball N around µ in which

L(ν) = L(µ) + max
i=1,...,t

avi(ν − µ), ∀ν ∈ N. (54)

Proof: Suppose y is an extreme point of {x ∈ Rn : Ax ≤ b} that is suboptimal for L(µ). Then small
enough changes to µ will leave it suboptimal. Since there are finitely many extreme points, it follows
that in some small enough ball N around µ, no additional extreme points become optimal, and thus
no new points become optimal. The objective value of each xi for ν ∈ N is L(µ) + avi(ν − µ), and
thus the lagrangian value at ν is just the maximum of these quantities taken over 1, . . . , t.

Lemma 82 A vector a ∈ Rm is a subgradient of L at µ ∈ Rm if and only if there exists an optimal
solution x to L(µ) for which a is the violation vector of x.

Proof: Suppose x is an optimal solution to L(µ) with violation vector a. For any ν ∈ Rm,

L(ν) ≥ cx− ν(Dx− d) = cx− µ(Dx− d) + (µ− ν)(Dx− d) = L(µ) + a(ν − µ), (55)

which shows that a is a subgradient at µ. Suppose now that a is a subgradient of L at µ and let
{x1, . . . , xt}, {av1 , . . . , avt} and N all be as in Lemma 81. Then by (54), for all ν ∈ N ,

a(ν − µ) ≤ max
i=1,...,t

avi(ν − µ). (56)

Suppose that a is not in the convex hull of {av1 , . . . , avt}, then there exists a separating hyperplane,
i.e. there exists a vector p and a scalar q such that ap > q and such that avip < q, i = 1, . . . , t. But
then we could choose ν ∈ N so that ν − µ is a scalar multiple of p, and this would contradict (56).
We conclude that there exist λ1, . . . , λt ≥ 0 with

∑t
j=1 λj = 1 such that a =

∑t
j=1 a

vj . Define now

x =
∑t
j=1 λjx

j . Observe that x is optimal for L(µ) and its violation vector is

d−Dx = d−
t∑

j=1

λjDx
j =

t∑
j=1

λj(d−Dxj) =

t∑
j=1

λja
vj = a (57)

which proves the remainder of the lemma.

45

Observation 83 Given a face z ≥ aµ + b of L, ||a|| can be thought of as the slope of the face
insofar as maximal change in z per unit movement along a vector ν − µ ∈ Rm is ||a||. At the point
µ∗ which minimizes L(µ), the flat hyperplane z = L(µ∗) defines a face for which the slope is zero,
the subgradient is zero, and the vector of violations is zero. More generally, a small slope means that
the violations are small and that the lagrangian cannot get much lower in the vicinity.

Definition 84 Let {ai, i ≥ 1} be a sequence of vectors in Rm such that each ai is a subgradient of
Li at µi, and is therefore a subgradient of L and of every Lk, k > i, at µi as well. We will describe
the associated face by z ≥ aiµ + bi. Define the sequence {LBi, i > 1} so that LBi is the value of
the restricted LP (P i−1), and note that this is equal to Li−1(µi). Note also that this sequence is
nondecreasing and is a lower bound on L.

The observations that motivate the following results are that each face z ≥ aiµ+bi of Li and L is also
a face of every Lk, k ≥ i, and thus it does not cut off the minimum point (µk, Lk−1(µk)) = (µk, LBk)
of any future restricted lagrangian (k > i). Moreover any face z ≥ akµ + bk of Lk and L cannot
cut off any (µi, L(µi)), as this is a point on the surface of L. So where F i is the hyperplane of the
face associated with ai, and F k is the hyperplane of the face associated with ak, k > i, then the gap
between the lower bound LBk and the upper bound L(µk), plus the vertical distance (w.r.t. the last
coordinate) covered by sliding up F k from µk (where it intersects L at value L(µk)) to µi (where its
value in the last coordinate is ≤ L(µi),) does not exceed the gap between L(µi) and the same lower
bound LBk, nor does it exceed the vertical distance covered by sliding down F i from µi (where the
value in the last coordinate is L(µi)) to µk (where its value does not exceed that of the lower bound
LBk). This would seem to indicate that either the gap is shrinking or the slope is shrinking, though
this is not always strictly true, as we will see.

