
The N - k Problem in Power Grids: New Models, Formulations
and Numerical Experiments 1

Daniel Bienstock and Abhinav Verma
Columbia University, New York

May 2008; Revised February 2010

Abstract

Given a power grid modeled by a network together with equations describing power flows,
power generation and consumption, the so-called N − k problem asks whether there exists a set
of k or fewer arcs whose removal will cause the system to fail. The case where k is small is of
practical interest. We present theoretical and numerical results involving a mixed-integer linear
model and a continuous nonlinear model related to this problem.

1 Introduction

Recent large-scale power grid failures have highlighted the need for effective computational tools
for discovering vulnerabilities of electrical transmission networks. We consider the vulnerability
evaluation problem: given a power grid, is there a small set of power lines whose removal will lead
to system failure? Here, the number of disabled power lines is denoted by k, and experts have
called for small values of k, such as k = 3 or 4.

A variety of names have been used for this problem: network interdiction, network inhibition,
and others, though the “N - k problem” terminology is common in the industry. One could consider
the failure of different types of components (generators, transformers) in addition to lines; however,
in this paper “N” represents the number of lines in the network. The N −k problem is intractable,
even for small values of k – the pure enumeration approach is impractical. In addition to the
combinatorial explosion, a significant difficulty is the need to model the laws of physics governing
power flows in a sufficiently accurate and yet computationally tractable manner.

In our experience, when k is large the problem tends to become easier, possibly because many
solutions exist, but on the other hand one can argue that it is unrealistic to use large k. The
simplest case, k = 1, can be addressed by enumeration but may yield insufficient information. The
middle range, 2 ≤ k ≤ 5, is both relevant and difficult, and is our primary focus.

We present results using two optimization models. The first (Section 2.1) employs integer pro-
gramming techniques to model a fictional attacker seeking to disable the network, and a controller
who tries to prevent a collapse by selecting which generators to operate and adjusting generator
outputs and demand levels.

The second approach (Section 3) is given by a new, continuous nonlinear programming formula-
tion that models a fictional attacker with the ability to modify the physical attributes of the power
lines in order to expose underlying vulnerabilities. While both formulations provide substantial
savings over a pure enumerational approach, the second formulation appears much more effective,
enabling us to handle models an order of magnitude larger.

1.0.1 Previous work on vulnerability problems

A survey of recent work on optimization methods applied to blackout-related problems is given in
[22]. Typically work has focused on identifying a small set of arcs whose removal – used to model
complete failure – will result in a network unable to deliver a minimum amount of demand. A
problem of this type, when small enough, can be solved using mixed-integer programming techniques
techniques, see [3], [25], [4]. See Section 2.0.5. Also see [23], which considers a discrete model for
conductances (inverse of resistances) from an empirical perspective.

1Partially funded by award NSF-0521741 and award DE-SC000267

1

A different line of research focuses on attacks with certain structural properties, see [8], [22].
An example of this approach is used in [22], where as an approximation to the N − k problem with
AC power flows, the following problem is solved: remove a minimum number of arcs, such that in
the resulting network there is a partition of the nodes into two sets, N1 and N2, such that

D(N1) + G(N2) + cap(N1, N2) ≤ Qmin. (1)

Here D(N1) is the total demand in N1, G(N2) is the total generation capacity in N2, cap(N1, N2) is
the total capacity in the (non-removed) arcs between N1 and N2, and Qmin is a minimum amount
of demand that needs to be satisfied. The quantity in the left-hand side in the above expression
is an upper-bound on the total amount of demand that can be satisfied – the upper-bound can be
strict because it may be unattainable under power flow laws. [22] describes the solution of this
approximate problem on a network with over 16 thousand arcs.

Finally, we mention that the most sophisticated models for the behavior of a grid under stress
attempt to capture the multistage nature of blackouts, and are thus more comprehensive than the
static models considered above and in this paper. See, for example, [11]-[14], and [7].

1.0.2 Basic definitions and properties of power flows

Here we provide a brief introduction to the linearized, or DC power flow model. In what follows, a
grid is represented by a directed network N , with arc-set E and node-set V , where:

• Each node corresponds to a “generator” (a supply node), or a “load” (a demand node), or a
node that neither generates nor consumes power. We denote the set of generator nodes by G
and the set of demand nodes by D.

• If node i corresponds to a generator, then there are values 0 ≤ Pmin
i ≤ Pmax

i . If the generator
is operated, then its output must be in the range [Pmin

i , Pmax
i]; if the generator is not operated,

then its output is zero. In general, we expect Pmin
i > 0.

• For each demand node i there is a value Dnom
i , the “nominal” demand value at node i.

• The arcs of N represent power lines. For each arc (i, j), we are given a parameter xij > 0
(the resistance) and a parameter uij (the capacity).

Given a set C of operating generators, a power flow is a solution to the system P (N , C) given by
equations (2)-(6) below. In this system, for each arc (i, j), we use a variable fij to represent the
flow on (i, j) – possibly fij < 0, in which case power is effectively flowing from j to i. In addition,
for each node i we will have a variable θi, the “phase angle” at i. Finally, if i is a generator node,
then we have a variable Pi, while if i represents a demand node, we have a variable Di. Given a
node i, we represent with δ+(i) (δ−(i)) the set of arcs oriented out of (respectively, into) i.

Constraints (2), (5) and (6) are typical for network flow models (for background see [1]) and
model, respectively: flow balance (i.e., net flow leaving a node equals net supply at that node),
generator and demand node bounds. Constraint (3) is a commonly used linearization of equations
describing power flow physics; see [2] and Section 1.0.3.

∑
(i,j)∈δ+(i)

fij −
∑

(j,i)∈δ−(i)

fji =


Pi i ∈ C
−Di i ∈ D

0 otherwise
(2)

θi − θj − xijfij = 0 ∀(i, j) (3)
|fij | ≤ uij , ∀(i, j) (4)
Pmin

i ≤ Pi ≤ Pmax
i ∀i ∈ C (5)

0 ≤ Dj ≤ Dnom
j ∀j ∈ D (6)

2

One could also impose explicit upper bounds on the quantities |θi − θj | (over the arcs (i, j)).
However, note that our model already does so, implicitly: because of constraint (3), imposing an
upper bound on |fij | is equivalent to imposing an upper bound on |θi − θj |.

A useful property is given by the following result, whose proof is routine.

Lemma 1.1 Let C be given, and suppose N is connected. For each choice of nonnegative values Pi

(for i ∈ C) and Di (for i ∈ D) such that
∑

i∈C Pi =
∑

i∈D Di, system (2)-(3) has a unique solution
in the fij. Denoting by b the vector with an entry for each node, where bi = Pi for i ∈ C, bi = −Di

for i ∈ D, and bi = 0 otherwise, by N̄ the matrix obtained from N by removing an arbitrarily
chosen row, and by b̄ the corresponding subvector of b, we have f = X−1N̄T (N̄X−1N̄T)−1b̄, where
X = diag{xij}.

Remark 1.2 Lemma 1.1 concerns the subsystem of P (N , C) consisting of (2) and (3). In partic-
ular, the “capacities” uij play no role in the determination of solutions.

Definition 1.3 If (f, θ, P,D) is a feasible solution to P (N , C), its throughput is∑
i∈D Di∑

i∈D Dnom
i

. (7)

The throughput of N is the maximum throughput of any feasible solution to P (N , C).

1.0.3 DC and AC power flows, and other modeling issues

In the case of an AC network (the relevant case when dealing with power grids) constraint (3) only
approximates a complex system of nonlinear equations (see [2]). We provide a brief summary of
how the linearized model arises. First, AC models typically include equations of the form

xijfij = sin(θi − θj), ∀(i, j), (8)

as opposed to (3). In normal operation, one would expect that θi ≈ θj for any arc (i, j) and thus
(8) can be linearized to yield (3). The linearization is valid if we impose that |θi−θj | be very small,
but this requirement is relaxed when considering regimes other than a normal operating mode.

Constraints such as (8) give rise to complex models and as a result studies that require multiple
power flow computations tend to rely on the linearized formulation. This will be the approach
we take in this paper, so as to focus more explicitly on the basic combinatorial complexity that
underlies the N − k problem. In contrast, an approach incorporating a better representation of the
physics might not be able to tackle the combinatorial complexity of the problem quite as effectively,
for the simple reason that the theory and computational machinery for linear programming are far
more mature, effective and scalable than those for nonlinear, nonconvex optimization.

A final point is that whether we use an AC or DC power flow model, the resulting problems
have a far more complex structure than traditional single- or multi-commodity flow models arising
in computer science or operations research. This is because of side-constraints such as (3), which
give rise to counter-intuitive behavior reminiscent of Braess’s Paradox [10].

2 The “N - k” problem

Suppose a fictional attacker wants to remove a small number of arcs from N so that the resulting
network has low throughput. A controller responds to an attack by choosing the set C of operating
generators, their output levels, and the demands Di, so as to feasibly obtain high throughput. The
controller’s adjustment of demands corresponds to the traditional notion of “load shedding” in the
power systems literature.

The attacker seeks to defeat all possible courses of action by the controller; in other words, we
are modeling the problem as a Stackelberg game between the attacker and the controller, where
the attacker moves first. To cast our model in a precise way we will use the following definition.
We let 0 ≤ Tmin ≤ 1 be a given value.

3

Definition 2.1

• An attack A is a set of arcs removed by the attacker, and N −A denotes the subnetwork of
N made up by the remaining arcs.

• A configuration is a set C of generators.

• We say that an attack A defeats a configuration C, if either (a) the maximum throughput of
any feasible solution to P (N −A, C) is strictly less than Tmin, or (b) no feasible solution to
P (N −A, C) exists. Otherwise we say that C defeats A.

• We say that an attack is successful, if it defeats every configuration.

• The min-cardinality Tmin-throughput attack problem is that of finding a successful
attack A with |A| minimum. For brevity, we will call this the min-cardinality problem.

Note that the minimum cardinality of a successful attack could vary substantially as a function
of Tmin. Consequently it might appear more fruitful to focus on the problem of removing a given
number k (or fewer) arcs so that the resulting network has minimum throughput. We will refer to
this as the budget-k min-throughput problem. Given k, the budget-k min-throughput problem
can be reduced to a finite number of minimum cardinality problems, using binary search on Tmin,
and viceversa. However, there are reasons why we prefer to focus on the min-cardinality problem.

