
CORC REPORT 2002-01

Subset Algebra Lift Operators for 0-1 Integer

Programming (Extended version)∗

Daniel Bienstock and Mark Zuckerberg
Columbia University
New York, NY 10027

July, 2002
version 2003-Dec-10

Abstract

We extend the Sherali-Adams, Lovász-Schrijver, Balas-Ceria-Cornuéjols and Lasserre lift-and-project
methods for 0-1 optimization by considering liftings to subset algebras. Our methods yield polynomial-
time algorithms for solving a relaxation of a set-covering problem at least as strong as that given by
the set of all valid inequalities with small coefficients, and, more generally, all valid inequalities where
the right-hand side is not very large relative to the positive coefficients in the left-hand side. Applied to
generalizations of vertex-packing problems, our methods yield, in polynomial time, relaxations that have
unbounded rank using for example the N+ operator.

1 Introduction

Consider a 0-1 integer programming problem

min{cT x : x ∈ F},

where

F = {x ∈ {0, 1}n : Ax ≥ b }. (1)

The procedures in [SA90], [LS91], [L01b] and [BCC93] solve this problem by iteratively strengthening its
continuous relaxation, until, after at most n iterations, the convex hull of F is obtained. This bound on the
number of iterations is tight ([CD01], [L01], also see [GT01], and [CL01] for related topics). Nevertheless, a
question of theoretical and practical interest is whether it is possible to modify the procedures so that the
earlier iterations produce stronger relaxations.

As shown in [L01], the methods used in [SA90], [LS91], [L01b], and [BCC93] can be viewed as relying on
a common paradigm: that of “lifting” a point in {0, 1}n to an appropriate zeta-vector of the subset lattice
of {1, 2, · · · , n}.

In this paper we introduce operators that lift instead to the (much larger) subset algebra of {0, 1}n. One
example of a result which is derived using our operators is the following:

Theorem 1.1 Let k ≥ 1 be a fixed integer. Consider a set-covering problem

min{cT x : Ax ≥ e, x ∈ {0, 1}n },

where A is 0-1 and e is a vector of 1s. Let Vk denote the set of inequalities aT x ≥ a0 which are valid for
{x ∈ {0, 1}n : Ax ≥ e} and for which aj ∈ {0, 1, 2, · · · , k}, 0 ≤ j ≤ n. Let Vk denote the set of points
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in {0, 1}n that satisfy all inequalities in Vk. Then there is an algorithm of complexity polynomial in n, for
solving

min cT x

s.t. x ∈ Rk

where Rk is a certain polyhedron satisfying

{x ∈ {0, 1}n : Ax ≥ e} ⊆ Rk ⊆ conv(Vk).

In other words, Rk is a polyhedral relaxation of the set-covering problem, all of whose points satisfy all
inequalities in the set Vk.

Theorem 1.1 is a special case of a more general result. Given an inequality aT x ≥ a0 with indices ordered
so that 0 < a1 ≤ a2 ≤ · · · ≤ aJ and aj = 0 for j > J , its pitch is the minimum t such that

∑t
j=1 aj ≥ a0.

Then we have:

Theorem 1.2 Let k ≥ 1 be a fixed integer. Consider a set-covering problem

min{cT x : Ax ≥ e, x ∈ {0, 1}n },

where A is an m× n, 0-1 matrix and e is the vector of m 1s. Let Pk denote the set of all valid inequalities
for {x ∈ {0, 1}n : Ax ≥ e} of pitch ≤ k. Then there a positive integer g(k), a polytope Qk ⊆ Rn and a
polytope Q̄k ⊆ R(m+n)g(k)

satisfying:

(a) {x ∈ {0, 1}n : Ax ≥ e} ⊆ Qk,

(b) aT x ≥ a0, ∀x ∈ Qk and ∀(a, a0) ∈ Pk,

(c) Qk is the projection to Rn of Q̄k,

(d) Q̄k can be described by a system of at most (m + n)g(k) linear constraints, with integral coefficients of
absolute value at most k. This system can be computed in time polynomial in n and m for fixed k.

Thus, Theorem 1.2 introduces a natural hierarchy among the valid inequalities for set-covering problems,
and shows that any fixed level in the hierarchy can be satisfied in polynomial time. How strong are the pitch
≤ k inequalities? First, note that the hierarchy is “complete” in the sense that any facet-defining inequality
has pitch ≤ n. Further, one can produce examples of set-covering problems with exponentially many facets
with coefficients 0, 1, 2 (Balas and Ng have completely characterized the set of facet-defining inequalities with
coefficients 0, 1, 2 [BN89]). Also, there are examples of Gomory inequalities of rank greater than one with
coefficients ≤ 3, and we conjecture that for each fixed integer k′ > 0 there is a k = k(k′) such that there
are examples of set-covering problems where some of the inequalities of pitch ≤ k have (fractional) Gomory
rank ≥ k′.

At the same time, we show that given a set-covering problem with a full-circulant constraint matrix
(
∑

j 6=i xj ≥ 1 for each 1 ≤ i ≤ n) the valid inequality
∑

j xj ≥ 2 (a constraint of pitch 2) has rank at least
n−3 for a lifting operator stronger than the Sherali-Adams and the N+ procedures combined. In other words
(if somewhat incompletely) lifting to a polynomially larger space yields an operator that is exponentially
stronger. These results, and others on set-covering problems, are presented in Sections 3.3. and 4.4.

The hierarchy of algorithms that we present (for fixed k we call our level k procedure the Σk-algorithm,
and we define these for k ≥ 2) do not require positive-semidefiniteness in order to achieve Theorem 1.2. On
the other hand, one of the key results in [LS91] is that positive-semidefiniteness allows the N+ operator to
guarantee that classical inequalities, for example clique inequalities in vertex-packing problems, are achieved
with rank 1. In Section 4.5 we consider set packing problems where, given a graph G, and given a family of
pairwise disjoint index sets Si, i ∈ V (G), for every edge {i, j} we have the constraint∑

k∈Si

xk +
∑
k∈Sj

xk ≤ |Si|+ |Sj | − 1. (2)
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When |Si| = 1 for each i we obtain precisely the vertex-packing polyhedron of G. Thus, one can think of
generalizations of several classical valid inequalities (clique, odd-hole, odd-antihole, odd-wheel). For example,
when G contains a clique with vertex set K the resulting set-clique constraint is:∑

i∈K

∑
k∈Si

xk ≤
∑
i∈K

|Si| − |K|+ 1.

One can similarly define set-odd-hole, set-odd-antihole and set-odd-wheel inequalities. In Section 4.5 we
show:

Theorem 1.3 Suppose we have a formulation that contains inequalities (2) corresponding to a clique K (with
pairwise disjoint sets Si). Then the Σ2−algorithm generates a vector that satisfies the set-clique constraint.
On the other hand, set-clique inequalities have unbounded N+- (and Sherali-Adams) rank. Similarly, the Σ2−
algorithm generates a vector that satisfies all set-odd-hole, set-odd-antihole and set-odd-wheel constraints.

Finally, section 4.6 presents further comparisons between our algorithms and the N+ procedure.

The development of our algorithms starts in Section 3.

2 Background

Let F ⊆ {0, 1}n be as before. Lovász and Schrijver [LS91] introduced the following general paradigm for the
problem of separating over conv(F).

Let N � n, and suppose we have a function that maps (“lifts”) each v ∈ F into z = z(v) ∈ {0, 1}N

with zj = vj , 1 ≤ j ≤ n. Let F̂ ⊆ {0, 1}N denote the image of F under this mapping. Then given x ∈ Rn
+,

the question of whether x ∈ conv(F) is equivalent to answering whether there exists y ∈ conv(F̂) such that
yi = xi, 1 ≤ i ≤ n.

This second membership question may be easier to answer than the original one because the vectors z(v)
reveal information about F in a more explicit way. As pointed out in [LS91], this basic idea was implicit
in earlier work on specific combinatorial problems, see [BP83], [B93], [BP89], and others. Furthermore, as
it turns out, the much earlier work of Balas on disjunctive programming [B75], [B79] provides a common
underlying viewpoint for much of this work.

Writing En = {1, 2, · · · , n}, the concrete application of this idea in [LS91] is as follows. We map each
v ∈ {0, 1}n into v̂ ∈ {0, 1}2n

, where

(i) the entries of v̂ are indexed by subsets of En, and

(ii) For S ⊆ {1, . . . , n}, v̂S = 1 iff vj = 1 for all j ∈ S.

Clearly, for 1 ≤ j ≤ n, v̂{j} = vj , so each v ∈ {0, 1}n is mapped into a distinct column of the zeta matrix Z
of the subset lattice L of En (see [R64]). For simplicity, we will forgo the standard lattice-theoretic notation
(≤, ∨, ∧) and use the corresponding set-theoretic operators instead (⊆, ∩ and ∪), and identify elements of
the lattice with subsets of En.

For completeness, we state the definition of Z: it has a row and a column for each element of L (i.e.,
each subset of En), and for a given p ∈ L its corresponding column ζp is defined by:

ζp
q =

{
1 if q ⊆ p,
0 otherwise. (3)

Note that each column of Z contains an entry (of value 1) for the empty set ∅; we will assume that this is the
zeroth coordinate and usually indicate it as such, but may sometimes use ∅ instead. Assuming an appropriate
ordering of columns, Z is upper triangular with 1s along the main diagonal, and therefore invertible. Its
inverse, M, is called the Möbius matrix of the lattice.

Let y ∈ RL. Then since Z is invertible we can write y =
∑

r λrζ
r for unique reals λr, r ∈ L. Thus, since

M = Z−1, we have λr = mry, where for p ∈ L we denote by mp the corresponding row of M. In other
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words, we can completely characterize conv(F̂) as follows:

conv(F̂) = {y ∈ RL : mpy ≥ 0 ∀p ∈ F̂ ; mpy = 0 ∀p /∈ F̂ ; eTMy = 1}. (4)

We can summarize what we know so far by considering the following questions, given y ∈ RL:

(A) Is y a linear combination of the columns of Z? This is always true because Z is invertible.

(B) Is y an affine combination of the columns of Z? This requires y∅ = 1.