Lemma 85 Where k > i,

1. aiµi + bi = L(µi)

2. aiµk + bi ≤ LBk

3. akµi + bk ≤ L(µi)

Proof: The first statement follows from the fact the the point (µi, L(µi)) lies on the face z ≥ aiµ+bi.
The second follows from the fact that z ≥ aiµ + bi is a face of Lk−1, and so the minimizer µk of
Lk−1 with value LBk must not be cut off by this inequality. The third statement follows from the
fact that z ≥ akµ+ bk is a face of L and therefore cannot cut off (µi, L(µi)).

Corollary 86 Where k > i,
ai(µi − µk) ≥ L(µi)− LBk ≥ 0 (58)

ak(µi − µk) + (L(µk)− LBk) ≤ L(µi)− LBk (59)

ak(µi − µk) + (L(µk)− LBk) ≤ ai(µi − µk) (60)

Proof: The final inequality in (58) follows from the fact that LBk is a lower bound on L. Statement
(60) follows directly from (59) and (58).

Observation 87 We could have obtained Lemma 85 even without the assumption in Definition
73 that the constraints Hix = hi are progressively more relaxed. If we tighten the definition of the
sequence {ai} in Definition 84 so that ai, rather than being any arbitrary subgradient, is the violation
vector of x̄i, then it would be sufficient if Hix = hi is defined so that for all j ≤ i, Hix̄j = hi.
To maintain the monotonicity of {LBi} we need also add that for each i > 0, the solution xi−1 to
(P i−1) also satisfies Hixi−1 = hi.

Proof: Let k > i. LBk is the minimum of Lk−1. But Lk−1(µi) = L(µi) since the maximizer x̄i of
L(µi) satisfies Hkx = hk even for the revised definition of Hk, and so the violation vector ai of x̄i

is a subgradient of Lk−1 and defines the same face z ≥ aiµi + bi (since bi is fixed by the fact that
the face contains the point (µi, L(µi))), and so this face cannot cut off (µk, LBk).

46

Definition 88 Given k > i > 1, define θi,ki to be the angle between µi − µk and ai, and define θi,kk
to be the angle between µi − µk and ak (see the diagram later on). Define

π =
1

1 +
cos θi,kk

cos θi,ki

(61)

and define

α = π
cos θi,kk
cos θi,ki

(62)

and note that π + α = 1, so that
π = 1− α. (63)

Definition 89 Define
G = max

x,y:Ax≤b,Ay≤b
c(x− y) (64)

V = max
x:Ax≤b

||d−Dx|| (65)

Q = max{G,V } (66)

and note that by last assumption of Definition 73, Q is bounded by a linear function of A, b and c.

Observation 90 Let us assume that L(µi) > LBk, or else LBk would already be the optimal solution

to (P). By (58), cos θi,ki > 0, i.e. θi,ki is acute. Thus if cos θi,kk > 0 as well (i.e. it is also acute),

then 0 < π < 1. If θi,kk is indeed acute, then if it equals θi,ki then pi = .5. If it is sharper then π < .5
and if it is duller then π > .5.

Observation 91 The left hand side of both (59) and (60) is the vertical distance (i.e. the distance
in the last coordinate) when one moves on the face hyperplane z = akµ + bk from µk to µi, plus
the gap between the upper bound L(µk) and the lower bound LBk. The right hand side of (59) is
the gap between the upper bound L(µi) and the lower bound LBk, and the right hand side of (60) is
the vertical distance (i.e. the distance in the last coordinate) when one moves on the face hyperplane
z = aiµ + bi from µk to µi. If we refer to this vertical distance as the “slope” from µk to µi, then
this says that the new slope plus the new gap ≤ the old gap, and the new slope plus the new gap ≤
the old slope.

Theorem 92 Where k > i, if cos θi,kk > 0 then

L(µk)− LBk ≤ L(µi)− LBk, (67)

and either
L(µk)− LBk ≤ π(L(µi)− LBk) (68)

or
||ak|| ≤ π||ai||. (69)

If additionally cos θi,kk ≥ cos θi,ki , then π ≤ .5 as noted above, and we also have

||ak|| ≤ ||ai||. (70)

Proof: If cos θi,kk > 0 then ak(µi − µk) ≥ 0 and so (67) follows from (59). Since we always have
L(µk) ≥ LBk, it follows from (60) that

||ak|| cos θi,kk ≤ ||a
i|| cos θi,ki (71)

and so if cos θi,kk ≥ cos θi,ki then (70) holds as well. Assume now that (68) does not hold, i.e.