(a) For a given k, the throughput of the network when k arcs are removed could be much larger
than when (k + 1) arcs are removed. For this reason, and given the approximate nature of
the models and underlying data, one would want to test various values of k – this issue is
obviously related to what percentage of demand loss would be considered tolerable, in other
words, the parameter Tmin.

(b) From an operational perspective it should be straightforward to identify reasonable values for
the quantity Tmin; whereas the value k is more obscure and bound to models of how much
power the adversary can wield.

Returning to our model, there are three different ways for an attack A to defeat a configuration C.

(i) Consider a partition of the nodes of N into two classes, N1 and N2. Write, for k = 1, 2,

Dk =
∑

i∈D∩Nk

Dnom
i and P k =

∑
i∈C∩Nk

Pmax
i , (9)

e.g. the total (nominal) demand in Nk and the maximum power generation in Nk, respectively.
The following condition, should it hold, would guarantee that A defeats C:

Tmin
∑
j∈D

Dnom
j −min{D1, P 1} −min{D2, P 2} >

∑
(i,j)/∈A : i∈N1, j∈N2

uij +

∑
(i,j)/∈A : i∈N2, j∈Nj

uij . (10)

To understand (10), note that for k = 1, 2, min{Dk, P k} is the maximum demand within
Nk that could possibly be met using power flows that do not leave Nk. Consequently the
left-hand side of (10) is a lower bound on the amount of flow that must travel between N1

and N2, whereas the right-hand side of (10) is the total capacity of arcs between N1 and N2

under attack A. In other words, condition (10) amounts to a mismatch between demand and
supply. A special case of (10) is that where in N −A there are no arcs between N1 and N2,
i.e. the right-hand side of (10) is zero. Condition (11) is similar, but not identical, to (1).

4

(ii) Consider a partition of the nodes of N into two classes, N1 and N2. Then A defeats C if∑
i∈D∩∈N1

Dnom
i +

∑
(i,j)/∈A : i∈N1, j∈N2

uij <
∑

i∈C∩N1

Pmin
i , (11)

i.e., the minimum power output within N1 exceeds the maximum demand within N1 plus
the sum of arc capacities leaving N1. Note that (ii) may apply even if (i) does not.

(iii) Even if (i) and (ii) do not hold, it may still be the case that the system (2)-(6) does not admit
a feasible solution, as follows. Suppose that for every choice of demand values 0 ≤ Di ≤ Dnom

i

(for i ∈ D) and supply values Pmin
i ≤ Pi ≤ Pmax

i (for i ∈ C) such that
∑

i∈C Pi =
∑

i∈D Di

the unique solution to system (2)-(3) in network N −A (as per Lemma 1.1) does not satisfy
the “capacity” inequalities |fij | ≤ uij for all arcs (i, j) ∈ N − A. Then A defeats C. This is
the most subtle case of all; it may hold even if (i) or (ii) do not.

Note that in particular in case (ii), the defeat condition is unrelated to throughput and is
instead due to having positive Pmin

i . This makes the min-throughput problem difficult to model.
Nevertheless, from a practical perspective, it is important to handle models with positive Pmin

i . It
is also important to model standby generators that are turned on when needed, and to model the
turning off of generators that are unable to dispose of their minimum power output, post-attack.
All these features add complexity through a possibly exponential number of control possibilities.

As far as we can tell, most (or all) prior work in the literature does require that the controller
must always use the configuration Ḡ consisting of all generators. It is simple to create examples
with positive Pmin

i where there exist attacks A such that P (N −A, Ḡ) is infeasible (see Figure 1).
Because of this fact, algorithms that rely on direct application of Benders’ decomposition or bilevel
programming are problematic, and invalid formulations can be found in the literature.

For the case where Pmin
i = 0 for all i, our approach yields a mixed-integer program simple

enough that a commercial integer programming solver can directly handle instances larger than
previously reported in the literature relying on integer programming methods.

2.0.4 Non-monotonicity of attack severity as a function of cardinality

In this section we show that the severity of the worst attack of a given cardinality may decrease if
the cardinality is increased. Consider the example in Figure 1, where we assume Tmin = 0.3. Notice
that there are two parallel copies of arcs (2, 4) and (3, 5), each with capacity 10 and resistance 1.
The network with no attack is feasible: we operate generator 1 and not operate generators 2 and
3, and send 3 units of flow on paths 1 − 6 − 2 − 4 and 1 − 6 − 3 − 5. Thus the flow on the two
parallel (2, 4) arcs, and on the two parallel (3, 5) arcs, is evenly split.

However, the attack consisting of arc (1, 6) is successful. To see this, note that under this
attack, the controller cannot operate both generators 2 and 3, since their combined minimum
output exceeds the total demand. Without loss of generality suppose that only generator 3 is
operated, and assume by contradiction that a feasible solution exists – then this solution must
route at most 3 units of flow along 3 − 6 − 2 − 4, and since Pmin

3 = 8, at least 5 units of flow on
(3, 5) (both copies altogether). In such a case, the phase angle drop from 3 to 5 is at least 2.5,
whereas the drop from 3 to 4 is at most 1.56. So θ4− θ5 ≥ 0.94, and we will have f45 ≥ 0.94 – thus,
the net inflow at node 5 is at least 5.94 > Dnom

5 . Hence the attack is indeed successful.
However, there is no successful attack consisting of arc (1, 6) and another arc. To see this, note

that if one of (2, 6), (3, 6) or (4, 5) are also removed then the controller can just operate one of the
two generators 2 and 3 and meet eight units of demand. Suppose that one of the two copies of
(3, 5) is removed in addition to (1, 6). Then the controller operates generator 2, sending 2.5 units
of flow on each of the two parallel (2, 4) arcs; thus θ2 − θ4 = 2.5. The controller also routes 3 units
of flow along 2− 6− 3− 5, and therefore θ2 − θ5 = 3.06. So θ4 − θ5 = .56 and f45 = .56, resulting
in a feasible flow which satisfies 4.44 units of demand at 4 and 3.56 units of demand at 5.

In fact, no successful attack of cardinality 2 exists. To see this, assume that (1, 6) is not attacked
(we just handled the case when it is). We observe that in the original network, the smallest cut

5

Figure 1: An example where there is a successful attack with k = 1 but none with k = 2.

simultaneously separating 6 from both 4 and 5 has cardinality 2, and there is only one such cut,
namely {(2, 6), (3, 6)}. If the attack consists of (2, 6) and (3, 6) then we only operate generator 2
and deliver 5 units of demand to 4 and 3 units to 5. And as per the observation, in every other
attack of cardinality 2 that does not include arc (1, 6), there is a (surviving) path from 1 to at least
one of 4 and 5 – in such a case we only operate generator 1 and use it to output 3 units of demand.
Since every arc capacity is at least 3 the resulting flow will feasibly deliver 3 units of demand. This
concludes the analysis.

By elaborating on this example, one can create cases with arbitrary patterns in the cardinality of
successful attacks. One can also generate examples that exhibit non-monotone behavior in response
to controller actions. In both cases, the non-monotonicity can be viewed as a manifestation of
“Braess’s Paradox” [10].

2.0.5 Brief review of work related to the min-cardinality problem

The min-cardinality problem, as defined above, can be viewed as a bilevel program where both the
master problem and the subproblem are mixed-integer programs – the master problem corresponds
to the attacker (who chooses the arcs to remove) and the subproblem to the controller (who chooses
the generators to operate). In general, bilevel programs are extremely challenging. A recent general-
purpose algorithm for such integer programs is given in [16].

Alternatively, each configuration can be viewed as a “scenario”. In this sense our problem
resembles a stochastic program, although without a probability distribution. Recent work [19]
considers a single commodity max-flow problem under attack by an interdictor with a limited attack
budget; where an attacked arc is removed probabilistically, leading to a stochastic program (to
minimize the expected max flow). A deterministic, multi-commodity version of the same problem
is given in [20].

Previous work on power grid vulnerability models has focused on cases where either the gener-
ator lower bounds Pmin

i are all zero, or all generators must be operated (the single configuration
case). Algorithms for these problems have either relied on heuristics, or on mixed-integer pro-
gramming techniques, usually a direct use of Benders’ decomposition or bilevel programming. [3]
considers a version of the min-throughput problem with Pmin

i = 0 for all generators i, and presents
an algorithm using Benders’ decomposition (also see references therein). They analyze the so-called

6

IEEE One-Area and IEEE Two-Area test cases, with, respectively, 24 nodes and 38 arcs, and 48
nodes and 79 arcs. Also see [25]. [4] studies the IEEE One-Area test case, and allows Pmin

i > 0, but
does not allow generators to be turned off; the authors present a bilevel programming formulation
which unfortunately is incorrect, due to reasons outlined above.

2.1 A mixed-integer programming algorithm for the min-cardinality problem

In this section we will describe an algorithm for the min-cardinality attack problem. As a prelimi-
nary step, we first solve a simpler problem: given an attack A and a configuration C, does A defeat
C? In the LP below, zAij = 1 if (i, j) ∈ A and zAij = 0 otherwise; similarly for each generator i we
set yCi = 1 if i ∈ C and yCi = 0 otherwise. “t” is an auxiliary variable. To the left of each constraint
we indicate the corresponding dual variable.

K∗
C(A) : t∗C(z

A) .= min t (12)
Subject to:

(αC
i)

∑
(i,j)∈δ+(i)

fij −
∑

(j,i)∈δ−(i)

fji =


Pi i ∈ G
−Di i ∈ D

0 otherwise
(13)

(βC
ij) θi − θj − xijfij = 0 ∀ (i, j) /∈ A (14)

(pC
ij, qC

ij) uij t − |fij | ≥ 0, ∀ (i, j) /∈ A (15)

(ωC+
ij , ωC−

ij) t − |fij | ≥ 1, ∀ (i, j) ∈ A (16)

(γC+
i , γC+

i) Pmin
i yCi ≤ Pi ≤ Pmax

i yCi ∀i ∈ G (17)

(µC)
∑
j∈D

Dj ≥ Tmin

∑
j∈D

Dnom
j

 (18)

(∆C
j) Dj ≤ Dnom

j ∀j ∈ D (19)
P ≥ 0, D ≥ 0. (20)

Note that (15) can be represented as two linear inequalities, and the same applies to (16).