(C) Is y a convex combination of the columns of Z? This requires y∅ = 1 and λ = My ≥ 0.

(D) Is y ∈ conv(F̂)? This requires y∅ = 1, My ≥ 0, and mry = 0 for all r /∈ F̂ .

We stress that (C) is already a nontrivial requirement (since Z is invertible and therefore λ is unique).

Even though condition (4) completely determines conv(F̂), it is algorithmically cumbersome – it requires
that we handle exponentially large matrices and vectors. [LS91], [SA90], [L01b] provide methods to approx-
imate this condition while only considering lower dimensional lattice elements. The procedure in [BCC93],
which has achieved some computational success [BCC96], is related to earlier work by Balas (see [B75]) and
can be viewed as a simplified version of the procedures in [LS91] and [SA90] – it relies on convexifying one
variable at a time. Here we outline the approach in [LS91].

Suppose y =
∑

r∈L λrζ
r. Consider the 2n × 2n-matrix W y defined by

W y =
∑
r∈L

λrζ
r(ζr)T . (5)

We have:

λ ≥ 0 iff W y � 0. (6)

This fact is clear in one direction; for the other implication note that λr = mT
r W ymr for all r.

Hence, the condition λ ≥ 0 may be approximated by requiring that some “small” (e.g., polynomial-sized)
minor of W y be positive-semidefinite. Thus, it is of interest to approximate small minors of W y without
generating W y itself.

The approach in [LS91] approximates the (n+1)×(n+1) leading minor of W y, as follows. Given x̄ ∈ Rn
+,

if x̄ ∈ conv(F) then by (5) we can lift x̄ to an (n + 1)× (n + 1)-matrix M x̄ with rows and columns indexed
by singletons and the empty set, such that:

(a) M x̄ � 0,

(b) M x̄ is symmetric,

(c) The zeroth row of M x̄ is equal to its diagonal, and

(d) The zeroth row of M x̄ is (1, x̄T ).

Even though when x̄ ∈ conv(F) such a lifting exists, it is not necessarily the case that any matrix M x̄

satisfying (a)-(d) is a minor of a matrix the form W y for some lifting y ∈ RL of x̄. In fact, there are other
structural properties that any such W y has to satisfy which can also be required of M x̄.

Consider one of the constraints aT
i x ≥ bi in the definition of F . Suppose x̄ ∈ conv(F), and let w be the

kth column of M x̄, 0 ≤ k ≤ n. Then it is easy to see that w satisfies the (homogenized) constraint

(−bi, a
T
i )w =

n∑
j=1

aijwj − biw0 ≥ 0. (7)

This is clear if k = 0 by (d) and (b), and for k ≥ 1 use the fact that the kth column in each of the terms in
(5) satisfy the constraint (7).

4



Further, using basic properties of lattices and the Möbius matrix one can also show that the vector
obtained by subtracting any column of M x̄ from the zeroth column also satisfies each homogenized constraint.
This can also be directly obtained [Z03] by expanding the formulation to include the columns x′j = 1 − xj

(1 ≤ j ≤ n) and studying the corresponding W and M matrices.

We summarize these facts as

(e) Let wk indicate the kth column of M x̄. Then (−b, A)wk ≥ 0 for 0 ≤ k ≤ n, and (−b, A)(w0 −wk) ≥ 0
for 1 ≤ k ≤ n.

In [LS91] the lifting x̄ → M x̄ required to satisfy conditions (b)-(e) is denoted by M . If, in addition, we
require (a) then the lifting is denoted by M+. Or, more precisely, we may think of M (or M+) as describing
operators: if we start with

Q = {x ∈ [0, 1]n : Ax ≥ b}

then we can define N(Q) (resp., N+(Q)) as that subset of Q for which a lifting Mx exists satisfying (b)-(e)
(resp., (a)-(e)). Clearly N+(Q) ⊆ N(Q) ⊆ Q, and both N+(Q) and N(Q) are convex sets (a polytope in the
second case). As shown in [LS91] after iterating n times we have Nn(Q) = conv(F). In fact, the operator
in [BCC93], which is weaker than N , also requires at most n iterations.

While these operators all require, in the worst case, the same number of iterations, it is clearly important
to study their relative strength, i.e., how comparatively tight a relaxation they produce. In this regard, there
is an additional critical property that is satisfied by the matrix W y (see [LS91] for references):

W y
p,q = yp∪q, ∀ p, q ∈ L. (8)

Thus, every entry of W y can be found in its zeroth row (or column), and, in general, there are nontrivial
relationships between the entries appearing in any minor of W y of size greater than n + 1. In general, by
approximating W y with a minor restricted to lattice elements of cardinality ≤ k we are able to make some
statements about coordinates of y corresponding to lattice elements of cardinality k + 1 or larger.

The procedures in [SA90], [L01b] take advantage of this fact and introduce some further ideas which we
discuss next. [L01] has shown how to cast these methods in the general framework we have been using,
although originally they were presented quite differently. In addition, they apply to more general problems
than linear integer programs, but here we will restrict attention to the linear case.

As shown in [L01] there is a common underlying theme to the algorithms in [SA90] and [L01b]. Let
aT

i x ≥ bi be once more one of the inequalities in Ax ≥ b. Define āi ∈ RL by āT
i = (−bi, a

T
i , 0, 0, · · · , 0)

where the number of appended 0s equals 2n − n − 1, i.e., we append to ai a zero for each element of L of
cardinality greater than 1. Suppose again that y =

∑
r∈L λrζ

r. Then

āi ∗ y
.= W yāi (9)

satisfies

āi ∗ y =
∑
r∈L

λrζ
r(ζr)T āi. (10)

If, in addition, y is a lifting of x̄ ∈ conv(F), then the sum in (10) can be restricted to elements of F̂ , and
each such term r satisfies (ζr)T âi ≥ 0 (note: a similar idea is implicit in the N(K, K) operator in [LS91]).
Consequently, āi ∗ y is a nonnegative linear combination of columns of the zeta matrix. We may summarize
this fact as another condition to be satisfied by x:

(f) W āi∗y � 0 for each constraint aT
i x ≥ bi in Ax ≥ b.

Of course, (f) involves y, not x, but notice that by definition of āi, we only need the first n+1 columns of W y

in order to compute āi ∗ y. Hence (through another application of (8)) condition (f) may be approximated
by requiring positive semidefiniteness of appropriate minors of W āi∗y.

As shown in [L01], round t ≥ 1 of the Sherali-Adams procedure requires that for each U ⊆ En with
|U | ≤ min{t + 1, n}, the minor of W y corresponding to the set of rows and columns arising from all subsets
of U be positive-semidefinite, and that for each U ⊆ En with |U | ≤ t, the minor of W āi∗y corresponding
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to the set of rows and columns arising from all subsets of U be positive-semidefinite. In contrast, round t
of the Lasserre procedure requires the stronger condition that the minor of W y corresponding to the set of
rows and columns arising from all subsets of En of cardinality ≤ min{t + 1, n} be positive-semidefinite, and
that the same holds for the minor of W āi∗y arising from all subsets of cardinality ≤ t. Further, the Lasserre
operator is stronger than the Sherali-Adams operator and than the N+ operator, whereas the Sherali-Adams
operator is stronger than the N operator (but not N+). It seems likely that the Lasserre operator is in fact
far stronger than the Sherali-Adams operator.

2.1 Probability measures

[LS91] introduces an additional, very useful idea. In order to describe this idea we need to review the
definition of a probability measure. The definition we present below is slightly imprecise and economizes on
notation; see [F66] for formal details.

Definition 2.1 Let W be a set. A probability measure is a function Υ : 2W → R satisfying the following
properties:

(i) Υ(A) ≥ 0 for all A ⊆ W,

(ii) Υ(W) = 1, and

(iii) For all disjoint subsets A, B of W, Υ(A ∪B) = Υ(A) + Υ(B).

Note that (i)-(iii) imply that Υ(∅) = 0, and that Υ is nondecreasing.

The following result is stated in [LS91] (p. 186, “Remark”). This topic has been studied in some detail
in [DL97]. In particular, it appears that ideas in this direction existed prior to the Lovász-Schrijver paper
[LS91]. A proof of the “Remark” using the viewpoint in this paper appears in [Z03].

Theorem 2.2 Let L be the subset lattice of En. Suppose z ∈ RL. Then z is a convex combination of the
columns of Z iff there exists

(a) a probability measure Υ on some (abstract) set W, and

(b) a family of subsets {Ij ⊆ W : 1 ≤ j ≤ n},

such that

∀r ⊆ En, Υ(
⋂
j∈r

Ij) = zr. (11)

When the conditions of the theorem apply to z ∈ RL we will say that z is measure consistent. There are
several useful observations to be made here. First, the set W is abstract – we are free to choose it (and the
probability measure Υ) as convenient. For example, we might choose W = R1.

Second, consider again the set F ⊆ {0, 1}n and its lifting F̂ ⊆ RL as we have been discussing above.
Given x̄ ∈ Rn, suppose indeed we can lift it to a y ∈ RL that is measure consistent. Then the measure Υ
and sets IJ produced by Theorem 2.2 (applied to y) satisfy Υ(Ij) = x̄j , 1 ≤ j ≤ n.

Hence, we may think of Ij as representing the hyperplane {v ∈ Rn : vj = 1}, or, more precisely, the
intersection of this hyperplane with conv(F). In other words, if x̄ ∈ Rn we may think of x̄j (1 ≤ j ≤ n) as
stating the probability of being in the set Ij .

This point can be pursued further. Suppose we are trying to construct a function Υ so as to prove that
y is measure consistent. In addition to being a probability measure, the only structural condition to be
satisfied by Υ is (11). Even though this condition appears simple, a large number of additional conditions
are implied by it. In fact, there is a condition that can be stated for each element of the algebra generated
by the sets Ij [F66]. This is the starting point for our work.
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3 New results

3.1 Preliminaries

Roughly speaking, the lifting operators we will describe below lift any point of F to a zeta-vector of the
subset algebra of {0, 1}n, viewed as a lattice. A completely formal definition of a subset algebra is beyond
the scope of this paper (see [C74]), but the following should suffice.

Let S be a finite set, and suppose {Aj , 1 ≤ j ≤ k} is a collection of subsets of S. Let Āj = S −Aj for each
j.