L(µk)− LBk > π(L(µi)− LBk). (72)

47

Then subtracting L(µk) − LBk from the left side of (59) and π(L(µi) − LBk) from the right side
yields

ak(µi − µk) ≤ α(L(µi)− LBk) ≤ αai(µi − µk)⇒ (73)

||ak|| cos θi,kk ≤ π||a
i|| cos θi,kk ⇒ (74)

||ak|| ≤ π||ai||. (75)

Corollary 93 If m = 1, i.e. there is only one dualized constraint, then for any r > 0, and t ≥ 4r
either the minimum gap

t
min
j=1
{L(µj)} − LBt ≤ G/2r (76)

or the minimum norm of the violation vector

t
min
j=1
{||d−Dx̄j ||} ≤ V/2r. (77)

Thus in the worst case, either {LBi, i > 1} converges to the value of (P) pseudologorithmically, or
{minij=1{||d−Dx̄j ||, i ≥ 1} converges to zero pseudologorithmically. This result moreover continues

to hold even if we do not assume that the constraints Hix = hi become increasingly more relaxed as
i increases. Rather we need only assume that for each i, the solution xi−1 to (P i−1) and each of x̄i,
x̄i−1 and x̄i−2 satisfy Hix = hi.

Proof: If m = 1 then all ai and µi are scalars. Consider that for any i, k, i < k, if ai = 0 or if
µi = µk then by (58), L(µi) − LBk = 0, so let us assume for all indices i, k that we consider that
neither of these situations ever occurs. Consider now two indices i and k, i < k. As all a and µ are
scalar, the “angle” between any two quantities is always either 0 (if they have the same signum) or

180 (if they have opposite signum), and by (58) the “angle” θi,ki is always 0. Thus if ak has the same

signum as ai then θi,kk = 0 as well. It now follows that for any 4r consecutive terms a1, . . . , a4r, there
is a sequence of length at least 2r that have the same signum. Let us write the first 2r members of
this sequence as {ap1 , . . . , ap2r}. Thus by Theorem 92, for each j = 2, . . . , 2r, either

|apj | ≤ .5|apj−1 | (78)

or
L(µpj)− LBpj ≤ .5(L(µpj−1)− LBpj) (79)

and thus by the time we reach the index p2r ≤ 4r either the norm or the gap will have been halved
at least r times, proving the first statement of the corollary. The second statement follows easily in
light of Observation 87.

If m > 1 then there is no obvious small worst-case bound for the convergence of {LBi}. Ex-
pression (58) shows that if we draw a hyperplane in Rk with normal ai passing through the point
µi, then each µk, k > i, is on the other side of the hyperplane from the normal, as in the diagrams
below. In this sense we can imagine the direction towards the future µ points as being opposite ai.
So we know that each future µk is “ahead” of µi with respect to −ai. If we draw the hyperplane
with normal ak passing through µk, and µi is “behind” µk with respect to −ak as well (i.e. if µi is

on the same side of the hyperplane as ak) then θi,kk is acute and Theorem 92 is applicable.

48

49

There is no particular guarantee however that this will happen, even in two dimensions, as is
indicated in the “bad case” in the diagram.

In practice it seems that the angles θi,ki and θi,kk are both often in the vicinity of 90 degrees, and
that the latter are almost never as dull or duller than the former. Even in problems that converge
quickly it is often the case that only a minority of the angles θi,kk are acute, and in harder problems
it may never happen. It is also interesting to note that in harder problems all of the angles tend to
be extremely close to 90 degrees.

References

[BDFG09] N. Boland, I. Dumitrescu, G. Froyland and A.M. Gleixner, LP-based disaggregation
approaches to solving the open pit mining production scheduling problem with block processing
selectivity, Computers and Operations Research 36 (2009), 1064 – 1089.

[Bal70] M.L. Balinsky, On a selection problem, Management Science 17 (1970), 230–231.

[BA00] F. Barahona and R. Anbil, The Volume Algorithm: producing primal solutions with a
subgradient method, Math. Programming 87 (2000), 385 – 399.

[B02] D. Bienstock,Potential Function Methods for Approximately Solving Linear Programming
Problems, Theory and Practice, ISBN 1-4020-7173-6. Kluwer Academic Publishers, Boston
(2002).

[CEGMR12] R. Chicoisne, D. Espinoza, M. Goycoolea, E. Moreno and E. Rubio, A New Algorithm
for the Open-Pit Mine Production Scheduling Problem, Operations Research 60 (2012), 517-528.