Lemma 2.2 t∗C(z
A) ≥ 1, and A defeats C if and only if t∗C(z

A) > 1.

Proof. By (16), t∗C(z
A) ≥ 1, and t∗C(z

A) = 1 iff there is a solution with fij = 0 for all (i, j) ∈ A and
fij ≤ uij for all (i, j) /∈ A.

In our algorithm, we will replace t∗C(z
A) > 1 with the weaker condition t∗C(z

A) ≥ 1 + ε, where
ε > 0 and small. The use of this parameter gives more power to the controller. We are thus not
solving the optimization problem to exact precision; nevertheless we expect our relaxation to have
negligible impact so long as ε is small. A deeper issue here is how to interpret truly borderline
attacks that are successful according to our strict model but not when we use the weaker condition;
we expect that in practice such attacks would be ambiguous and that the approximations incurred
in modeling the grid and the numerical sensitivity of the integer and linear solvers being used would
have a far more significant impact on precision.

Slightly extending our notation, the min-cardinality problem can thus be written as follows:

min
∑
(i,j)

zij (21)

t∗C(z) ≥ 1 + ε, ∀ C ⊆ G, (22)
zij = 0 or 1, ∀ (i, j). (23)

7

2.1.1 A cutting-plane algorithm for the min-cardinality problem.

We solve problem (21)-(23) by means of a cutting-plane algorithm. To produce such an algorithm,
we will show, given an attack A, how to test if A is successful, and if not, how to produce a an
inequality valid for the set (22)-(23) which cuts-off zA.

First, an attack A is not successful if and only if we can find C ⊆ G with tC(zA) < 1 + ε; we
test for this condition by solving the controller’s problem:

min
C⊆G

tC(zA). (24)

This is done by replacing, in formulation (12)-(20), each parameter yC
i with a 0/1 variable yi (where

yi = 1 iff the controller operates generator i), i.e. by replacing constraint (17) with the system

Pmin
i yi ≤ Pi ≤ Pmax

i yi, yi = 0 or 1, ∀i ∈ G. (25)

Thus, we are solving a mixed-integer program with a 0/1 variable for each generator.
Next we turn to the issue of computing valid cutting-planes that cut-off unsuccessful attacks.

An attack A is successful against C iff t∗C(A) ≥ 1 + ε, or equivalently iff the dual of K∗
C(A) has

value at least 1 + ε. Suppressing (for clarity) the index C from the variables, an LP equivalent to
the dual of K∗

C(A) can be represented as follows, where M > 0 is a large enough constant to be
specified later.

ΛC(A) : max
∑
i∈G

yCi Pmin
i γ−i −

∑
i∈G

yCi Pmax
i γ+

i −
∑
j∈D

Dnom
j ∆j +

∑
j∈D

Dnom
j µ +

∑
(i,j)∈E

(ω+
ij + ω−ij)

Subject to: (fij) αi − αj − xijβij − pij + qij + ω+
ij − ω−ij = 0 ∀(i, j) ∈ E (26)

(θi)
∑

(i,j)∈δ+(i)

βij −
∑

(j,i)∈δ−(i)

βji = 0 ∀i ∈ V (27)

(t)
∑

(i,j)∈E

uij(pij + qij) +
∑

(i,j)∈E

(ω+
ij + ω−ij) ≤ 1 (28)

(Pi) −αi − γ−i + γ+
i = 0 ∀i ∈ G (29)

(Dj) αj + µ−∆j ≤ 0 ∀j ∈ D (30)

(ξ+
ij , ξ

−
ij) x

1/2
ij |βij | ≤ M(1− zAij) ∀(i, j) ∈ E (31)

(%ij) pij + qij ≤ 1
uij

(1− zAij) ∀(i, j) ∈ E (32)

(ηij) ω+
ij + ω−ij ≤ zAij ∀(i, j) ∈ E (33)

ω+
ij ≥ 0, ω−ij ≥ 0, pij ≥ 0, qij ≥ 0 ∀(i, j) ∈ E

γ+
i , γ−i ≥ 0 ∀i ∈ G, ∆j ≥ 0 ∀j ∈ D

µ ≥ 0, δij , βij free ∀(i, j) ∈ E, αi free ∀i ∈ V.

As before, for each constraint we indicate the corresponding dual variable. Also note that we are
scaling βij by x

1/2
ij – this is allowable since x

1/2
ij > 0; using this scaling helps yield a simple expression

for M below. The purpose of inequalities (31) and (32) is to force βij = pij = qij = 0 whenever
(i, j) ∈ A (and similarly with constraints (33)). We stress that this linear program is equivalent to
the dual of K∗

C(A), but is not the dual itself (it includes redundant variables and constraints). A
critical point is that only the right-hand side vector of ΛC(A) depends on A. The following result
is central to our algorithm; inequality (34) is a Benders cut [B62].

Lemma 2.3 Let (f̄ , θ̄, t̄, P̄ , D̄, ξ̄+, ξ̄−, %̄, η̄) be optimal dual variables for problem ΛC(A). The in-
equality

t̄ +
∑

(i,j)∈E

((ξ̄+
ij + ξ̄−ij)M(1− zij)) +

∑
(i,j)∈E

(
1

uij
%̄ij(1− zij)) +

∑
(i,j)∈E

η̄ijzij ≥ 1 + ε, (34)

is valid for the min-cardinality problem, and cuts-off zA if C defeats A.

8

Proof. Let Â be an attack. As noted above, the constraints for the dual of ΛC(A) are independent
of A, and so (f̄ , θ̄, t̄, P̄ , D̄, ξ̄+, ξ̄−, %̄, η̄) is feasible for the dual of ΛC(Â). Further, the left-hand side
of (34), evaluated at zÂ, is the objective value attained by (f̄ , θ̄, t̄, P̄ , D̄, ξ̄+, ξ̄−, %̄, η̄) in the dual of
ΛC(Â). By duality, this constitutes an upper bound on the value of problem ΛC(Â), which is at
least 1 + ε if Â defeats C. So (34) is valid. And if C defeats A, by strong duality the left-hand side
of (34), evaluated at zA, equals t∗C(z

A) < 1 + ε, and (34) cuts-off zA.
We now present an iterative algorithm for the min-cardinality problem. Our algorithm maintains

a “master attacker” linear mixed-integer program (MIP) which relaxes the exponentially large set
of constraints tC(z) ≥ 1 + ε ∀ C. We initialize the master attacker MIP as min{

∑
(i,j) zij : zij =

0 or 1, ∀ (i, j)}. In a given iteration the solution of the master attacker MIP yields an attack A;
either A is defeated by some configuration C, which is tested by solving the controller’s problem
(24), or, as we will see, A is an optimal attack. In the former case, the Benders’ cut (34) is added
to the master attacker MIP, excluding A. Formally, our algorithmic template is as follows:

Algorithm for min-cardinality problem

1. Attacker: Solve master attacker MIP, obtaining attack A.

2. Controller: Search for a configuration C such that t∗C(z
A) < 1 + ε.

(2.a) If no such C exists, EXIT: A is a min-cardinality successful attack.

(2.b) Otherwise, add to the master the Benders’ cut (34). Go to 1.

Inductively, by Lemma 2.3, at each iteration the master attacker MIP is a relaxation of the
minimum-cardinality problem and thus the value of the master at any execution of Step 1, i.e.
the value

∑
(i,j) zAij , is a lower bound on the cardinality of any successful attack. Thus the exit

condition in Step 2.a is correct, since it proves that A is successful. Finally, the algorithm is finite
since at each Step 2.b we cut-off one new 0/1 vector.

The template above can be enhanced in many ways through the use of heuristics and by strength-
ening the cuts. As per Lemma 2.3, any vector dual-feasible for ΛC(A) yields a valid inequality of
the form (34). For any given configuration C, the collection of all such cuts is equivalent to the
dual of ΛC(A), for every A. This dual can be represented in compact form by introducing auxiliary
variables and constraints; adding this dual to the master MIP considerably strengthens the formu-
lation in one step, but at the cost of substantially enlarging it. See [28] for details.

In order to make formulation ΛC(A) precise we must choose a value for M. Integer programming
folklore dictates that M should be chosen small to improve the tightness of the linear programming
relaxation of the master problem, that is to say, how close an approximation to the integer program
is provided by its LP relaxation. We have also found that popular optimization packages show
significant numerical instability when solving power flow linear programs. In our experience this
is the primary reason for choosing M as small as possible; in particular M should not grow with
network size since this would yield an approach that very quickly becomes unmanageable. In the
Appendix, we prove that a valid choice for M is max(i,j)∈E

{
1√

xij uij

}
.

2.2 Numerical experiments with the min-cardinality model

In the experiments reported in this section we used a 3.4 GHz Xeon machine with 2 MB L2 cache
and 8 GB RAM. All experiments were run using a single core. The LP/IP solver was Cplex v.
10.01, with default settings.

2.2.1 Data sets

For our experiments we used problem instances of two types; all problem instances are available
for download (http://www.columbia.edu/∼dano/research/pgrid/Data.zip).

9

(a) Two of the IEEE “test cases” [18]: the “57 bus” case (57 nodes, 78 arcs, 4 generators) and
the “118 bus” case (118 nodes, 186 arcs, 17 generators).

(b) Two artificial examples were also created. One was a “square grid” network with 49 nodes
and 84 arcs, 4 generators and 14 demand nodes. We also considered a modified version of
this data set with 8 generators but same sum

∑
i∈G Pmax

i . Generator and demand nodes, as
well as generator output bounds and nominal demand amounts, were chosen at random. We
point out that square grids frequently arise as difficult networks for combinatorial problems
(they are sparse but highly symmetric and have high tree-width, see [24], [6]). We created a
second artificial network by taking two copies of the 49-node network and adding a random
set of arcs to connect the two copies; with resistances (resp. capacities) equal to the average
in the 49-node network plus a small random perturbation. This yielded a 98- node, 204-arc
network, with 28 demand nodes, and we used 10, 12, and 15 generator variants.