Definition 3.1 The subset algebra Σ = Σ(A1, · · · , Ak) generated by A1, · · · , Ak is the set of all subsets of S
that can be obtained from set-theoretic expressions involving the A1, · · · , Ak and Ā1, · · · , Āk.

Thus, expressions of the form A1 ∪ (A2 ∩ Ā3)), etc, are in Σ(A1, · · · , Ak).

Note that Σ(A1, · · · , Ak) can be viewed as contained in 2S .

Definition 3.2 Let J ⊆ {1, 2, · · · k}. The subset

(
⋂
j∈J

Aj) ∩ (
⋂
j /∈J

Āj)

is called an atom (also called a Boolean function, or a complete product).

It can be shown that every element of Σ can be written as a (finite) union of atoms. Thus, Σ has at most
22k

distinct elements.

Example 3.3 Consider S = {0, 1}n. For each 1 ≤ j ≤ n, let Hj
.= {x ∈ {0, 1}n : xj = 1}. Then the subset

algebra generated by the Hj is exactly the set of all subsets of {0, 1}n. Each atom corresponds to a distinct
point in {0, 1}n, and there are 22n

elements in the algebra.

Σ is also a lattice. In our case we will use the reverse of the inclusion order; i.e., we will declare b ≤ a when
a ⊆ b. That we have a lattice follows since Σ is closed under unions and intersections, and hence ∨ and ∧ are
well-defined. For convenience, we will also denote this lattice by Σ. To avoid confusion with the standard
subset lattice, we will use ξ to denote a zeta-vector of this lattice. Thus, if p ∈ Σ, the ξ-vector for p is the
vector ξ ∈ {0, 1}Σ defined by

ξp
q =

{
1 if p ⊆ q,
0 otherwise. (12)

where we use “⊆” whenever the underlying subsets of S satisfy the relation. In our development of lift
operators we will work with (slight) generalizations of this type of lattice, as indicated next.

As a final note, when Σ has a member for each subset of S, then, as a lattice, Σ is isomorphic to the subset
lattice of S (with the order relationship reversed). Even in such a case, however, it is useful to view the
lattice as generated by the Aj .

3.2 Lifting to an algebra

We now return to the feasible region (1) of a 0-1 integer program, repeated here for convenience:

F = {x ∈ {0, 1}n : Ax ≥ b }.

As before, we will use the following notation. For 1 ≤ j ≤ n denote Hj
.= {x ∈ {0, 1}n : xj = 1}, and

Yj = F ∩Hj , Nj = Ȳj = F −Yj . (13)
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In other words, Yj (resp., Nj) is the subset of F with xj = 1 (resp., xj = 0). Let Σ denote the subset algebra
Σ(Y1, · · · ,Yn), Finally, if z ∈ RΣ, its α-entry (for α ∈ Σ) is indicated by z[α], and for a matrix B ∈ RΣ×Σ

its α, β-entry is indicated by B[α, β].

Our lifting will map points in F to zeta-vectors arising from Σ. Formally, this is done as follows. Given
x ∈ F , denote by α(x) ∈ Σ the atom

(
⋂

j : xj=1

Yj) ∩ (
⋂

j : xj=0

Nj). (14)

Note that the set-theoretic value of α(x) is precisely x, i.e., α(x) belongs in the equivalence class defined by
x. Our lifting maps

x → ξα(x). (15)

Example 3.4 Suppose n = 5. Given v = (1, 1, 1, 0, 0) ∈ {0, 1}5, its lifting v̆ ∈ {0, 1}232
satisfies

v̆[(Y1 ∩ Y2) ∪ Y5] = 1,

v̆[Y3 ∩ Y4] = 0,

v̆[Y3 ∩ (Y4 ∪N5)] = 1,

among other conditions.

An important point to notice is that only a (very small) subset of all zeta-vectors are images under this
lifting – in this, our approach differs from those outlined in Section 1. Further, even though the dimension of
the image space is very large (doubly exponential in n) in our algorithms we will only consider polynomially
many coordinates.

Also note that the lifting (15) could be applied to any point x ∈ {0, 1}n, not just x ∈ F . However, below
we will impose additional conditions on the lifting, conditions that are not guaranteed to be satisfied by
points x ∈ {0, 1}n \ F , and therefore, in general, the lifting will not even exist unless x ∈ F . This is fine
for our purposes: we are interested in generating a relaxation that is as tight as possible. Similarly, we
could have defined the target of our lifting to be the subset algebra of F , not {0, 1}n. Here the difference is
completely semantic: if x ∈ F then, when S ⊆ {0, 1}n \ F , we have ξα(x)[S] = 0, and when S ∩ F 6= ∅, we
have ξα(x)[S] = ξα(x)[S ∩ F ].

The following properties of the lifting are easy to verify:

(i) ξ
α(x)
∅ = 0.

(ii) ξ
α(x)
F = 1.

(iii) For 1 ≤ j ≤ n,

ξα(x)[Yj ] = xj , and ξα(x)[Nj ] = 1− xj . (16)

(iv) More generally, suppose we have a collection {βi ∈ Σ : i ∈ I}, corresponding to pairwise disjoint
subsets of F , i.e., each βi corresponds to a J i ⊆ F such that J i ∩ J j = ∅, for all distinct i, j ∈ I.
Then ∑

i∈I

ξα(x)[βi] ≤ 1, (17)

with equality when the J i form a partition of F .

Property (iv) follows because the point x cannot belong to more than one J i.

One can also prove results analogous to those outlined in Section 1. In particular, define F̂ ⊆ {0, 1}Σ to be
the image of F under our lifting. The following are straightforward results that formalize the above:
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Lemma 3.5 Let z ∈ conv(F̂). Suppose we have a collection {βi ∈ Σ : i ∈ I}, corresponding to pairwise
disjoint subsets of F . Then ∑

i∈I

z[βi] ≤ 1 (18)

with equality when {βi : i ∈ I} corresponds to a partition of F . Further,

z ≥ 0, z[∅] = 0, and z[F ] = 1. (19)

Lemma 3.6 Let x ∈ Rn. Then x ∈ conv(F) iff there exists a vector z ∈ conv(F̂) such that

z[Yj ] = xj , z[Nj ] = 1− xj , ∀ 1 ≤ j ≤ n. (20)

The main question we want to address is what conditions the vector z in Lemma 3.6 can be required to
satisfy, in addition to (18 - 20).

To this effect, consider an arbitrary vector f ∈ RΣ of the form

f =
∑
α∈Σ

λαξα, (21)

where α ∈ RΣ is nonnegative. Define the matrix

Uf =
∑
α∈Σ

λαξα(ξα)T . (22)

We have the following basic facts:

Lemma 3.7 Suppose λ, f and Uf are as in (21 - 22). Let β, γ ∈ Σ. Then

Uf
β,γ =

∑
α⊆β∩γ

λα. (23)

Proof. Let α ∈ Σ. Then the sum in (22) contributes either zero or λα to Uf
β,γ , and the latter happens when

both ξα[β] = 1 and ξα[γ] = 1. By definition of ξα, this is true exactly when α ⊆ β and α ⊆ γ, i.e., α ⊆ β∩γ,
as desired.

Corollary 3.8 For any β, γ ∈ Σ

Uf
β,γ = f [β ∩ γ]. (24)

This is an analogue of equation (8). As a consequence of these results,

Lemma 3.9 Suppose λ, f and Uf are as in (21 - 22). Then

(i) Uf is symmetric,

(ii) The main diagonal of Uf and its F-row and -column are all equal to f , and

(iii) Uf � 0.

Note that in Lemma 3.9, (i) and (ii) are really very weak consequences of (24), which implies that many pairs
of entries in Uf are equal. For α ∈ Σ, let eα ∈ RΣ be the vector with a 1 in position α and zero otherwise.

Lemma 3.10 Suppose λ, f and Uf are as in (21 - 22). Consider a vector η ∈ RΣ such that

ηT ξα ≥ 0, ∀α with λα > 0. (25)

Then
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(i) ηT Ufeβ ≥ 0, for all β ∈ Σ.

(ii) ηT Uf (eF − eβ) ≥ 0, for all β ∈ Σ.

(iii) For every v ∈ RΣ, vT Uκv ≥ 0, where κ = Ufη.

Proof. (i) Let α ∈ Σ with λα > 0. Then since ξα(ξα)T eβ is either identically zero (when ξα[β] = 0) or else
it equals ξα, we have ηT ξα(ξα)T eβ ≥ 0, and the result follows.

(ii) Let β̄ ∈ Σ denote a negation of β (i.e., an element of Σ whose set theoretic value is that of the complement
of β). Then the F-column of Uf is equal to sum of the β-column and the β̄-column of Uf , i.e.,

UfeF = Uf (eβ + eβ̄), (26)

because (similarly to the proof of (i))

ξα(ξα)T eF = ξα(ξα)T (eβ + eβ̄), ∀ α ∈ Σ (27)

see (17). The result follows from (26) by applying (i) to β̄.

(iii) This follows because κ ∈ RΣ satisfies

κ =
∑

λα>0

λαξα(ξα)T η (28)

=
∑

γα>0

γαξα, (29)

where γα = λαηT ξα ≥ 0. Thus,
Uκ =

∑
γα>0

γαξα(ξα)T

from which (iii) follows.

The properties of Uf given in Lemma 3.9 and Lemma 3.10 (i) and (ii) parallel the Lovász-Schrijver de-
velopment of their operators. Property (iii) in Lemma 3.10 is similar to the Sherali-Adams and Lasserre
development as shown in [L01].

We summarize what we know so far.

Lemma 3.11 Let x̄ ∈ conv(F). Then there is a vector z ∈ RΣ such that:

1. Equations (18) - (20) are satisfied.

2. There is a matrix Uz ∈ RΣ×Σ satisfying (24), conditions (i) - (iii) of Lemma (3.9), and conditions (i)
- (iii) of Lemma (3.10).

In particular, consider (ii) of Lemma (3.10). One way to use this condition is to start with any inequality
aT x ≥ a0 which is valid for F and from it obtain (as in Section 1) an inequality âT z ≥ 0 which is valid for
F̂ . (Formally, set â[Yj ] = aj for 1 ≤ j ≤ n, â[F ] = −a0, and â[α] = 0 for all other α ∈ Σ).