[CH03] L. Caccetta and S.P. Hill, An application of branch and cut to open pit mine scheduling,
Journal of Global Optimization 27 (2003), 349–365.

[CH09] B. Chandran and D. Hochbaum, A Computational Study of the Pseudoflow and Push-
Relabel Algorithms for the Maximum Flow Problem, Operations Research 57 (2009), 358–376.

[EGMM12] D. Espinoza, M. Goycoolea, E. Moreno and G. Munoz, A study of the Bienstock-
Zuckerberg algorithm for solving large-scale open-pit mining problems, Integer Programming
Workshop, Valparaiso, March, 2012.

[EGMN12] D. Espinoza, M. Goycoolea, E. Moreno and A. Newman, MineLib: A Library of Open
Pit Mining Problems, Annals of Operations Research, published online December 6th, 2012.
Direct access to the MineLib repository http://mansci.uai.cl/minelib

[F06] C. Fricke, Applications of integer programming in open pit mine planning, PhD thesis, De-
partment of Mathematics and Statistics, The University of Melbourne, 2006.

[GT88] A. Goldberg and R. Tarjan, A new approach to the Maximum Flow Problem, Journal of
the Association for Computing Machinery 35:4 (1988), 921–940.

[HC00] D. Hochbaum and A. Chen, Improved planning for the open - pit mining problem, Operations
Research 48 (2000), 894–914.

[H08] D. Hochbaum, The pseudoflow algorithm: a new algorithm for the maximum flow problem,
Operations Research 58 (2008), 992–1009.

[J68] T.B. Johnson, Optimum open pit mine production scheduling, PhD thesis, Operations Re-
search Department, University of California, Berkeley, 1968.

[NRCWE10] A. Newman, E. Rubio, R. Caro, A. Weintraub, K. Eurek, A review of operations
research in mine mlanning, Interfaces 40 (2010), 222–245.

50

[LG65] H. Lerchs, and I.F. Grossman, Optimum design of open-pit mines, Transactions C.I.M. 68
(1965), 17 – 24.

[P76] J.C. Picard, Maximal Closure of a graph and applications to combinatorial problems, Man-
agement Science 22 (1976), 1268 – 1272.

[PQ80] J.C. Picard, M. Queyranne, On the structure of all minimum cuts in a network and appli-
cations, Mathematical Programming Study 13 (1980), 8 – 16.

[R70] J.M.W. Rhys, A selection problem of shared fixed costs and network flows, Management Sci-
ence 17 (1970), 200–207.

[S86] A. Schrijver, Theory of Linear and Integer Programming, Wiley (1986).

[W] Gemcom Software International, Vancouver, BC, Canada.