In all cases, each of the generator output lower bounds Pmin
i was set to a random fraction (but

never higher than 80%) of the corresponding Pmax
i .

An important consideration involves the capacities uij – should capacities be too small, or too
large, the problem we study tends to become quite easy. For example, if a generator accounts
for 20% of all demand then in a tightly capacitated situation the removal of just one arc incident
with that node could constitute a successful attack for Tmin large. For the purposes of our study,
we assumed constant capacities for the two networks in (a) and the initial network in (b); these
constants were scaled, through experiments with our algorithm, precisely to make the problems
we solve more difficult. A topic of further research would be to analyze the N − k problem under
regimes where capacities are significantly different across arcs, possibly reflecting a condition of
pre-existing stress. In Section 3.4, which addresses experiments involving the second model in this
paper, we consider some variations in capacities.

2.2.2 Goals of the experiments

The experiments focus, primarily, on the workload incurred by our algorithm on the problem
instances described above. A second issue we examine whether the number of generators expo-
nentially impact performance – does the algorithm need to enumerate a large fraction of all the
configurations? In general, what features of a problem instance adversely affect the algorithm?

As noted above, previous studies (see [4], [3], [25]) involving integer programming methods
applied to the N − k problem have considered examples with up to 79 arcs, and sparse. In this
paper, in addition to considering significantly larger examples we also face the added combinatorial
complexity caused by having many configurations. Potentially, our algorithm could rapidly break
down – thus, our focus on performance.

2.2.3 Results

Tables 1 and 2 refer to the 57-node and 118-node case, respectively, Table 3 considers the artificial
49-node case and Table 4 considers the 98-node case. In the tables, each row corresponds to a
value of the minimum throughput Tmin, while each column corresponds to an attack cardinality.
For each (row, column) combination, the corresponding cell is labeled “Not Enough” if using any
attack of the corresponding cardinality or smaller the attacker will not be able to reduce demand
below the stated throughput. “Success” means that some attack of the given cardinality or smaller
does succeed. Further, we also indicate the number of iterations that the algorithm took in order to
prove the given outcome (shown in parentheses) as well as the corresponding CPU time in seconds.
Thus, for example, in Table 2, the algorithm proved that using an attack of size 3 or smaller we
cannot reduce total demand below 75% of the nominal value; this required 4 iterations which overall
took 267 seconds. At the same time, in 7 iterations (6516 seconds) the algorithm found a successful
attack of cardinality 4.

10

Comparing the 57- and 118-node cases, the significantly higher CPU times for the second case
could be explained by the much larger number of arcs. The larger number of generators could also
be a cause – however, the number of configurations in the second case is more than eight thousand
times larger than that of the first; much larger than the actual slowdown shown by the tables.

Table 1: Runs of first model on 57-node, 78-arc, 4-generator test case
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
Attack cardinality

Min. throughput 2 3 4 5 6
0.75 (1), 2, F (2), 3, S
0.70 (1), 1, F (3), 7, F (48), 246, F (51), 251, S
0.60 (2), 2, F (3), 6, F (6), 21, F (6), 21, S
0.50 (2), 2, F (3), 7, F (6), 13, F (6), 13, F (6), 13, S
0.30 (1), 1, F (2), 3, F (2), 3, F (2), 3, F (2), 3, F

Table 2: Runs of first model on 118-node, 186-arc, 17-generator test case
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
Attack cardinality

Min. throughput 2 3 4
0.92 (4), 18, S
0.90 (5), 180, F (6), 193, S
0.88 (4), 318, F (6), 595, S
0.84 (2), 23, F (6), 528, F (148), 6562, S
0.80 (2), 18, F (5), 394, F (7), 7755, F
0.75 (2), 14, F (4), 267, F (7), 6516, F

Table 3 presents experiments with our algorithm on the 49-node, 84-arc network, first using 4
and then 8 generators. Not surprisingly, the network with 8 generators proves more resilient (even
though total generator capacity is the same) – for example, an attack of cardinality 5 is needed to
reduce throughput below 84%, whereas the same can be achieved with an attack of size 3 in the
case of the 4-generator network. Also note that the running-time performance does not significantly
degrade as we move to the 8-generator case, even though the number of generator configurations
has grown by a factor of 16. Not surprisingly, the most time-consuming cases are those where
the adversary fails, since here the algorithm must prove that this is the case (i.e. prove that no
successful attack of a given cardinality exists) while in a “success” case the algorithm simply needs
to find some successful attack of the right cardinality.

Table 4 describes similar tests on the 98-node, 204-arc network. Note that in the 15 generator
case there are over 30000 generator configurations that must be examined, at least implicitly, in
order to certify that a given attack is successful. But, as in the case of Table 3, the number of
generators does not have an exponential impact on the overall running time. Thus, the experiments
appear to show that the number of generators plays a second-order role in the complexity of
the algorithm; the total number of iterations depends weakly on the total number of generator
configurations, and the primary agent behind complexity is the topological structure of the network.

With a few exceptions, the running time tends to decrease, for a given attack cardinality, once
the minimum throughput is sufficiently past the threshold where no successful attack exists. This
can be explained as follows: as the minimum throughput decreases the controller has more ways
to defeat the attacker, and this is leveraged by our algorithm – the cuts added in step (2.b) of our

11

Table 3: Runs of first model on 49-node, 84-arc network
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
4 generators

Attack cardinality
Min. throughput 2 3 4 5

0.84 (4), 129, F (4), 129, S
0.82 (4), 364, F (35), 1478, F (36), 1484, S
0.78 (4), 442, F (4), 442, F (26), 746, S
0.74 (4), 31, F (11), 242, F (168), 4923, F (168), 4923, S
0.70 (3), 31, F (4), 198, F (10), 1360, F (203), 3067, S
0.62 (4), 86, F (4), 86, F (131), 2571, F (450), 34298, F

8 generators
Attack cardinality

Min. throughput 2 3 4 5
0.90 (1), 13, F (3), 133, S
0.86 (1), 59, F (5), 357, F (13), 1291, S
0.84 (1), 48, F (4), 227, F (41), 2532, F (43), 2535, S
0.80 (1), 14, F (4), 210, F (8), 1689, F (50), 2926, S
0.74 (1), 8, F (3), 101, F (10), 1658, F (68), 23433, F

algorithm enable us to prove an effective lower bound on the minimum attack cardinality needed
to obtain a successful attack. Also (consider the cases corresponding to cardinality = 4; and we
have 12 or 15 generators) CPU time increases with decreasing minimum throughput so long as a
successful attack does exist. This can also be explained, as follows: in order for the algorithm to
terminate it must generate a successful attack, but this task becomes more difficult as the minimum
throughput decreases (the controller has more options). Roughly speaking, in summary, we would
expect the problem to be “easiest” (for a given attack cardinality) near extreme values of the
minimum demand threshold; the experiments overall confirm this expectation.

3 A continuous, nonlinear attack problem

In this section we study a new attack model, motivated by the sense (see e.g. [27]) that recent real-
world blackouts were not simply the result of discrete line failures, and, rather, the system as a whole
was already under stress when the failures took place. It seems difficult to derive a comprehensive
model that accounts for each of the many forms of ’stress’ and ’noise’ in the operation of a grid.
Instead we seek a generic modeling methodology that can serve to expose system vulnerabilities.

We posit that the performance of a stressed line can be approximated by perturbing that line’s
resistance (or, for AC models, the susceptance, etc.). For example, by significantly increasing the
resistance of a line we will, in general, force the power flow on that line to zero. This paradigm
becomes particularly effective when the resistances of many lines are simultaneously altered in an
adversarial fashion. Our second model is as follows:

(I) The attacker sets the resistance xij of any arc (i, j).

(II) The attacker is constrained: we must have x ∈ F for a certain known set F .

(III) The output of each generator i is fixed at a given value Pi, and similarly each demand value
Di is also fixed at a given value.

12

Table 4: Runs of first model on 98-node, 204-arc network
Entries show: (iteration count), CPU seconds,

Attack status (F = cardinality too small, S = attack success)
10 generators

Attack cardinality
Min. throughput 2 3 4

0.89 (2) 177, F (30) 555, S
0.86 (2), 195, F (12), 5150, F (14), 5184, S
0.84 (2), 152, F (11), 7204, F (35), 223224, F
0.82 (2), 214, F (9), 11458, F (16), 225335, F
0.75 (2), 255, F (9), 5921, F (17), 151658, F
0.60 (1), 4226, F N/R

12 generators
Attack cardinality

Min. throughput 2 3 4
0.92 (2), 318, F (11), 7470, F (14), 11819, S
0.90 (2), 161, F (11), 14220, F (18), 16926, S
0.88 (2), 165, F (10), 11178, F (15), 284318, S
0.84 (2), 150, F (9), 4564, F (16), 162645, F
0.75 (2), 130, F (9), 7095, F (15), 93049, F

15 generators
Attack cardinality

Min. throughput 2 3 4
0.94 (2), 223, F (11), 654, S
0.92 (2), 201, F (11), 10895, F (18), 11223, S
0.90 (2), 193, F (11), 6598, F (16), 206350, S
0.88 (2), 256, F (9), 15445, F (18), 984743, F
0.84 (2), 133, F (9), 5565, F (15), 232525, F
0.75 (2), 213, F (9), 7550, F (11), 100583, F

(IV) The objective of the attacker is to maximize the overload of any arc, that is to say, the
attacker wants to solve

max
x∈F

max
(i,j)

{
|fij |
uij

}
, (35)

where f = f(x) is the (unique) flow vector under resistances x (refer to Lemma 1.1).

As a comment on (III), suppose that e.g. the value of (35) equals 1.25. Then even if we allow
demands to be reduced, but insist that this be done under a fair demand-reduction discipline (one
that decreases all demands by the same factor) the system will lose 25% of the total demand if
line overloads are to be avoided (and it is not surprising that the same qualitative conclusion holds
even if demands are “unfairly” reduced to minimize maximum overload; see Table 13). Thus we
expect that the impact of (III), under this model, may not be severe.