In addition, there are measure-theoretic valid inequalities that one can use. For example, for α, β ∈ Σ,

z[α ∩ β] ≤ min(z[α], z[β]), (30)
z[α ∪ β] = z[α] + z[β]− z[α ∩ β] (31)

are valid inequalities. Similar remarks can be made concerning property (iii) in Lemma 3.10.

One difference between our algorithms and the procedures in [LS91], [SA90], [BCC93] and [L01b], is that
we generate variables indexed by Σ and not by the lattice of subsets of {1, · · · , n} – which is isomorphic
to a (very small) proper subset of Σ. In addition, an iteration of our procedures generates elements of Σ
involving possibly widely different quantities of symbols – as opposed to first generating pairs, then triples,
and so on.
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3.2.1 Variable replication.

We need to describe an additional feature that is required only to formally guarantee the validity of our
algorithms. The need for this additional machinery is best explained with an example. In applying the
Lemmas described above, our algorithms will restrict z and Uz to polynomial-sized subsets of Σ. As a
simple example, we might generate a symbol σ1 for the expression ((Y1 ∩N2) ∪ (N1 ∩N2)) ∩ N3 and use it
as one of the variable indices, that is, impose the (valid) constraint

z[σ1] = z[Y1 ∩N2 ∩N3] + z[N1 ∩N2 ∩N3].

At the same time, we might create a symbol σ2 for the expression N2 ∩N3, and use it in constraints, say

z[σ2] ≤ min{z[N2], z[N3]}.

The algorithm certainly would benefit by imposing the valid requirement:

z[σ1] = z[σ2], (32)

(or, indeed, by using a unique variable) – but the algorithm can only do this if it knows that

(Y1 ∩N2) ∪ (N1 ∩N2) = N2,

and the algorithm can make this sort of deduction only by engaging in the symbolic algebra needed to
determine this fact. If the algorithm does not impose (32) then we end up using a relaxation, i.e., a weaker
formulation than theoretically possible. Sometimes this will be the case with our algorithms (in particular
with regards to certain complex set-theoretic expressions) with the result that we end up producing duplicate
symbols.

These ideas are formalized as follows.

Definition 3.12 Let Q be a set. A symbol function is a function S : Σ → 2Q with the properties:

(S.1) For each α, β ∈ Σ with α 6= β, we have S(α) ∩ S(β) = ∅.

(S.2) S(∅) and S(F) are nonempty.

For α ∈ Σ, the elements of S(α) are called the symbols associated with α.

Here, the set Q is arbitrary (for example, in a practical implementation we might have Q = Z+). Let S(Σ)
denote the union of all the sets S(α), α ∈ Σ. For consistency, we will use the notation x[i] to refer to the
ith entry of vector x ∈ RS(Σ), for i ∈ S(Σ), and similarly we will use the notation M [i, j] to refer to the i, j
entry in a matrix M ∈ RS(Σ)×S(Σ).

Lemma 3.13 Suppose S is a symbol function. Let M ⊆ Σ be such that ∅ ∈ M, F ∈ M, and S(α) is
nonempty for each α ∈M. Let U ∈ RM×M. Consider the matrix

Ŭ ∈ RS(M)×S(M)

defined as follows: for any α, β ∈M, and any i ∈ S(α) and j ∈ S(β), Ŭ [i, j] = U [α, β]. Then

(a) If U is symmetric positive-semidefinite, so is Ŭ .

(b) Let η ∈ RM be such that ηT U ≥ 0. Suppose we choose, for each α ∈ M, a particular element
jα ∈ S(α). Then for each column ŭ of Ŭ we have:∑

α∈M
η[α]ŭ[jα] ≥ 0.

11



The proof of this Lemma is elementary. The significance of this lemma is that it allows our lifting to create
multiple indices that correspond to the same subset of the algebra – though our algorithm may not be aware
that these are duplicates of one another. At the same time, when we lift to a matrix we can impose on this
matrix all the conditions discussed above (for example, the diagonal is equal to the F-row and -column).

To summarize this section, our algorithms in general refrain from performing the manipulations needed
to determine when two set-theoretic expressions are equivalent. This is done to avoid the exponential amount
of work that such a certification would sometimes require. On the other hand, some equivalences are easy
to check. As we will see, any of the expressions considered by our algorithms is explicitly of the form
B1 ∩B2 ∩ · · · ∩Br, where each Bi is of the form Yj or Nj (for some j), or is F , or belongs to a polynomial-
size class of additional symbols. We will assume that permuting the Bi produces an equivalent expression.
This is a requirement that is easy to enforce in polynomial time. Later we will discuss another simplification
which is equally easy to enforce.

3.3 Example - a simple algorithm for set-covering

As a prelude to the algorithms we will describe later, here we present a simple algorithm specialized for set-
covering problems that achieves provable results, which is a special case of a general algorithm to be described
in Section 4. In particular, we will show that we obtain a polynomial-time algorithm for optimizing over a
relaxation at least as strong as that given by the convex hull of all valid inequalities with coefficients 0, 1,
or 2.

Thus, let A denote an m× n 0-1 matrix, and consider the feasible region F for a 0-1 set-covering problem,

Ax ≥ e (33)
x ∈ {0, 1}n (34)

where we assume that no row of A contains another. We denote by Ai ⊆ {1, · · · , n} the set of indices of
nonzeros in the ith row of A, 1 ≤ i ≤ m. The algorithm we describe next creates variables and specifies
constraints that the variables must satisfy. The description we provide is a bit redundant. After presenting
the algorithm we discuss its behavior.

Algorithm C

Step 0. Create the variable X[F ], and for 1 ≤ j ≤ n the variables X[Yj ] and X[Nj ], and impose the
constraint:

X[Yj ] + X[Nj ]−X[F ] = 0. (35)

Step 1. For each 1 ≤ i ≤ m impose the constraint:∑
j∈Ai

X[Yj ]−X[F ] ≥ 0. (36)

Step 2. For each unordered pair of indices i 6= h, 1 ≤ i, h ≤ m, where

Ci,h .= Ai ∩Ah,

if Ci,h 6= ∅ we do the following, provided that Ci,h has not already been enumerated as the set C ī,h̄ for some
other pair {̄i, h̄}.

(2.a) Create the variable X[
⋂

j∈Ci,h Nj ] and impose the constraints:

X[Nr]−X[
⋂

j∈Ci,h

Nj ] ≥ 0, ∀ r ∈ Ci,h. (37)

(2.b) For each r ∈ Ci,h, create the new variable X[Yr ∩
⋂

j∈Ci,h−r Nj ], and impose the constraint:

X[Yr]−X[Yr ∩
⋂

j∈Ci,h−r

Nj ] ≥ 0. (38)
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(2.c) If |Ci,h| ≥ 2, create the new variable x[τ i,h], and impose the constraint:∑
j∈Ci,h

X[Yj ]− 2X[τ i,h] ≥ 0. (39)

Here, the symbol τ i,h is a symbol associated with

⋃
t≥2

 ⋃
S⊆Ci,h : |S|=t

⋂
j∈S

Yj

⋂
j /∈S

Nj

 ∈ Σ. (40)

That is to say, τ i,h represents the union of all expressions involving intersections of Y and N variables
indexed by all elements of Ci,h, where at least two of the variables are Ys.

(2.d) Impose the constraint:

X[
⋂

j∈Ci,h

Nj ] +
∑

r∈Ci,h

X[Yr ∩
⋂

j∈Ci,h−r

Nj ] + X[τ i,h]−X[F ] = 0. (41)

where the τ i,h term is only used in case |Ci,h| ≥ 2.

Step 3. Let V denote the set of variable indices we have created so far, and let X denote the vector of
variables. Create a matrix U of variables, with rows and columns indexed by V, and impose on the variables
in U the following constraints:

(3.1) U is symmetric, U [F ,F ] = X[F ], and the main diagonal, the F-row and the F-column of U are all
equal to X.

(3.2) For each constraint ηT X ≥ 0 of the form (35), (36), (37), (38), (39), (41) impose the constraints

ηT U ≥ 0. (42)

Step 4. Impose:

0 ≤ U [α, β] ≤ U [F , β] ∀α, β ∈ V (43)
X[F ] = 1. (44)

End.

Comment 3.14 Note that the requirements in (3.1) are far weaker than what Corollary 3.8 would permit
us to impose. For example, consider the expressions β1 = Y1 ∩N2, γ1 = Y3 ∩Y4 ∩N2, β2 = Y1 ∩Y3 ∩Y4,
and γ2 = N2. Then we could stipulate that U [β1, γ1] = U [β2, γ2] since β1 ∩ γ1 and β2 ∩ γ2 both equal
Y1 ∩ N2 ∩ Y3 ∩ Y4. In general, many pairs of entries in U can be required to be equal because they are
indexed by equivalent set-theoretic indices as typified by the example. However, the limited demands that we
will place upon Algorithm C are such that it is not necessary to enforce such equivalences – the more general
algorithm we will discuss later will make some of these requirements.

Example 3.15 Algorithm C applied to a small problem.

Consider the set covering problem on four variables given by the following set of constraints.

x1 + x2 + x3 ≥ 1, (45)
x3 + x4 ≥ 1, (46)

x1 + x2 + x4 ≥ 1, (47)

Then Algorithm C will produce 13 distinct variable indices: F , Y1, Y2, Y3, Y4, N1, N2, N3, N4, N1 ∩N2(=
C1,3), Y1∩N2, N1∩Y2 and τ1,3. In Step 3, the algorithm will therefore create a 13×13 matrix U that contains
all the variables; since U is symmetric, and its F-column equals its main diagonal, and U [F ,F ] = X[F ] = 1
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(which can be eliminated), we have a total of 13 × 6 = 78 distinct variables. The nontrivial constraints
imposed in Steps 0, 1 and 2 are:

X[Yj ] + X[Nj ] = 1, j = 1, 2, 3 (48)
X[Y1] + X[Y2] + X[Y3] ≥ 1 (49)

X[Y3] + X[Y4] ≥ 1 (50)
X[Y1] + X[Y2] + X[Y4] ≥ 1 (51)

min{X[N1], X[N2]} −X[N1 ∩N2] ≥ 0 (52)
min{X[Y1], X[N2]} −X[Y1 ∩N2] ≥ 0 (53)
min{X[N1], X[Y2]} −X[N1 ∩Y2] ≥ 0 (54)

X[Y1] + X[Y2]− 2X[τ1,3] ≥ 0 (55)
X[N1 ∩N2] + X[Y1 ∩N2] + X[N1 ∩Y2] + X[τ1,3] = 1 (56)

In addition to these constraints, Step 3 imposes other constraints on the entries of U . For example, the
(homogenized) (47) is applied to the N3-column; since (by Step 3.1) U [F ,N3] = X[N3] the resulting constraint
reads:

U [Y1,N3] + U [Y2,N3] + U [Y4,N3]−X[N3] ≥ 0.