51

LargeProb Mclaughlin Zuck small Zuck med Zuck large KD

Blocks 87818 180749 9399 27387 96821 12154

Periods 100 20 20 15 30 12

Destinations 2 2 2 2 2 2

Variables 12236800 7229960 375960 821610 5809260 291696

Variables Cpx presol —** —** 3203979 17944902 36104201 2595370

Constraints 295558518 103788589 2921599 17367147 31690031 2313118

Constraints Cpx presol —** —** 282380 577755 4414170 282252

Problem arcs 307619482 110657031 3278721 18133953 37305589 2580494

Side constraints 200 20 40 30 60 12

Homogen side con 0 0 0 0 0 0

Pos dual side con at opt 134 12 14 11 23 9

Cplex sec —** —** — — —* —

Gurobi sec —** —*** — —* —*** 43412

Algorithm Performance

Van Gap at term. -1.0E-12 -1.2E-12 1.3E-13 2.4E-14 -1.1E-12 -1.3E-14

Van Lagran,Subprob sec 44415, 40 691, 1 18, 0 116, 0 649, 0 10, 0

Van Iters,Sec to 1e-5 opt 169, 42864 28, 773 28, 24 277, 133 35, 655 19, 11

Van Iters,Sec to opt 194, 47294 34, 942 31, 26 29, 142 42, 818 23, 14

Van Iters,Sec to term. 194, 47294 34, 942 31, 26 29, 142 42, 818 23, 14

VanPert Gap at term. -1.0E-12 -1.2E-12 -1.3E-13 2.4E-14 -1.1E-12 -1.3E-14

VanPert Lagran,Subprob sec 43366, 45 693, 1 19, 0 115, 0 654, 0 10, 0

VanPert Iters,Sec to 1e-5 opt 164, 41646 28, 774 28, 24 27, 132 35, 656 19, 11

VanPert Iters,Sec to opt 189, 46183 34, 944 31, 27 29, 142 42, 826 23, 14

VanPert Iters,Sec to term. 189, 46183 34, 944 31, 27 29, 142 42, 826 23, 14

Rich Gap at term. -5.4E-13 -1.3E-12 1.3E-13 4.4E-14 -1.1E-12 -3.9E-14

Rich Lagran,Subprob sec 2764, 19 311, 1 6, 1 40, 0 272, 1 6, 0

Rich Iters,Sec to 1e-5 opt 9, 1341 10, 288 8,7 8, 34 9, 180 9, 6

Rich Iters,Sec to opt 18, 3098 15, 424 11, 10 11, 47 16, 333 12, 8

Rich Iters,Sec to term. 18, 3098 15, 424 11, 10 11, 47 16, 333 12, 8

RichPert Gap at term. -5.6E-13 -1.3E-12 1.3E-13 4.4E-14 -1.1E-12 -3.9E-14

RichPert Lagran,Subprob sec 2670, 20 335, 1 6, 1 40, 0 276, 1 6, 0

RichPert Iters,Sec to 1e-5 opt 9, 1341 10, 282 8, 7 8, 34 9, 182 9, 6

RichPert Iters,Sec to opt 17, 2816 15, 428 10, 9 10, 43 15, 317 11, 7

RichPert Iters,Sec to term. 18, 3020 16, 456 11, 10 11, 47 16, 340 12, 8

Tuned Gap at term. -9.9E-13 -1.3E-12 1.5E-13 4.4E-14 -1.1E-12 -3.9E-14

Tuned Lagran,Subprob sec 2968, 12 311, 0 7, 0 40, 0 289, 0 5, 0

Tuned Iters,Sec to 1e-5 opt 10, 1484 9, 257 8, 6 8, 34 9, 190 9, 5

Tuned Iters,Sec to opt 19, 3127 14, 400 11, 9 10, 42 15, 325 11, 7

Tuned Iters,Sec to term. 20, 3299 15, 427 12, 10 11, 47 16, 352 12, 8

Table 1: Sample problems 1

52

Newman1 SM2 Marvin ManySC Coal1 Coal2 W23

Blocks 1059 18388 8516 3165 34174 33773 74260

Periods 6 30 20 6 9 9 20

Destinations 2 2 2 4 15 17 4

Variables 12708 1103280 340640 24504 1683393 1705498 3564480

Variables Cpx presol 12552 894090 2064496 20710 1677451 1699498 3476640

Constraints 24603 545008 1726636 36830 289329 291391 9251776

Constraints Cpx presol 24603 545008 337860 36738 249664 250001 9251776

Problem arcs 35181 1611452 2050204 48416 1977327 2001301 12667652

Side constraints 12 60 40 6832 3092 3573 84

Homogen side con 0 0 0 12 936 1278 48

Pos dual side con at opt 3 36 13 124 463 609 15

Gurobi sec 4 589 — 12 3580 3061 —*

Cplex sec 4 681 — 21 1460 1214 —

Algorithm Performance

Van Gap at term. -6.4E-15 4.6E-14 2.3E-15 -6.7E-15 .07 .84 3.4E-13

Van Lagran,Subprob sec 0, 0 27, 0 13, 0 1, 4 235, 47816 7, 49859 165, 25

Van Iters,Sec to 1e-5 opt 9, 0 34, 47 27, 18 41, 20 — — 43, 234

Van Iters,Sec to opt 11, 0 39, 52 30, 20 44, 22 — — 46, 250

Van Iters,Sec to term. 11, 0 39, 52 30, 20 44, 22 1582, 50071 50, 50116 46, 250

VanPert Gap at term. -6.4E-15 4.6E-14 2.4E-15 -5.4E-15 2.6E-6 3.7E-8 3.0E-13

VanPert Lagran,Subprob sec 0, 0 27, 1 13, 0 1, 5 25, 6408 27, 20654 160, 23

VanPert Iters,Sec to 1e-5 opt 9, 0 34, 47 27, 18 42, 21 124, 6379 156, 21136 43, 228

VanPert Iters,Sec to opt 10, 0 38, 51 29, 19 43, 22 129, 6394 160, 21141 45, 239

VanPert Iters,Sec to term. 11, 0 39, 53 30, 20 44, 23 131, 6408 161, 21142 46, 244