It will be more convenient to deal with the inverses of resistances, the so-called “conductances.”
For each (i, j) ∈ E, write yij = 1/xij , and let y be the vector of yij . Likewise, instead of considering
a set F ⊆ RE of allowable values xij we consider a set Γ describing the conductance values that
the adversary is allowed to use. The problem of interest becomes

max
y∈Γ

max
(i,j)

{
|fij(y)|

uij

}
, (36)

13

where as just discussed the notation fij(y) is justified. A relevant example of a set Γ is given by:

∑
(i,j)

1
yij

≤ B,
1

xU
ij

≤ yij ≤
1

xL
ij

∀ (i, j), (37)

where B is a given ’budget’, and, for any arc (i, j), xL
ij and xU

ij and indicates a minimum and
maximum value for the resistance at (i, j). Suppose the initial resistances xij are all equal to some
common value x̄, and we set xL

ij = x̄ for every (i, j), and B = k θ x̄ + (|E| − k)x̄, where k > 0 is
an integer and θ > 1 is large. Then (among other choices) the adversary can make the resistance
of (up to) k arcs “very large”, a situation reminiscent of the classical N − k problem.

If the objective in (36) is convex then the optimum will take place at some extreme point. In
general, the objective is not convex; but experiments show that we tend to converge to points that
are either extreme points, or very close to extreme points (see the Section 3.4.3). Problem (36)
differs from the standard N-k problem (but see Lemma 3.4) however in our opinion we obtain a
better approach for modeling noise. Additionally, in our numerical experiments we were able to
handle much larger problems (on the order of 1000 arcs) than with our first model.

3.1 Solution methodology

Problem (36) is not smooth. However, it is equivalent to:

max
y,p,q

∑
(i,j)

fij(y)
uij

(pij − qij) (38)

s.t.
∑
(i,j)

(pij + qij) = 1, (39)

y ∈ Γ, p, q ≥ 0. (40)

We sketch a proof of the equivalence. Suppose (y∗, p∗, q∗) is an optimal solution to (38)-(40); let
(̂i, ĵ) be such that |fîĵ(y

∗)|/uîĵ = max(i,j) |fij(y∗)|/uij . Then without loss of generality if fîĵ(y
∗) > 0

(fîĵ(y
∗) ≤ 0) we have p∗

îĵ
= 1 (resp., q∗

îĵ
= 1) and all other p∗, q∗ equal to zero. This proves the

equivalence once way and the converse is similar.
Our approach will use this formulation and rely on a more explicit representation of the functions

fij(y). This will require a sequence of technical results given in the following section; however a
brief discussion of our approach follows.

The objective function (38), although smooth, is not concave. A relatively recent research
thrust, which we will leverage, has focused on adapting techniques of (convex) nonlinear program-
ming to nonconvex problems; resulting in a very large literature with interesting and useful results;
see [17], [5]. Since one is attempting to solve non-convex minimization problems, there is no guar-
antee that a global optimum will be found by these techniques. One can sometimes assume that
a global optimum is approximately known; and the techniques then are likely to converge to the
optimum from an appropriate guess.

In any case, (a) the use of nonlinear models allows for much richer representation of problems,
(b) the very successful numerical methodology backing convex optimization is brought to bear, and
(c) even though only a local optimum may be found, we are relying on an agnostic optimization
technique as opposed to a pure heuristic or a method that makes structural assumptions about the
nature of the optimum in order to simplify the problem.

3.1.1 Some comments on the algorithmic framework

Suppose we consider a a linearly constrained problem of the form min {F(x) : Ax ≥ b}. Imple-
mentations such as LOQO [26] or IPOPT [29] require, in addition to some representation of the
linear constraints Ax ≥ b, subroutines for computing, at any given point x̂, (a) the functional value
F(x̂), (b) the gradient ∇F(x̂), and, ideally, (c) the Hessian ∇2F(x̂).

14

If routines for the computation of the gradient or Hessian are not available, then automatic
differentiation may be used. At each iteration the algorithms will evaluate the subroutines and
perform additional work such as matrix computations. The cumulative run-time accrued in the
computation of (a)-(c) could prove significant and it is important to develop fast routines especially
in large-scale settings.

We will construct an explicit representation of the functions fij(y) given above, such that the
three evaluation steps in (a)-(c) indeed admit efficient implementations using sparse linear algebra
techniques. The approach is “compact” in that, essentially, the only variables we deal with are the
yij . A potential drawback concerns the density of the Hessian that we compute.

In what follows, we will first provide a review of some relevant material in linear algebra (Section
3.1.2). This material is used to make some structural remarks in Section 3.1.3. Section 3.2 describes
our algorithms for computing the gradient and Hessian of the objective function for problem (38)-
(40). Finally, Section 3.3 presents details of our implementation, and Section 3.4 describes our
numerical experiments.

3.1.2 Laplacians

In this section we present some background material on linear algebra and Laplacians of graphs.
See [9] for relevant material. As before we have a connected, directed network G with n nodes and
m arcs and with node-arc incidence matrix N . For a positive diagonal matrix Y ∈ Rm×m write

L = NY NT , J = L +
1
n

11T , P = I − J.

where 1 ∈ Rn is the vector (1, 1, . . . , 1)T . L is called a generalized Laplacian. L is symmetric
positive-semidefinite; if λ1 ≤ λ2 ≤ . . . ≤ λn are its eigenvalues and L, and v1, v2, . . . , vn are the
corresponding unit-norm eigenvectors,

λ1 = 0, but λi > 0 for i > 1,

because G is connected, and thus L has rank n − 1. Similarly, since N1 = 0, we can assume
v1 = n−1/2 1, and therefore 1T vi = 0 for 2 ≤ i ≤ n. Lemmas 3.1, 3.2 and 3.3 follow from basic
properties of Laplacians, see [9] and references therein.

Lemma 3.1 L and J have the same eigenvectors, and all but one of their eigenvalues coincide.
Further, J is invertible.

Lemma 3.2 Let b ∈ Rn. Any solution to the system of equations Lα = b is of the form

α = J−1b + δ1,

for some δ ∈ R.

Note that the eigenvalues of P are 0 and 1− λi, 2 ≤ i ≤ n; thus if we have∑
(u,v)

yuv < 1/2, for all u, (41)

then it is not difficult to show that

0 < 1− λi < 1, for all i ≥ 2. (42)

(See [21] for related background). In such a case we can write

J−1 = (I − P)−1 =
∞∑

k=0

Pk. (43)

Lemma 3.3 For any integer k > 0, Pk = (I −NY NT)k − 1
n11T .

15

3.1.3 Observations

Consider problem (38)-(40), where, as per our modeling assumption (III), b denotes the (fixed) net
supply vector, i.e. bi = Pi for a generator i , bi = −Di for a demand node i, and bi = 0 otherwise.
Writing Y = diag{yij}, we have that the flows f and angles θ are obtained by solving the system

NT θ − Y −1f = 0 (44)
Nf = b. (45)

In what follows, it will be convenient to assume that condition (42) holds, i.e. 1− λi < 1 for each
i. Next we argue that without loss of generality we can assume that this holds.

As noted above, this condition will be satisfied if
∑

(u,v) yuv < 1/2 for all u (eq. (41) above).
But Lemma 1.1 implies that if all yuv are scaled by a common constant µ > 0, the flows f that solve
(44)-(45) do not change. Thus, if we assume that the set Γ in our formulation (38)-(40) is bounded
(as is the case if we use (37)) then, without loss of generality, (41) indeed holds. Consequently, in
what follows we will assume that

∃ r < 1 such that 1− λi < r for 2 ≤ i ≤ n. (46)

By Lemma 3.2 each solution to (44)-(45) is of the form

θ = J−1b + δ1 for some δ ∈ R, (47)
f = Y NT J−1b.

For each arc (i, j) denote by νij the column of N corresponding to (i, j). Using (43) we thus have

fij = yijν
T
ijJ

−1b = yijν
T
ij

[∞∑
k=0

Pk

]
b, ∀(i, j), and (48)

θi − θj = νT
ijJ

−1b = νT
ij

[∞∑
k=0

Pk

]
b,

Below we will be handling expressions with infinite series such as the above. In order to facilitate
the analysis we need a ’uniform convergence’ argument, as follows. For y ∈ Γ, write

P = P(y) = U(y)Λ(y)U(y)T ,

where U(y) is a unitary matrix and Λ(y) is the diagonal matrix containing the eigenvalues of P(y).
Hence, for any k ≥ 1 and any arc (i, j) (and dropping the dependence on y for simplicity),

|νT
ijPkb| = |νT

ijUΛkUT b| < ρk, (49)

for some ρ < 1, by (46). We will rely on this bound below.

The following result provides a parallel between the continuous interdiction model we consider
here the discrete model of network vulnerability considered in Section 2.1.

Lemma 3.4 Let S be a set of arcs whose removal does not disconnect G. Suppose we fix the
values yij = 1/xij for each arc (i, j) /∈ S, and we likewise set yst = ε for each arc (s, t) ∈ S. Let
(f(y), θ(y)) denote the resulting power flow on G, and (f̄ , θ̄) the power flow on G− S. Then

(a) limε→0 fst(y) = 0, for all (s, t) ∈ S,

(b) For any (u, v) /∈ S, limε→0 fuv(y) = f̄uv.

(c) For any (u, v), limε→0(θu(y)− θv(y)) = θ̄u − θ̄v.

16

Proof. (a) Let G̃ = G − (s, t), let Ñ be node-arc incidence matrix of G̃, Ỹ the restriction of Y to
all arcs other (s, t), and P̃ = I − Ñ Ỹ ÑT − 1

n11T . For any integer k ≥ 1 we have by Lemma 3.3

lim
ε→0

Pk = lim
ε→0

(I −NY NT)k − 1
n
11T = (I − Ñ Ỹ ÑT)k − 1

n
11T = P̃k.

Consequently, by (48), for any (s, t) ∈ S,

lim
ε→0

fst = lim
ε→0

[
ystν

T
st

(∞∑
k=0

Pk

)
b

]
=

∞∑
k=0

[
lim
ε→0

yst

(
νT

stPkb
)]

= 0;

the exchange between summation and limit is valid by (49). The proofs of (b), (c) are similar.

Lemma 3.4 can be interpreted as describing a particular attack pattern – make xij very large for
(i, j) ∈ S and leave all other xij unchanged. Our numerical experiments show a pattern similar
to that assumed by the Lemma: the attacker tends to concentrate most of the budget on a small
number of arcs.