As mentioned above, by Corollary 3.8 we could impose additional conditions on U : for example, we could
insist that U [N1,N2] = X[N1 ∩ N2]. But, again, this will not be necessary in terms of the particular result
regarding Algorithm C that is proved below.

3.3.1 Analysis of Algorithm C.

We will first show that Algorithm C provides a valid lifting for conv(F). In what follows, let M denote of the
set of distinct members of Σ, i.e., subsets of {0, 1}n, that arise as the set-theoretic value of variable indices
V produced by the algorithm. Thus, M contains ∅, F , all the Yj and Nj , all the (distinct)

⋂
j∈Ci,h Nj , all

the (distinct) Yr ∩
⋂

j∈Ci,h−r Nj , and all the (distinct) sets of the form given by the left-hand of (40). In the
language of Section 3.2.1, there is an implicit symbol function σ such that σ(M) = V, that the algorithm
has constructed.

Theorem 3.16 Suppose x̄ ∈ conv(F). Then there exists a vector X̆ satisfying constraints (35), (36), (37),
(38), (39), (41), (43), (44), and a matrix Ŭ satisfying the conditions in Step 3, such that X̆[Yj ] = x̄j, for
all 1 ≤ j ≤ n.

Proof. Let z ∈ RΣ be the lifting of x̄ that satisfies the conditions in Lemma 3.11, and Uz denote the
corresponding matrix. We will show that z, restricted to M, satisfies (35), (36), (37), (38), (39), (41), (43),
(44) (with the variable indices interpreted to obtain their true set-theoretic value) and that Uz, restricted
to M×M, satisfies the conditions in Step 3. By appealing to Lemma 3.2.1 we obtain the desired result.

First, by Lemma 3.5, z satisfies (44). Next, consider constraint (41) applied to a given pair i, h. Now
F ⊆ {0, 1}n can be partitioned into 2 + |Ci,h| sets:

• The set containing those points in {0, 1}n with all coordinates in Ci,h equal zero. This is the subset of
{0, 1}n corresponding to

⋂
j∈Ci,h Nj .

• The set containing those points in {0, 1}n where one coordinate r ∈ Ci,h equals one, and all other
coordinates equal zero. This is the subset corresponding to Yr ∩

⋂
j∈Ci,h−r Nj .

• The set containing all remaining points in {0, 1}n, i.e., points where at least two coordinates in Ci,h

equal one. This is the subset corresponding to τ i,h.

Consequently, by Lemma 3.5, z satisfies

z[
⋂

j∈Ci,h

Nj ] +
∑

r∈Ci,h

z[Yr ∩
⋂

j∈Ci,h−r

Nj ] + z[τ i,h] = 1, (57)

and we obtain (41), since z[F ] = 1. Similarly, it follows that z and U satisfy all other constraints.

Further,
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Lemma 3.17 The total number of variables and constraints created by Algorithm C is O(m4n2).

In preparation for our main result, we need the following step.

Lemma 3.18 Let (X, U) satisfy all the conditions set by Algorithm C. Suppose 1 ≤ i, h ≤ m are distinct
rows of A with Ci,h 6= ∅. Let V be the submatrix of U formed by taking the column indexed by

⋂
j∈Ci,h Nj,

and all the columns indexed by Yr ∩
⋂

j∈Ci,h−r Nj (for every r ∈ Ci,h), and the column indexed τ i,h (when
|Ci,h| ≥ 2).

Suppose η ∈ RΣ is such that ηT V ≥ 0. Then ηT X ≥ 0.

Proof. By Step 3.2, every column of U satisfies (41). But U is symmetric, and therefore every row of U
satisfies (41). Therefore, the column of U indexed by F is obtained by adding together the column indexed
by
⋂

j∈Ci,h Nj , the columns indexed by Yr ∩
⋂

j∈Ci,h−r Nj (for every r ∈ Ci,h), and the column indexed by
τ i,h (if |Ci,h| ≥ 2).

By assumption, each column v in this sum satisfies ηT v ≥ 0. We conclude that the column indexed by
F satisfies this inequality, as well. Now we are done, by Step 3.1.

Finally, we now have our main theorem.

Theorem 3.19 Consider an inequality aT x ≥ a0 which is valid for F and such that aj ∈ {0, 1, 2}, for
0 ≤ j ≤ n. Let (X, U) be a vector and matrix satisfying all the constraints imposed by Algorithm C. Then

n∑
j=1

ajX[Yj ] ≥ a0. (58)

Proof. Assume without loss of generality that aT x ≥ a0 is not dominated by another valid inequality with
coefficients in {0, 1, 2}.

If a0 = 1 it follows that no indices j satisfy aj = 2. Then aT x ≥ a0 is one of the constraints Ax ≥ e that
define F , and thus (58) follows by (36).

If a0 = 0 then (58) is implied by (43).

We are left with the case a0 = 2. If all nonzero aj equal 2, then by dividing by 2 we return to the
case a0 = 1. Consequently, we can assume that aT x ≥ a0 is of the form 2x(T ) + x(S) ≥ 2 for disjoint
subsets T, S ⊆ {1, · · · , n} where S 6= ∅. (Here and elsewhere, for a vector v and index set J , we write
v(J) =

∑
j∈J vj).

Recall that the support of the kth constraint is denoted by Ak. For each element j ∈ S it is easy to see
that:

for some 1 ≤ k ≤ m, Ak ⊆ T ∪ S − j, (59)

since otherwise the point z ∈ {0, 1}n with zg = 1 iff g ∈ {1, 2, · · · , n}−(T ∪S) or g = j, is in F , but aT z < a0.
Consequently, since S 6= ∅, we obtain that one of the original constraints x(Ai) ≥ 1 has Ai ⊆ T ∪ S.

Clearly Ai ∩ S 6= ∅ – or else aT x ≥ 2 is dominated by x(Ai) ≥ 1, a contradiction. Hence, if we pick any
j ∈ Ai ∩ S, and apply (59) to j we find an index 1 ≤ h ≤ m with Ah ⊆ T ∪ S − j. Necessarily, i 6= h.

Suppose first that Ai ∩ Ah = ∅. In that case, aT x ≥ 2 is dominated by the sum of x(Ai) ≥ 1 and
x(Ah) ≥ 1, and by (36) applied to i and h, X satisfies (58).

We will therefore assume Ci,h = Ai ∩ Ah 6= ∅. In the remainder of the proof we will show that if the
vector v is the column of U indexed either by

⋂
j∈Ci,h Nj , or by Yr ∩

⋂
j∈Ci,h−r Nj (for some r ∈ Ci,h), or

by τ i,h, then

n∑
j=1

ajv[Yj ]− 2v[F ] ≥ 0. (60)

By Lemma (3.18), this will complete the proof.
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Consider first the case of the column v corresponding to
⋂

j∈Ci,h Nj . By step (3.1) of the algorithm, we
have

v[
⋂

j∈Ci,h

Nj ] = v[F ]. (61)

By constraint (37) imposed by the algorithm,

v[Nr] ≥ v[
⋂

j∈Ci,h

Nj ], ∀ r ∈ Ci,h. (62)

Consequently, (35) and (44) applied to v, together with (61) and (62) imply:

v[Yr] = 0, ∀ r ∈ Ci,h. (63)

But by Step 3.2 v satisfies (36) applied to i. Together with (63) this implies∑
j∈Ai−Ci,h

v[Yj ]− v[F ] ≥ 0. (64)

Similarly, ∑
j∈Ah−Ci,h

v[Yj ]− v[F ] ≥ 0, (65)

and since by construction of Ci,h in Step 2 we have (Ai − Ci,h) ∩ (Ah − Ci,h) = ∅, we conclude∑
j∈Ai∪Ah

v[Yj ]− 2v[F ] ≥ 0,

which dominates (60).

Consider now the case that v is the column of U corresponding to some Yr ∩
⋂

j∈Ci,h−r Nj . Then, by
Step 3.1 v[F ] = v[Yr ∩

⋂
j∈Ci,h−r Nj ], and by constraint (38) imposed by the algorithm we conclude

v[Yr] ≥ v[F ]. (66)

If ar = 2 we conclude that v satisfies (60). If, on the other hand, ar = 1, then by (59) there is a constraint
x(Ak) ≥ 1 of the original system with Ak ⊆ T ∪ S − r. By (36), we conclude that

∑
j∈Ak

v[Yj ]− v[F ] ≥ 0.
This, together with (66) implies v satisfies (60).

Finally, consider the case when v is the column of U corresponding to τ i,h. By Step 3.1 v[τ i,h] = v[F ],
and therefore by constraint (39)

∑
j∈Ci,h v[Yj ]− 2v[F ] ≥ 0, which dominates (60).

The theorem is proved.

Additional comments on Algorithm C

1. Note that Algorithm C does not require positive semidefiniteness of the matrix U . Nevertheless, even
though the formulation generated by the algorithm is of polynomial size, it can imply exponentially many
facets.