VanGT Gap at term. N/A N/A N/A -5.4E-15 7.8E-7 1.3E-8 N/A

VanGT Lagran,Subprob sec N/A N/A N/A 1, 5 22, 2674 26, 11644 N/A

VanGT Iters,Sec to 1e-5 opt N/A N/A N/A 42, 21 109, 2875 144, 11997 N/A

VanGT Iters,Sec to opt N/A N/A N/A 43, 22 117, 2896 144, 11997 N/A

VanGT Iters,Sec to term. N/A N/A N/A 44, 23 120, 2912 151, 12057 N/A

Rich Gap at term. 1.4E-15 2.8E-14 4.3E-15 -6.9E-15 .997 -5.3E-11 3.8E-13

Rich Lagran,Subprob sec 0, 0 9, 1 4, 0 0, 2 1, 87354 63, 34550 65, 9

Rich Iters,Sec to 1e-5 opt 6, 0 10, 14 8, 5 19, 19 — 193, 32447 14, 75

Rich Iters,Sec to opt 8, 0 17, 21 10, 6 22, 22 — 327, 38377 18, 96

Rich Iters,Sec to term. 8, 0 17, 21 10, 6 22, 22 11, 87391 327, 38377 18, 96

RichPert Gap at term. 1.4E-15 1.5E-14 3.7E-15 -7.7E-15 3.7E-7 2.0E-9 3.9E-13

RichPert Lagran,Subprob sec 0, 0 9, 1 4, 0 0, 2 6, 23408 5, 12133 65, 13

RichPert Iters,Sec to 1e-5 opt 6, 0 10, 14 8, 45 18, 15 32, 23541 26, 12416 14, 79

RichPert Iters,Sec to opt 7, 0 16, 20 10, 6 18, 15 32, 23541 26, 12416 17, 95

RichPert Iters,Sec to term. 8, 0 17, 22 10, 6 19, 16 34, 23607 27, 12420 18, 101

RichGT Gap at term. N/A N/A N/A -6.3E-15 9.6E-7 1.3E-8 N/A

RichGT Lagran,Subprob sec N/A N/A N/A 0, 2 9, 2221 7, 1218 N/A

RichGT Iters,Sec to 1e-5 opt N/A N/A N/A 18, 13 40, 2154 32, 1370 N/A

RichGT Iters,Sec to opt N/A N/A N/A 20, 15 44, 2228 35, 1377 N/A

RichGT Iters,Sec to term. N/A N/A N/A 21, 16 49, 2373 38, 1387 N/A

Tuned Gap at term. 1.4E-15 2.5E-14 1.3E-14 -7.9E-15 3.6E-7 1.3E-8 4.04E-13

Tuned Lagran,Subprob sec 0, 0 8, 1 4, 0 0, 2 11, 1702 9, 485 71, 5

Tuned Iters,Sec to 1e-5 opt 6, 0 10, 12 8, 5 16, 12 50, 1367 42, 586 15, 79

Tuned Iters,Sec to opt 7, 0 13, 16 9, 5 19, 15 54, 1485 47, 597 18, 94

Tuned Iters,Sec to term. 8, 0 14, 17 10, 6 20, 16 59, 1835 50, 612 19, 99

Table 2: Sample problems 2

53

	1 Introduction
	1.1 Background
	1.1.1 Problem Definition
	1.1.2 The Open Pit Mine Scheduling Problem
	1.1.3 Previous Work

	1.2 Overview
	1.3 Roadmap

	2 Precedence Constrained Production Scheduling and Maximum Closure
	3 Solving GPCP
	3.1 LP solutions, Lagrangian Solutions and Decomposition Theorems
	3.2 An Algorithmic Template
	3.3 Interpreting the Template
	3.3.1 Exploiting Decompositions Versus Column Generation
	3.3.2 Virtuous Cycles: Using Lagrangian Relaxation to Expose Structure
	3.3.3 Approximating the Lagrangian Graph

	3.4 Applying the Template to GPCP
	3.4.1 The Algorithm

	4 Extreme Point Solutions
	5 The Algebra of Max Closures
	6 Parcel Assignment Problems, PCPSP and Rich Partitioning
	6.1 Cutoffs
	6.2 Generalized Cutoffs
	6.3 Lessons of PAP
	6.4 Hidden Partitions and Apriori Partitioning

	7 Computational Experiments
	8 Further Work
	A Decomposition for TUM Problems with Side Constraints
	B A Geometric Interpretation of the Algorithm Template