3.2 Efficient computation of the gradient and Hessian

Here we give efficient closed-form expressions for the gradient and Hessian of the objective in
(36). As before, we denote by νij the column of the node-arc incidence matrix of the network
corresponding to arc (i, j). First we present a technical result. This will be followed by the
development of formulas for the gradient (eqs. (50)-(51)) and the Hessian (eqs. (52)-(54)).

Lemma 3.5 For any integer k > 0, any arc (i, j) and any b̃ ∈ Rn,

(a) 1TPk = 0,

(b)
∂

∂yij

[
Pk b̃

]
= P ∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃.

Proof. Note that 1TP = 1T (I − J) = 1T (I −NY NT − 1
n11T) = 0. Hence 1TPk = 0.

∂

∂yij

[
Pk b̃

]
=

∂

∂yij

[
Pk−1b̃

]
=

∂

∂yij

I −
∑

(u,v)∈E

yuv νuvν
T
uv −

1
n
11T

Pk−1b̃


=

∂

∂yij

[
Pk−1b̃

]
− ∂

∂yij

 ∑
(u,v)∈E

yuv νuvν
T
uv

Pk−1b̃

− ∂

∂yij

[
1
n
11TPk−1b̃

]

=
∂

∂yij

[
Pk−1b̃

]
− ∂

∂yij

 ∑
(u,v)∈E

yuv νuvν
T
uv

Pk−1b̃


=

∂

∂yij

[
Pk−1b̃

]
−

∑
(u,v)∈E

∂

∂yij

[
yuv νuvν

T
uvPk−1b̃

]

=
∂

∂yij

[
Pk−1b̃

]
−

∑
(u,v)∈E

[
∂yuv

∂yij

]
νuvν

T
uvPk−1b̃−

∑
(u,v)∈E

yuv
∂

∂yij

[
νuvν

T
uvPk−1b̃

]
=

∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃−

∑
(u,v)∈E

yuv νuvν
T
uv

∂

∂yij

[
Pk−1b̃

]

=

I −
∑

(u,v)∈E

yuv νuvν
T
uv

 ∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃

=
[
P +

1
n
11T

]
∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃

= P ∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃ +

∂

∂yij

[
1
n
11TPk−1b̃

]
= P ∂

∂yij

[
Pk−1b̃

]
− νijν

T
ijPk−1b̃.

17

where the third and the last equality follow from (a).

Let ∇̃ij := ∂
∂yij

J−1b = ∂
∂yij

∑∞
k=0 Pkb, by (43). For k ≥ 1, ∂

∂yij
[Pkb] = −

∑k
h=1 Pk−hνijν

T
ijPh−1b

(by Lemma 3.5(b)), and so

∇̃ij = −
(∞∑

k=0

Pk

)
νijν

T
ij

(∞∑
k=0

Pk

)
b = −J−1 νijν

T
ij θ,

where the last equality follows from (47) and (43), and the fact that νT
ij1 = 0. Using (48), the

gradient of function fuv(y) with respect to the variables yij can be written as:

∂fuv

∂yij
= yuv νT

uv

∂

∂yij
J−1b = yuv νT

uv ∇̃ij , (i, j) 6= (u, v) (50)

∂fij

∂yij
= νT

ijθ + yij νT
ij

∂

∂yij
J−1b = νT

ijθ + yijν
T
ij∇̃ij . (51)

We similarly develop closed-form expressions for the second-order derivatives. For (u, v) 6= (i, j)
and (u, v) 6= (s, t),

∂2fuv

∂yij∂yst
= yuvν

T
uv [J−1 νijν

T
ij J−1νstν

T
st + J−1 νstν

T
st J−1 νijν

T
ij] θ

= −yuvν
T
uvJ

−1
[
νijν

T
ij∇̃st + νstν

T
st∇̃ij

]
. (52)

Similarly, the remaining terms are:

∂2fuv

∂y2
uv

= 2 νT
uv∇̃uv − 2 yuvν

T
uvJ

−1νuvν
T
uv∇̃uv, (53)

∂2fuv

∂yuv∂yij
= νT

uv ∇̃ij − yuv νT
uvJ

−1
[
νijν

T
ij ∇̃uv + νuvν

T
uv ∇̃ij

]
(54)

3.3 Implementation details

Our approach was applied to problem (38)-(40), using

Γ =

 y ≥ 0 :
∑
(i,j)

1
yij

≤ B,
1

xU
ij

≤ yij ≤
1

xL
ij

∀ (i, j)

 .

At each iteration we compute the gradient and Hessian using (50), (51), (52)-(54). This requires
the computation and storage of quantities νT

uvJ
−1νij for each pair of arcs (i, j), (u, v); at any given

iteration, this can be done in O(n2 + nm) space. In order to compute νT
uvJ

−1νij , for given (i, j)
and (u, v), we simply solve the sparse linear system on variables κ, λ:

NT κ− Y −1λ = 0, Nλ = νij . (55)

As in (47), we have κ = J−1νij + δ1 for some real δ. But then νT
uvκ = νT

uvJ
−1νij , the desired

quantity. In order to solve (55) we use Cplex (any efficient linear algebra package would suffice).
In our implementation we use an iteration limit, but apply additional stopping criteria:

(1) If both primal and dual are feasible, we consider the relative error between the primal and
dual values, ε = PV - DV

DV , where ’PV’ and ’DV’ refer to primal and dual values respectively.
If the relative error ε is less than some desired threshold we stop, and report the solution as
“ε-locally-optimal.”

18

(2) If on the other hand we reach the iteration limit without stopping, then we consider the
last iteration at which we had both primal and dual feasible solutions. If such an iteration
exists, then we report the corresponding configuration of resistances along with the associated
maximum congestion value. If such an iteration does not exist, then we report the run as
unsuccessful.

Our implementation relies on LOQO [26] to carry out the underlying search. LOQO uses a primal-
dual interior-point method to solve a sequence of quadratic approximations to a given optimization
problem. LOQO stops if at any iteration the primal and dual problems are feasible and with objec-
tive values that are close to each other, in which case a local optimal solution is found. Additionally,
LOQO uses an upper bound on the overall number of iterations it is allowed to perform.

Finally, we used the starting point yij = 1/xL
ij for each arc (i, j).

3.4 Experiments

In the experiments reported in this section we used a 2.66 GHz Xeon machine with 2 MB L2 cache
and 16 GB RAM. All experiments were run using a single core. Altogether we report on 37 runs
of the algorithm.

For our tests we used the 57- and 118-node test cases as in Section 2.2 with some variations
on the capacities; as well as the 49-node “square grid” example and three larger networks cre-
ated using the replication technique described at the start of Section 2.2: a 300-node, 409-arc
network, a 600-node, 990-arc network, and a 619-node, 1368-arc network. Additional artifi-
cial networks were created to test specific conditions. All data sets are available for download
(http://www.columbia.edu/∼dano/research/pgrid/Data.zip).

We considered several three constraint sets Γ as in (37):

(1) Γ(1), where for all (i, j), xL
ij = 1 and xU

ij = 5,

(2) Γ(2), where for all (i, j), xL
ij = 1 and xU

ij = 10,

(3) Γ(3), where for all (i, j), xL
ij = 1 and xU

ij = 20.

In each case, we set B =
∑

(i,j) xL
ij + ∆B, where ∆B represents an “excess budget”. Note that for

example in the case ∆B = 30, under Γ(2), the attacker can increase the resistance of up to 3 arcs
by a factor of 10 from their minimum value, with 3 units of budget left over. And under Γ(1), up
to 6 arcs can have their resistance increased by a factor of 5. In either case we have a situation
reminiscent of the N − k problem, with small k.

3.4.1 Focus of the experiments

In these experiments, we first study how the behavior of the algorithm changes as network size
increases up to roughly 1000 arcs and as ∆B increases. An additional point we study concerns the
structure of the solutions produced by the algorithm – what is the distribution of the xij obtained
at termination, and is there a logic to that distribution? A final set of experiments carry out a
comparison with results obtained using the standard N − k model.

3.4.2 Basic run behavior

Tables 5-10 present results for different networks and scenarios. Each column corresponds to a
different value of ∆B. For each run, “Max Cong” is the numerical value of the maximum arc
congestion (as in (35)) at termination. Additionally, we present the CPU time (in seconds) taken
by the algorithm, the number of iterations, and the termination criterion, which is indicated by
“Exit Status”, with the following interpretation:

(1) ’ε-L-opt.’: the algorithm computed an ε-locally-optimal solution.

19

(2) ’PDfeas, Iter: lastItn’: the algorithm reached the iteration limit without finding an ε-
locally-optimal solution, but there was an iteration at which both primal and dual problems
were feasible. ’lastItn’ gives the last iteration at which both primal and dual solutions were
feasible.

(3) ’opt.’: the algorithm attained LOQO’s internal optimality tolerance.

Tables 5 and 6 contain results for the 57- and 118-node networks, respectively, both using set Γ(2).
Tables 7 and 8 handle the 49-node, 84-arc network, with 14 demand nodes and 4 generators that
we considered in section 2.2, using sets Γ(1) and Γ(2) respectively.

Table 5: Runs of second model on 57 nodes, 78 arcs, constraint set Γ(2)
Iteration Limit: 700, ε = 0.01

∆B
9 18 27 36

Max Cong 1.070 1.190 1.220 1.209

Time (sec) 8 19 19 19

Iterations 339 Limit Limit Limit

Exit Status ε-L-opt. PDfeas. PDfeas. PDfeas.
Iter: 700 Iter: 700 Iter: 700

Table 6: Runs of second model on 118 nodes, 186 arcs, constraint set Γ(2)
Iteration Limit: 700, ε = 0.01

∆B
9 18 27 36

Max Cong 1.807 2.129 2.274 2.494

Time (sec) 88 200 195 207

Iterations Limit 578 Limit Limit

Exit Status PDfeas. ε-L-opt. PDfeas. PDfeas.
Iter: 302 Iter: 700 Iter: 700

Table 9 presents similar results for the network with 300 nodes and 409 arcs (42 generators
and 172 loads). Note that for the runs ∆B ≥ 20 the maximum load value is identical; the optimal
solution values xij were nearly identical, independent of the initial point given to LOQO.