To see this, consider the following example. Suppose V and W are sets and for each v ∈ V there is a
subset Jv ⊆ W such that the Jv (v ∈ V ) are pairwise disjoint. Consider the system CW,V of constraints

yh +
∑

j∈V−v

xj ≥ 1, ∀ v ∈ V, h ∈ Jv. (67)

(y, x) ∈ {0, 1}W × {0, 1}V . (68)

[When W = ∅, the constraint matrix defined by these inequalities is a full-circulant matrix.] The total
number of constraints of type (67) is at most |V | × |W |. We have:

Proposition 3.20 Suppose that for each v ∈ V we choose an element w(v) ∈ Jv. Then∑
v∈V

yw(v) +
∑
v∈V

xv ≥ 2

defines a facet of conv(CW,V ).
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Thus, we have a family of Πv∈V |Jv| facets, all with coefficients in {0, 1, 2}, and therefore implied by Algorithm
C.

Suppose we have a pure full-circulant example, i.e., W = ∅. In the Appendix we present a procedure
that is stronger than both the N+ and the Sherali-Adams operators, and yet needs at least |V | − 3 rounds
to prove the valid inequality

∑
j∈|V | xj ≥ 2.

2. In Step (2.c) we use the symbol τ i,h to represent the set-theoretic expression in (40). This is necessary
in the case of the symbols τ i,h because (40) has exponential length – but in a practical implementation we
would also want to efficiently record some of the other indices for variables, for example, Yr ∩

⋂
j∈Ci,h−r Nj ,

which only requires four symbols to store, in addition to those used to store Ci,h.

4 Main algorithm

4.1 Obstructions

The algorithm we describe here generalizes the approach presented in the last section. The notion of an
obstruction plays a central role. First we need some notation.

Notation. Let 1 ≤ j ≤ n. In what follows, the notation Mj will be used to denote a symbol that is either
Yj or Nj ; Ȳj denotes Nj and N̄j denotes Yj . The symbols Yj and Nj will be called literals.

Definition 4.1 An obstruction for aT x ≥ a0 is an element ω ∈ Σ of the form

ω = Mj1 ∩Mj2 ∩ · · · ∩Mjh

where for each 1 ≤ i ≤ h we have 1 ≤ ji ≤ n and aji
6= 0, and such that

ξα(x)[ω] = 0, ∀ x ∈ {0, 1}n with aT x ≥ a0. (69)

Put differently, ω is an obstruction for aT x ≥ a0 if any x ∈ {0, 1}n satisfying

xji
=
{

1 if Mji = Yji

0 if Mji = Nji

(70)

for every 1 ≤ i ≤ h satisfies aT x < a0. Obstructions of this type are closely related to covers of knapsacks,
see [NW88].

Definition 4.2 For 1 ≤ j ≤ n, Yj ∩Nj is called a trivial obstruction.

Note: using Definition 4.1, Yj ∩Nj is an obstruction to xj + (1− xj) = 1.

EXAMPLES

(a) Set-covering. Given a constraint
∑

j∈S xj ≥ 1, its unique obstruction is
⋂

j∈S Nj .

(b) Set-packing. Given a constraint
∑

j∈S xj ≤ 1, with |S| = N , the are (N
2 ) minimal obstructions (here

“minimal” refers to the set of literals in the obstruction). Each of them is of the form Yi(1) ∩Yi(2) for some
pair i(1), i(2) of distinct indices from S.

(c) Set-partitioning. Given a constraint
∑

j∈S xj = 1, its set of obstructions are those obtained by viewing
the constraint as a set-covering and as a set-packing constraint.

(d) Multi-covering or -packing. Consider a constraint which is either of covering type,
∑

j∈S xj ≥ |S| − k, or
of packing type,

∑
j∈S xj ≤ |S| − k. In the covering case, the minimal obstructions consist of intersections

of k + 1 literals Nj , and in the packing case they consist of intersections of k + 1 literals Yj . For k fixed, we
can therefore enumerate all minimal obstructions in polynomial time.

(e) Mixed covering and packing. Consider a constraint of the form∑
j∈I

αjxj +
∑
j∈J

βj(1− xj) ≥ b,
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where I and J are disjoint, αj > 0 and βj > 0 for each j, and b ≥ 0. This generalizes the examples in (a) -
(d). Clearly, no minimal obstruction contains symbols of the form Yj , j ∈ I or Nj , j ∈ J .

Definition 4.3 Let k ≥ 0. Consider an inequality of the form∑
j∈J+

ajxj −
∑

j∈J−

ajxj ≥ b

where aj > 0 ∀j ∈ J+ ∪ J−. An obstruction to this inequality is called k-small if it is of the form⋂
j∈A+

Nj ∩
⋂

j∈A−

Yj

where A+ ⊆ J+ and either |A+| ≥ |J+| − k or |A+| ≤ k; and A− ⊆ J− and either |A−| ≥ |J−| − k or
|A−| ≤ k.

Note: for any for fixed k we can enumerate all k-small obstructions to any inequality in polynomial time.
Also note that all minimal obstructions for set-covering, set-packing and set-partitioning constraints are
k-small for k ≤ 2.

4.2 The algorithm

Now we return to our general lifting procedure. The algorithm we will present is a generalization of Algorithm
C given in Section 3.3. That algorithm created variables indexed by members of Σ, all of which were either
intersections of Nj terms, or intersections of Nj terms and one Yj term, or more complicated expressions:
unions of intersections of Nj terms and some number of Yj terms. The particular expressions actually
generated by the algorithm were not the complete set of all possible such expressions – rather, they reflected
the structure of the problem.

The algorithm presented below generalizes this approach. Broadly speaking, the algorithm will perform
three steps:

(a) Generate a (polynomial-size) family of set-theoretic indices, V. This family will include all Yj and Yj

as well as more complex expressions defined below that we call “walls” and “tiers”, both of which are
derived from obstructions to the constraints.

(b) Write constraints that a lifting of any point x ∈ F to {0, 1}Σ must satisfy. These constraints include all
(homogenized) inequalities present in the continuous relaxation of F , and also set-theoretic constraints
with support in V. (The support of a vector v, denoted suppt(v), is the set of indices j such that
vj 6= 0). In particular, there will be constraints that generalize constraint (41) in Algorithm C.

(c) Create a matrix of variables U ∈ RV×V . This matrix is designed to capture the implications of Lemma
3.11. So, for example, we can impose on its columns all constraints generated in (b).

The expressions created in (a) are clearly critical for the success of such an approach. We introduce them
next.

Definition 4.4 Suppose we are given an expression γ =
⋂h

i=1 Mji , where for 1 ≤ i ≤ h, we have 1 ≤ ji ≤ n.

(0) We write |γ| = h.

(1) For 0 ≤ t ≤ h, a negation of γ of order t is an expression of the form
⋂h

i=1 M′
ji
, such that for exactly

t indices ji we have M′
ji

= M̄ji , and for the remaining h− t indices ji we have M′
ji

= Mji .

(2) 0 ≤ r ≤ h, N (γ, r) is the set of negations of γ of order r (note: if r = 0 then this is just the set {γ}).

(3) For 0 ≤ t < h, the negation of γ of order greater than t is the expression γ>t defined by

γ>t .=
h⋃

r=t+1

 ⋃
β∈N (γ,r)

β

 .
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Example 4.5 Consider

γ1 = N1

⋂
Y2

⋂
Y3

γ2 = Y4

⋂
Y5

⋂
Y6

⋂
N7

γ3 = N8

⋂
Y9.

Suppose

γ′1 = Y1

⋂
Y2

⋂
Y3

γ′2 = N4

⋂
N5

⋂
Y6

⋂
N7

γ′3 = N8

⋂
Y9.

Then |γ1| = 3, |γ2| = 4, |γ3| = 2, and γ′i is a negation of γi of order oi, where o1 = 1, o2 = 2 and o3 = 0.

The concept of negation will be of central importance to our algorithms given later. Consider the case of γ2

above, and let t = 1. Then we can partition F as

F = γ2

⋃ (
N4

⋂
Y5

⋂
Y6

⋂
N7

) ⋃ (
Y4

⋂
N5

⋂
Y6

⋂
N7

)
(
Y4

⋂
Y5

⋂
N6

⋂
N7

) ⋃(
Y4

⋂
Y5

⋂
Y6

⋂
Y7

) ⋃
γ>1
2 . (71)

Since this is a partition, if x ∈ F is lifted to z ∈ RΣ we will have:

1 = z[γ2] + z[N4

⋂
Y5

⋂
Y6

⋂
N7] + z[Y4

⋂
N5

⋂
Y6

⋂
N7]

z[Y4

⋂
Y5

⋂
N6

⋂
N7] + z[Y4

⋂
Y5

⋂
Y6

⋂
Y7] + z[γ>1

2 ]. (72)

This valid constraint satisfied by z can be viewed as a multi-way disjuntion (see [B75]). Our algorithm
will systematically generate a (polynomial) number of such disjunctions, which are driven by the set of
obstructions to the constraints in the problem. The following definitions lay the ground for this.

Definition 4.6

(a) Consider a set of expressions E = {γ1, γ2, · · · , γt} where each γi is of the form γi =
⋂hi

r=1 Mj(r,i) and
1 ≤ j(r, i) ≤ n for 1 ≤ r ≤ hi. Then the wall derived from E is the expression Ω(E) =

⋂
Mj containing

every literal Mj occurring in more than one γi. If no such symbol exists, we will say that the wall is
empty.

(b) A tier is an expression of the form γ = ω1 ∩ω2 ∩ · · · ∩ωt, where each ωi is a negation of a wall (of some
order t, or greater than t, for some t ≥ 0).

Example 4.7 Suppose E = {γ1, γ2, γ3}, where

γ1 = N1

⋂
Y2

⋂
Y3

γ2 = N1

⋂
Y2

⋂
Y4

⋂
N5

γ3 = N1

⋂
Y4.

Then the wall derived from E is ω1 = N1

⋂
Y2

⋂
Y4.

Suppose in addition that H = {γ1, γ4}, where

γ4 = Y2

⋂
Y3

⋂
N4.

Then the wall derived from H is Y2

⋂
Y3, and ω2 = Y2

⋂
N3 is a negation of it. Thus, ω1

⋂
ω2 =

N1

⋂
Y2

⋂
Y4

⋂
Y2

⋂
N3 is a tier.

Note that the last expression in this example is redundant. To handle this and similar situations we introduce
the following formal procedure.
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Definition 4.8

(i) Given an expression γ =
⋂h

i=1 Mji
. The simplification of γ is the expression of the form

⋂
Mj obtained

by taking exactly one copy of each distinct literal Mj appearing in γ.

(ii) Given an expression of the form γ = β ∩ ω>r, where β =
⋂h

i=1 Mji
, ω is a wall and r > 0, the

simplification of γ is the expression β′ ∩ ω>r, where β′ is the simplification of β.

(iii) Suppose we have an expression of the form β = γ∩ω>r1
1 ∩ω>r2

2 , where ω1 and ω2 are walls and r1, r2 are
positive, and γ is as in (i). Let γ′ be the simplification of γ. Then the simplification of β is the expression
γ′ ∩ ω>r1

1 ∩ ω>r2
2 , if ω1 6= ω2, and it equals γ′ ∩ ω

>max{r1,r2}
1 otherwise.

(iv) Suppose we have an expression of the form β = F ∩ γ, where γ is of the form considered in (i) or (ii).
Then the simplification of β equals the simplification of γ.

Example 4.9 Suppose
γ = N1

⋂
Y2

⋂
N1

⋂
Y3.

Then the simplification of γ is
Y2

⋂
Y3

⋂
N1.

Comment 4.10 All expressions that the algorithm given below will generate will be of one of the following
types:

Σ.1. a literal,

Σ.2. F ,

Σ.3. a wall,

Σ.4. a tier,

Σ.5. an expression of the form β ∩ γ where β and γ are of types Σ.1-Σ.4.

Any expressions of type Σ.1-Σ.5 is of the form B1∩B2∩· · ·∩Br, where each Bi is a literal, F , or of the form
ω>r. Recall the discussion at the end of Section 3.2.1. We will use the assumption that any permutation
of the Bi yields an equivalent expression, and also apply the simplification operator, to enforce equivalences
between the symbols generated by our algorithms.

Definition 4.11 Suppose we are given an expression

α = Mj1

⋂
Mj2

⋂
· · · ...

⋂
Mjp

and an expression
β = Mi1

⋂
Mi2

⋂
· · · ...

⋂
Miq .

We say that β is a superstring of α if every literal Mh appearing in the simplification of α also appears in
the simplification of β.

Now we can define our basic general algorithm. This algorithm embodies one particular formalization of the
idea of lifting to variables indexed by the subset algebra – several other such formalizations are possible.
The primary reason we use the algorithm below is that we can show that it has provably good properties.
However, in a practical implementation most likely one would use only some of the algorithmic ideas we
present. The algorithm is presented in somewhat redundant form.

Let k ≥ 2 be a fixed integer, and as before we have a feasible set F = {x ∈ {0, 1}n : Ax ≥ b }, where A is
m× n. The ith constraint is denoted aT

i x ≥ bi.

Σk-Algorithm (k ≥ 2).
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1. Generate the symbol F , and for 1 ≤ j ≤ n, generate the symbols Yj and Nj , and impose the constraint:

X[Yj ] + X[Nj ]−X[F ] = 0. (73)

For 1 ≤ i ≤ m impose the constraint:

n∑
j=1

aijX[Yj ]− biX[F ] ≥ 0. (74)

2. For 1 ≤ i ≤ m, enumerate all the k-small obstructions to each of the constraints aT
i x ≥ bi, as well as all

trivial obstructions. For each enumerated obstruction γ, impose the constraint

n∑
Mj∈γ

X[M̄j ]−X[F ] ≥ 0. (75)

where the notation “Mj ∈ γ” means that the sum is over all those literals Mj occurring in γ.

3. For every set E of distinct enumerated obstructions with 1 < |E| ≤ k, compute Ω(E), the wall derived
from E. If Ω(E) 6= ∅ and Ω(E) does not contain both terms Yj and Nj for some j (1 ≤ j ≤ n) then generate
a symbol for Ω(E).

4. For every 1 ≤ H < k, every tier of the form θ =
⋂H

t=1 ωt, where ωt is an enumerated wall for 1 ≤ t ≤ H,
is processed to generate additional symbols and constraints, as follows.

Enumerate every H-vector of integers o = (o1, o2, · · · , oH) such that 0 ≤ ot ≤ min{|ωt|, k} for 1 ≤ t ≤ H and∑H
t=1 ot < k. Given o, enumerate every H-tuple ω′ = (ω′1, ω

′
2, · · · , ω′H), where ω′t is a negation of ωt of order

ot for 1 ≤ t ≤ H. For each such enumerated pair (o, ω′),

(i) Create a symbol for

θ#
o =

H⋂
t=1

ω′t

and, for each 1 ≤ j ≤ n, and each literal Mj such that Mj is one of the literals in θ#
o , impose the

constraint

X[Mj ]−X[θ#
o ] ≥ 0. (76)

Further, if the simplification σ of θ#
o is a superstring of some enumerated obstruction, or if it contains

both symbols Yj and Nj for some 1 ≤ j ≤ n, impose

X[θ#
o ] = 0. (77)

Finally, impose

X[θ#
o ] −

∑
Mj∈σ

X[Mj ] + (|σ| − 1)X[F ] ≥ 0. (78)

(ii) If
∑H

t=1 ot = k − 1 and oH < |ωH| create a symbol for

θ>
o =

(H−1⋂
t=1

ω′t

)
∩ ω>oH

H ,

where as before ω>oi
i is the negation of ωi of order greater than oi. Further, for each 1 ≤ j ≤ n, and

each literal Mj such that Mj is one of the symbols in any of the ω′t, for 1 ≤ t ≤ H − 1, impose the
constraint

X[Mj ]−X[θ>
o ] ≥ 0. (79)

Moreover, impose the constraint ∑
Mj∈ωH

X[M̄j ]− (1 + oH)X[θ>
o ] ≥ 0. (80)
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Further, if the simplification of
⋂H−1

t=1 ω′t is a superstring of some enumerated obstruction, or if it
contains both symbols Yj and Nj for some 1 ≤ j ≤ n, impose

X[θ>
o ] = 0. (81)

Note: strictly speaking, the notation θ#
o and θ>

o is not complete, since we need to specify which literals are
negated, but the correct interpretation will be clear from the context.

5. For each expression θ#
o =

⋂H
t=1 ω′t enumerated in Step 4, such that H < k − 1 and ω′t is a negation of

order ot of ωt, for 1 ≤ t ≤ H; and for each enumerated wall ω, impose the following constraints:

(a) If |ω|+
∑H

t=1 ot < k then impose the constraint

X[θ#
o ] −

|ω|∑
r=0

 ∑
β∈N (ω,r)

X[θ#
o ∩ β]

 = 0. (82)

(b) If |ω|+
∑H

t=1 ot ≥ k then setting R = k − 1−
∑H

t=1 ot, impose the constraint

X[θ#
o ] − X[θ#

o ∩ ω>R]−
R∑

r=0

 ∑
β∈N (ω,r)

X[θ#
o ∩ β]

 = 0, (83)

where, as previously, N (ω, r) denotes the set of negations of ω of order r.

Similarly, for each enumerated wall ω, if |ω| < k then impose

X[F ] −
|ω|∑
r=0

 ∑
β∈N (ω,r)

X[β]

 = 0, (84)

and if |ω| ≥ k then impose

X[F ] − X[ω>k−1]−
k−1∑
r=0

 ∑
β∈N (ω,r)

X[β]

 = 0. (85)

6. Let V denote the set of variable indices created so far, and let X denote the vector of variables. Create a
matrix U of variables, with rows and columns indexed by V, and impose on the variables in U the following
constraints:

(6.1) U is symmetric, U [F ,F ] = X[F ], and the main diagonal, the F-row and the F-column of U are all
equal to X.

(6.2) For each constraint ηT X ≥ 0 of the form (74-85) (when they apply) impose the constraints

ηT U ≥ 0. (86)

(6.3) Suppose β1, γ1, β2, γ2 are elements of V such that β1 ∩ γ1 and β2 ∩ γ2 have the same simplification.
Then require that U [β1, γ1] = U [β2, γ2]. Suppose β, γ are elements of V such that β∩γ is a superstring
of some enumerated obstruction, or contains both Yj and Nj for some j. Then impose U [β, γ] = 0.

(6.4) Impose

0 ≤ U [θ, β] ≤ U [F , β] ∀ θ, β ∈ V (87)
X[F ] = 1. (88)

7. (Optional) Impose U � 0.

8. (Optional) For each constraint ηT X ≥ 0 of the form (74), (75), (78) or (80), let fη .= Uη. Form the
matrix Wη with rows and columns indexed by V, such that for each pair β, γ of symbols in V, the β, γ-entry
of Wη equals fη[β ∩ γ]. Impose Wη � 0.

9. End.

Note: in what follows, a vector o = (o1, o2, · · · , oH) as in Step 4 will be called a negation vector.
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Example 4.12 Application with k = 4. Consider the following sytem of constraints:

C1 : −x1 +x2 + 1
2x3 ≥ 0

C2 : −x1 +x2 −x4 −x5 ≥ −2
C3 : −x1 +x4 +x6 + 4

5x7 ≥ 0
C4 : x1 −x3 +x5 +x6 +x7 ≥ 0
C5 : x2 −x3 +x5 +x6 +x7 ≥ 0
C6 : −x1 +x3 +x7 ≥ 0
C7 : −x1 +x3 −x7 ≥ −1

(89)

The algorithm enumerates, among others, the (2-small) obstruction γi to Ci (1 ≤ i ≤ 7) given next:

γ1 = Y1 ∩N2 ∩N3

γ2 = Y1 ∩N2 ∩Y4 ∩Y5

γ3 = Y1 ∩N4 ∩N6

γ4 = N1 ∩Y3 ∩N5 ∩N6 ∩N7

γ5 = N2 ∩Y3 ∩N5 ∩N6 ∩N7

γ6 = Y1 ∩N3 ∩N7

γ7 = Y1 ∩N3 ∩Y7

Thus, constraint (75) applied to γ1 yields

X[N1] + X[Y2] + X[Y3]−X[F ] ≥ 0.

In Step 3, the algorithm will generate, among others, the wall derived from {γ1, γ2, γ3}, which is

ω1 = Y1 ∩N2,

the wall derived from {γ4, γ5}, which is

ω2 = Y3 ∩N5 ∩N6 ∩N7,

and the wall derived from {γ6, γ7}
ω3 = Y1 ∩N3.