Table 10 contains the results for the network with 600 nodes and 990 arcs (344 demand nodes
and 98 generators) under set Γ(2). We observed an interesting issue in the case where ∆B = 10.
Here, LOQO terminated with a solution in which, for some arc (i, j), both pij > 0 and qij > 0
(refer to formulation (38)-(40)). In parentheses we give the true value of the maximum congestion
obtained by solving the controller’s problem using the resistance values (xij) given by LOQO.

Finally, Table 11 presents experiments on the network with 649 nodes and 1368 arcs. Here,
exit status ’DF’ means that dual feasibility was achieved, but not primal feasibility. In such a
case, the budget constraint (37) was violated – the largest (scaled) violation we observed was 1e-03.
Even though this is a small violation, LOQO’s threshold for primal feasibility is 1e-06; we simply
scaled down any resistance value xij > xmin

ij so as to obtain a solution satisfying (37). In Table

20

Table 7: Runs of second model on 49 nodes, 84 arcs, constraint set Γ(1)
Iteration Limit: 800, ε = 0.01

∆B
5 10 15 20 25 30

Max Cong 0.673054 0.750547 0.815623 0.865806 0.901453 0.951803

Time (sec) 12 15 18 19 28 22

Iterations 258 347 430 461 Limit 492

Exit Status ε-L-opt. ε-L-opt. ε-L-opt. ε-L-opt. PDfeas ε-L-opt.
Iter: 613

Table 8: Runs of second model on 49 nodes, 84 arcs, constraint set Γ(2)
Iteration Limit: 800, ε = 0.01

∆B
5 10 15 20 25 30

Max Cong 0.67306 0.751673 0.815584 0.8685 0.91523 0.9496

Time (sec) 9 13 34 3 29 30

Iterations 177 295 Limit Limit Limit Limit

Exit Status ε-L-opt. ε-L-opt. PDfeas PDfeas PDfeas PDfeas
Iter: 800 Iter: 738 Iter: 624 Iter: 656

11, the quantity following the parenthesis in the “Max Cong” line indicates the resulting maximum
congestion, obtained by solving a controller’s problem on the network using the reduced resistance
values.

Comments: The algorithm runs fairly reliably in cases with up to approximately 1000 arcs; at
that point the internal solver (LOQO) starts to develop difficulties. For any given network, note that
the computed solution does vary as a function of the parameter ∆B, and in the expected manner,
as reflected by the “Max Cong” values. However the performance of the algorithm (running time or
number of iterations) appears stable as a function of ∆B. By “stable” what we mean is that even
though larger ∆B values correspond to larger numbers of arcs that could be maximally interdicted,
the workload incurred by the algorithm does not increase “combinatorially” as a function of ∆B.
This a significant difference between this algorithm and the algorithm presented above for the N−k
problem. In particular, our algorithm appears to allow for practicable analyses of the impact of
multiple choices of ∆B; this is a critical feature that parameterizes the risk-aversion of the model.

3.4.3 Distribution of attack weights

A significant question in the context of our model and algorithm concerns the structure of the
attack chosen by the adversary. The adversary is choosing continuous values with great leeway;
potentially, for example, the adversary could choose them uniformly equal (which, we would argue,
would make the model quite uninteresting). The experiments in this section address these issues.

Table 12 describes the distribution of xij values at termination of the algorithm, for a number
of networks and attack budgets. For each test we show first (in parentheses) the number of nodes
and arcs, followed by the the attack budget and constraint set. The data for each test shows, for
each range of resistance values, the number of arcs whose resistance falls in that range.

21

Table 9: Runs of second model on 300 nodes, 409 arcs, constraint set Γ(2)
Iteration Limit: 500, ε = 0.01

∆B
9 18 27 36

Max Cong 0.590690 0.694101 0.771165 0.771165

Time (sec) 208 1248 981 825

Iterations 91 Limit 406 320

Exit Status opt. PDfeas opt. opt
Iter: 318

Table 10: Runs of second model on 600 nodes, 990 arcs, constraint set Γ(2)
Iteration Limit: 300, ε = 0.01

∆B
10 20 27 36 40

Max Cong 0.082735 (0.571562) 1.076251 1.156187 1.088491 1.161887

Time (sec) 11848 7500 4502 11251 7800

Iterations Limit 210 114 Limit 208

Exit Status PDfeas ε-L-opt. ε-L-opt. PDfeas ε-L-opt.
Iter: 300 Iter: 300

Note that in each test case the adversary can increase the resistance of up to (roughly) three
arcs to their maximum value. The pattern we observe in the table is that in all three cases (i) many
resistances take relatively small values and (ii) a small number of arcs have high resistance. Recall
that for set Γ(2) we always have xmax

ij = 10, thus in the case of the (300, 409) network exactly three
arcs are in the top range, while for the (600, 990) network two are in the top range and one more
has relatively high resistance. In the case of the small network there is also a concentration ’at the
top’ though not in the very highest segment. We have observed this type of behavior in many runs.

In summary, thus, the solutions produced by the algorithm appear to superimpose two separate
effects. As argued in the next section, both effects play an important role.

3.4.4 Comparison with the minimum-cardinality attack model

The experiments in this section have as a first goal to effect a comparison with the N − k model
as embodied by the mixed-integer programming approach considered in Section 2.1. A direct
comparison on a case-by-case basis is not possible for a number of reasons (more on this below)
but the purpose of the tests is to investigate whether on “similar” data the two models behave in
similar ways.

A second goal of the experiments is to investigate the impact of one of our modeling assumptions
(assumption (III) in Section 3), namely that demands and supplies are fixed. Ideally, our model
should be robust, that is to say, the attack computed in a run of the algorithm should remain
effective even if the controller has the power to adjust demands.

A common thread runs through both goals. Turning to the first goal, it turns out that the
modeling assumption (III) is, in fact, what makes a direct comparison with the N − k model

22

Table 11: Runs of second model on 649 nodes, 1368 arcs, constraint set Γ(2)
Iteration Limit: 500, ε = 0.01

∆B
20 30 40 60

Max Cong (0.06732) 1.294629 1.942652 (0.049348) 1.395284 2.045111

Time (sec) 66420 36274 54070 40262

Iterations Limit 374 Limit Limit

Exit Status DF ε-L-opt. DF PDfeas
Iter: 491

Table 12: Solution histograms for three representative runs

(49, 90) ∆B = 57, Γ(3) (300, 409) ∆B = 27, Γ(2) (600, 990) ∆B = 36, Γ(2)
Range Count Range Count Range Count
[1, 1] 8 [1, 1] 1 [1, 1] 14
(1, 2] 72 (1, 2] 405 (1, 2] 970
(2, 3] 4 (2, 9] 0 (2, 5] 3
(5, 6] 1 (9, 10] 3 (5, 6] 0
(6, 7] 1 (6, 7] 1
(7, 8] 4 (7, 9] 0
(8, 20] 0 (9, 10] 2

difficult. In principle, in the model in Section 2.1 one could set the desired minimum throughput
to 100%, i.e. set Tmin = 1.0. But in that case an attack that disconnects a demand node, even one
with tiny demand, would be considered a success for the attacker.

To deal with these issues and still obtain a meaningful comparison, we set an example with 49
nodes and 88 arcs, and an example with 49 nodes and 90 arcs, in which no demand or generator
node can be disconnected from the rest by removing up to three arcs. In each case there are 4
generators and 14 demand nodes. A family of problem instances was then obtained by scaling up
all capacities by a common constant.

In terms of the mixed-integer programming model, in each instance we constructed a single
configuration problem (generator lower bounds = 0) with Tmin = 1, with the goal of investigating
its vulnerability should up to three arcs be removed. Here we remind the reader that the algorithms
in Section 2.1 seek a minimum-cardinality attack that defeats the controller, and not the most severe
attack of a given cardinality – at termination, the optimal attack is certified to be successful (and of
minimum-cardinality), but not necessarily the most severe attack of that cardinality. Nevertheless,
formulation ΛC(A) (Section 2.1.1) is easily modified so as to produce an approximation (in general,
close) to the highest severity of any attack of cardinality ≤ k. This is done by making the z
parameters into 0/1 variables, and adding the constraint

∑
(i,j) zij ≤ k, where k (= 3, in our test)

is the number of arcs that the attacker can remove. A final detail is that since 3 lines will not
disconnect the demands from the generators, the “severity” of a given attack is the maximum arc
congestion post-attack; thus putting the problem on a common ground with the nonlinear models
we consider.

For our tests we used Γ(3) (which allows each resistance to increase by up to a factor of 20)
with an excess budget of 60, on the network with 49 nodes, 90 arcs, 4 generators and 14 demand
nodes. Note that the parameters allow the attacker to concentrate the budget on three arcs.

Table 13 contains the results. Each row corresponds to a different experiment, where the value

23

indicated by σ was used to scale all capacities from their values in the original network. As σ
increases the network becomes progressively more difficult to interdict.

In the ’MIP’ section, the column headed ’Cong’ indicates the congestion (max. arc overload) in
the network obtained by removing the arcs produced by the mixed-integer programming model, and
the column headed ’ATTACK’ indicates which arcs were removed by the MIP. In the ’NONLIN-
EAR’ section, ’Cong’ indicates the maximum congestion resulting from the increase in resistances
computed by the model. We also list the six arcs with highest resistance (and the resistance
values). The column headed ’Impact’ indicates the maximum congestion obtained by deleting the
three arcs with maximum resistance (as computed by the model), while leaving all other resistances
unchanged.

Note that the values in the ’Cong’ column are consistent with increasing values of σ – higher
values yield networks that are more difficult to interdict with a given budget, and so the objective
value (maximum overload) decreases. In the last two cases the computed attack fails to achieve
maximum overload greater than 1.0.

We also performed additional tests with the goal of testing the robustness of our solutions
with respect to decreased demand levels. In the first test, we removed the top three (post-attack)
highest resistance arcs, while keeping all other resistances unchanged, while allowing the controller
to reduce total demand by up to 10% with the objective of minimizing the maximum congestion.
This computation can be formulated as a linear program; the resulting minimum congestion value
is shown in the column labeled ’I-10%’. Note that to some degree this test also addresses the
comparison with the N − k model. Similarly, but now using all resistance values as computed by
the nonlinear model, and without removing any arcs, we allowed the controller to reduce total de-
mand by up to 10%, again with the objective of minimizing the maximum congestion. The column
labeled ’C-10%’ shows the resulting congestion value.

Table 13: Comparison between the two optimization models

σ MIP NONLINEAR
Cong Attack Cong Top 6 Arcs Impact I-10% C-10%

29(7.79), 27(7.20), 41(7.03),
1.0 1.44088 29,32,45 2.14967 67(7.02), 54(6.72), 79(5.71) 1.71758 1.33454 1.67145

29(8.28), 27(7.72), 41(7.32),
1.2 1.43132 27,29,41 1.78687 67(7.19), 54(6.92), 79(5.78) 1.43132 1.11211 1.38642

29(8.31), 27(7.74), 41(7.53),
1.4 1.22685 27,29,41 1.55634 67(7.48), 54(7.18), 79(6.15) 1.22685 0.95324 1.21329

29(8.18), 27(7.58), 41(7.53),
1.6 1.07349 27,29,41 1.35995 67(7.58), 54(7.22), 79(6.25) 1.07349 0.83409 1.05458

29(8.43), 27(7.90), 41(7.53),
1.8 0.692489 18,57,60 1.20271 67(7.48), 54(7.18), 79(6.12) 0.95421 0.74141 0.93595

29(7.87), 27(7.29), 41(7.04),
2.0 0.68630 20,89,45 1.07733 67(7.01), 54(6.70), 79(5.63) 0.85889 0.66727 0.83878

Comments. As before, we see that the solutions to the nonlinear model tend to concentrate the
attack on a relatively small number of lines, while at the same time investing small portions of
the attack budget on other lines. This helps highlight the significant overlap between the results
from the two models. Note that in the cases for σ = 1.2, 1.4, 1.6 the set of attacked lines show
high correlation. Moreover, the two models are consistent: the severity of the attack as measured
by the maximum congestion levels (the ’Cong’ parameters), for both models, decrease as the scale
increases (as one should expect).

The last three columns of the table address our second set of questions – they appear to show
that the solution computed by the nonlinear model is robust; even as the controller reduces total
demand, the congestion level is proportionally reduced. Finally, note that the congestion values in

24

the ’Impact’ column are significantly smaller than the corresponding values in the ’Cong’ column;
similarly, the ’C-10%’ values are higher than the ’I-10%’ values – thus, the low xij arcs in the
nonlinear attack do play a significant role.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, NJ (1993).

[2] G. Andersson, Modelling and Analysis of Electric Power Systems. Lecture 227-
0526-00, Power Systems Laboratory, ETH Zürich, March 2004. Download from
http://www.eeh.ee.ethz.ch/uploads/tx ethstudies/modelling hs08 script 02.pdf.

[3] R. Alvarez, Interdicting Electric Power Grids, Masters’ Thesis, U.S. Naval Postgraduate
School, 2004.

[4] J. Arroyo and F. Galiana, On the Solution of the Bilevel Programming Formulation of the
Terrorist Threat Problem, IEEE Trans. Power Systems, Vol. 20 (2005), 789–797.

[B62] J.F. Benders, Partitioning procedures for solving mixed variables programming problems,
Numerische Mathematik 4 (1962) 238-252.

[5] H. Y. Benson, D. F. Shanno and R. J. Vanderbei, Interior-point methods for nonconvex non-
linear programming: jamming and comparative numerical testing, Math. Programming 99, 35
– 38 (2004).

[6] Algorithmic implications of the Graph Minors project (with M. Langston), in Handbook of
Operations Research (Ball, Magnanti, Monma, Nemhauser, eds.), North-Holland (1995).

[7] D. Bienstock and S. Mattia, Using mixed-integer programming to solve power grid blackout
problems , Discrete Optimization 4 (2007), 115–141.

[8] V.M. Bier, E.R. Gratz, N.J. Haphuriwat, W. Magua, K.R. Wierzbickiby, Methodology for
identifying near-optimal interdiction strategies for a power transmission system, Reliability
Engineering and System Safety 92 (2007), 1155–1161.

[9] S. Boyd, Convex Optimization of Graph Laplacian Eigenvalues, Proc. International Congress
of Mathematicians 3 (2006), 1311–1319.

[10] D. Braess, Über ein Paradox der Verkerhsplannung, Unternehmenstorchung Vol. 12 (1968)
258–268.

[11] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Critical points and transitions in an
electric power transmission model for cascading failure blackouts, Chaos, vol. 12, no. 4, 2002,
985-994.

[12] B.A. Carreras, V.E. Lynch, D.E. Newman, I. Dobson, Blackout mitigation assessment in power
transmission systems, 36th Hawaii International Conference on System Sciences, Hawaii, 2003.

[13] B.A. Carreras, V.E. Lynch, I. Dobson, D.E. Newman, Complex dynamics of blackouts in power
transmission systems, Chaos, vol. 14, no. 3, September 2004, 643-652.

[14] B.A. Carreras, D.E. Newman, I. Dobson, A.B. Poole, Evidence for self organized criticality in
electric power system blackouts, IEEE Transactions on Circuits and Systems I, vol. 51, no. 9,
Sept. 2004, 1733- 1740.

[15] ILOG CPLEX 11.0. ILOG, Inc., Incline Village, NV.

25

[16] S.T. DeNegre and T.K Ralphs, A Branch-and-cut Algorithm for Integer Bilevel Linear Pro-
grams, COR@L Technical Report, Lehigh University (2008).

[17] R. Fletcher, N. I. M. Gould, S. Leyffer, Ph. L. Toint, and A. Wächter, Global convergence of
trust-region SQP-filter algorithms for general nonlinear programming, SIAM J. Optimization
13, 635–659 (2002).

[18] The IEEE reliability test system–1996, IEEE Trans. Power Syst., vol. 14 (1999) 1010 - 1020.

[19] U. Janjarassuk and J. T. Linderoth, Reformulation and Sampling to Solve a Stochastic Network
Interdiction Problem, to appear, Networks (2008).

[20] C. Lim and J.C. Smith, Algorithms for Discrete and Continuous Multicommodity Flow Net-
work Interdiction Problems, IIE Transactions 39, 15-26, 2007.

[21] B. Mohar, The Laplacian spectrum of graphs, in: Y. Alavi, G. Chartrand, O. Oellermann, A.
Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, London Math. Soc. Lecture
Notes, Wiley-Interscience, 871-898 (1991).

[22] A. Pinar, J. Meza, V. Donde, and B.C. Lesieutre, Optimization Strategies for the Vulnerability
Analysis of the Power Grid, submitted to SIAM Journal on Optimization (2007).

[23] A. Pinar, A. Reichert, and B.C. Lesieutre, Computing criticality of lines in power systems, in
IEEE Int. Symp. Circuits and Systems (ISCAS 2007), New Orleans, LA, 2007, 65 – 68.

[24] N. Robertson and P. D. Seymour, Graphs minors. III. Planar tree-width, J. Combinatorial
Theory, Ser. B. 36 (1984), 49 - 64.

[25] J. Salmeron, K. Wood and R. Baldick, Analysis of Electric Grid Security Under Terrorist
Threat, IEEE Trans. Power Systems 19 (2004), 905–912.

[26] Vanderbei, R. 1997. LOQO User’s manual, Statistics and Operations Research Technical report
No SOR-97-08, Princeton University.

[27] Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and
Recommendations, U.S.-Canada Power System Outage Task Force, April 5, 2004. Download
from https://reports.energy.gov.

[28] A. Verma, ”Power grid security analysis: an optimization approach,” Ph.D. thesis, Columbia
University (2009). Download from http://www.columbia.edu/ dano/theses/verma.pdf.

[29] A. Wächter and L. T. Biegler, On the Implementation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Programming
106 (2006), 25 – 57.

A Appendix - Choosing M

Lemma A.1 In formulation AC(A), a valid choice for M is

M = max
(i,j)∈E

{
1

√
xij uij

}
. (56)

Proof. Given an attack A, consider a connected component K of N − A. For any arc (i, j) with
both ends in K, ω+

ij + ω−ij = 0 by (33). Hence we can rewrite constraints (26)-(27) over all arcs
with both ends in K as follows:

NT
KαK − XKβK = pK − qK , (57)

NKβK = 0. (58)

26

Here, NK is the node arc incidence matrix of K, αK , βK , pK , qK are the restrictions of α, β, p, q to
K, and XK is the diagonal matrix diag{xij : (i, j) ∈ K}. From this system we obtain

NKX−1
K NKαK = NKX−1

K (pK − qK). (59)

The matrix NKX−1
K NK has one-dimensional null space and thus we have one degree of freedom in

choosing αK . Thus, to solve (59), we can remove from NK an arbitrary row, obtaining ÑK , and
remove the same row from αK , obtaining α̃K . Thus, (59) is equivalent to:

ÑKX−1
K ÑK α̃K = ÑKX−1

K (pK − qK), (60)

The matrix ÑKX−1
K ÑK and thus (60) has a unique solution (given pK − qK); we complete this to

a solution to (59) by setting to zero the entry of αK that was removed. Moreover,

X
−1/2
K NT

KαK = X
−1/2
K ÑT

K α̃K = X
−1/2
K ÑT

K(ÑKX−1
K ÑT

K)−1ÑKX−1
K (pK − qK). (61)

The matrix
H := X

−1/2
K ÑT

K (ÑKX−1
K ÑT

K)−1 ÑKX
−1/2
K

is symmetric and idempotent, e.g. HHT = I. Thus, from (61) we get

‖X−1/2
K NT

KαK‖2 ≤ ‖H‖2 ‖X−1/2
K (pK − qK)‖2 ≤ ‖X−1/2

K (pK − qK)‖2, (62)

where the last inequality follows from the idempotent attribute. Because of constraints (28), (32)
and (33), we can see that the square of the right-hand side of (62) is upper-bounded by the value
of the convex maximization problem,

max
∑

(i,j)∈E

x−1
ij (pij − qij)2 (63)

s.t.
∑

(i,j)∈E

uij(pij + qij) ≤ 1 (64)

pij ≥ 0, qij ≥ 0, (65)

which equals max(i,j)∈E

{
1

xiju2
ij

}
.

27