In Step 4, the algorithm processes the tier

θ = ω1

⋂
ω2 = (Y1 ∩N2)

⋂
(Y3 ∩N5 ∩N6 ∩N7),

and in Step 4 (i) it creates (among several others) the symbol

θ#
o = (Y1 ∩Y2)

⋂
(Y3 ∩N5 ∩N6 ∩Y7),

obtained from θ by negating the N2 appearing in ω1 and the N7 appearing in ω2. This corresponds to the
negation vector o = (1, 1). In this case, the collection of all constraints (76) can be abbreviated as:

min{X[Y1], X[Y2], X[Y3], X[N5], X[N6], X[Y7]} −X[θ#
o ] ≥ 0,

and since θ#
o is simplified, constraint (78) is:

X[θ#
o ]−X[Y1]−X[Y2]−X[Y3]−X[N5]−X[N6]−X[Y7] + 5X[F ] ≥ 0.

Further, in Step 4 (ii) the algorithm, using the negation vector p = (2, 1) and ω′1 = N1∩Y2 (i.e., both literals
in ω1 are negated) will also generate the expression

θ>
p = (N1 ∩Y2)

⋂
ω>1

2

in which case (80) becomes:

X[N3] + X[Y5] + X[Y6] + X[Y7]− 2X[θ>
p ] ≥ 0.

In Step 4 the algorithm will also generate the tier

ω1

⋂
ω2

⋂
ω3 = (Y1 ∩N2)

⋂
(Y3 ∩N5 ∩N6 ∩N7)

⋂
(Y1 ∩N3) = θ

⋂
ω3,
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and, in Step 4 (ii) the algorithm will generate, using the negation vector (1, 1, 1) the expression

(Y1 ∩Y2)
⋂

(Y3 ∩N5 ∩N6 ∩Y7)
⋂

ω>1
3 =

θ#
o

⋂
ω>1

3 .

In this case (83) applies, and it imposes

X[θ#
o ]−X[θ#

o

⋂
ω>1

3 ]−X[θ#
o

⋂
(N1 ∩N3)]−X[θ#

o

⋂
(Y1 ∩Y3)] = 0.

Also, a tier obtained from the wall derived from {γ6, γ7}, and the wall derived from {γ1, γ2}, for the negation
vector (1, 0) (negating N3 in Y1 ∩ N3) is (Y1 ∩ Y3)

⋂
(Y1 ∩ N2), whose simplification is σ = Y1 ∩ Y3 ∩ N2.

In this case constraint (78) becomes:

X[(Y1 ∩Y3)
⋂

(Y1 ∩N2)]−X[Y1]−X[N2]−X[Y3] + 2X[F ] ≥ 0.

Finally, when constructing the matrix U , note that by Step (6.3) U [ω2, ω3] = 0, as ω2 ∩ ω3 contains both Y3

and N3.

Similarly, one of the symbols we will generate will be ω′2 = N3 ∩N5 ∩N6 ∩N7 (obtained from ω3 by negating
Y3), and so Step 6 (ii) will force U [ω′2, ω3] = 0 since ω′2 ∩ ω3 is a superstring of Y1 ∩N3 ∩N7 = ω6.

Comments on the algorithm.

1. In step (6.2) some of the constraints imposed on U are of the form “=”, rather than “≥” as stated in
the algorithm – then in (86) we should use “=”.

2. Note that the simplification step in (6.3) implies that, for example, if β1 and β2 are elements of V with
the same simplification, then the columns (and rows) of U corresponding to β1 and β2 are identical.
In such a case one could simply keep a single row and column corresponding to the equivalence class of
symbols that have the same simplification. To keep the analysis simple, in what follows we will assume
that we are using the entire matrix.

3. In steps 5(a), (b), note that the expressions θ#
o ∩β are obtained by negating walls in a tier enumerated

in step 4. Hence the variables X[θ#
o ∩ β] will be created by the algorithm, and similarly with all other

variables in (82-85).

4. The algorithm can be made far more efficient. For example, it is not strictly necessary to use both Yj

and Nj variables. More to the point, it is possible to use far fewer variables.

5. Step 7 is M+-like, using of course a very different set of variables. Similarly, Step 8 is Lasserre-like
(refer to Lemma 3.10 (iii)).

Notation. In what follows we will use the notation col[θ] to mean the column of U corresponding to the
symbol θ ∈ V. The matrix U will always be clear from the context. Note that col[θ] = Ueθ, where eθ ∈ RV

has a 1 in position θ and zeros elsewhere, but we prefer the “col” notation.

The following result, which is straightforward, will be used in many of the proofs below, and we record it
for reference.

Proposition 4.13 Let V and U be the set of symbols and the matrix produced by a run of the Σk algorithm.
Suppose there is an equation

∑
θ∈V λ[θ]u[θ] = 0 which is satisfied by every column u of U , where λ ∈ RV .

Then
∑

θ∈V λ[θ]col[θ] = ~0, where ~0 ∈ RV is the 0-vector.

Proof. Since U is symmetric, it follows that
∑

θ∈V λ[θ]r[θ] = 0 is satisfied by every row r of U , which implies
the result.
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4.3 Some basic properties of the Σk-algorithm

In this section we prove that the algorithm generates a valid formulation, and that it runs in polynomial-time
for fixed k.

In what follows, let M denote the set of distinct members of Σ, i.e., subsets of {0, 1}n, that arise as the
set-theoretic value of variable indices V produced by the algorithm.

Lemma 4.14 Let x̂ ∈ F . Then x̂ can be lifted to a vector X̆ ∈ {0, 1}V and matrix Ŭ ∈ {0, 1}V×V that
satisfy the constraints imposed by the algorithm.

Proof. We will show that x̂ can be lifted to a vector x̂ ∈ RM and a matrix M which satisfy the desired
constraints. By appealing to Lemma 3.2.1 we will be done.

Let α(x̂) ∈ Σ denote the atom corresponding to x̂, i.e.,

α(x̂) = (
⋂

j : x̂j=1

Yj) ∩ (
⋂

j : x̂j=0

Nj).

Define X̂ ∈ {0, 1}M to be the restriction of ξα(x̂) ∈ {0, 1}Σ to the coordinates in M. Recall here that ξα(x̂)

is a 0-1 vector such that for each β ∈ Σ, ξα(x̂)[β] equals one iff the subset of F defined by β contains the
point x̂. Further, let Û be defined by Û [β, γ] = X̂[β ∩ γ].

Let X̆ denote the restriction of X̂ to {0, 1}V and Ŭ = Û . We claim that X̆ and Ŭ are as desired.

Clearly (73), (74) and (75) are satisfied. Consider now expressions θ, θ#
o as in Step 4 of the algorithm.

Since θ#
o is of the form

⋂
j∈J Mj for some set J , clearly (76) is satisfied (that is, the subset of F defined

by θ#
o is contained in the subset defined by Mj for j ∈ J). Similarly, (79) is satisfied. Constraint (78)

holds because if |σ| terms X̆[Mj ] equal 1, then so does X̆[θ#
o ], and hence in any case the left-hand of (78) is

nonnegative. (77) and (79) are clear. Finally, in constructing θ>
o at least 1 + oH symbols are negated in ωH,

and consequently (80) holds as well.

Consider now (82 - 85). Suppose that case 5(a) applies. If X̂[Mj ] = 0, for at least one literal Mj which
appears in at least one of the expressions ω′t, for 1 ≤ t ≤ H, then by construction both terms in (82) are
equal to zero and (82) holds. Suppose now that X̂[θ#

o ] = 1. Let 0 ≤ K ≤ |ω| be the number of indices j,
such that either Yj is a symbol in ω and x̂j = 0, or Nj is a symbol in ω and x̂j = 1. By construction in step
3 of the algorithm, K is well defined; exactly one term X[θ#

o ∩ β] with β ∈ N (ω, K) will equal 1, and all
remaining terms X[θ#

o ∩ β] will be zero, and (82) follows. The proof that (83 - 85) hold, when they apply,
is similar.

Finally, by construction, the conditions in (6.1), (6.2) and (6.4) apply; and the fact that the conditions
in the optional steps 7 and 8 hold follow from Lemma 3.10.

As a corollary of this Lemma, we now have:

Theorem 4.15 Suppose x̃ ∈ conv(F). Then there exists a vector X̃ ∈ RV and a matrix Ũ ∈ RV×V satisfying
the conditions imposed by the Σk-algorithm, and such that X̃[Yj ] = x̃j, for all 1 ≤ j ≤ n.

Proof. This follows from Lemmas 3.11 and 4.14.

Lemma 4.16 For k fixed, the Σk-algorithm generates polynomially many variables and constraints.

Proof. Suppose that we start with a formulation with n variables. Then there are at most O(mnk) k-small
obstructions. Thus at most O

(
mknk2

)
walls, and at most O

(
mk2−knk3−k

)
tiers θ are enumerated. As a

result, at most O
(
23kk!mk2−knk3

)
symbols θ#

o and θ>
o will be created.

The following result is not needed in what follows, and we only state it for completeness, although its proof
is not difficult. Let Rn

k denote the set of those vectors x ∈ [0, 1]n such that x can be lifted to a pair (X, U)
which satisfies the Σk-algorithm constraints.
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Lemma 4.17 (a) Let k ≥ 3. Then Rn
k ⊆ Rn

k−1. (b) Suppose that each variable appears in at least one
constraint. Then Rn

n+1 = conv(F).

Comment 4.18 For a proof, see [Z03]. In particular, in (b), the U matrix generated by the Σk algorithm
(k ≥ 3) has the property that every column indexed by a literal satisfies the Σk−1 constraints. Further, One
can prove general conditions where fewer than n rounds are possible.

Observation. Some of the expressions produced by the Σk algorithm are of the form ∩h
j=1Mij

where the
Mij

are literals. These expressions amount to simple conjunctions of variables and their negations, and as
such will “eventually” be enumerated by all the other lifting procedures we have discussed, for example,
the Sherali-Adams operator. The “eventually” here is important, because the quantity of literals in the
expression, h, may be very large – in general, our algorithm will enumerate expressions with a number
of literals that is unbounded as a function of k. To put it differently, in polynomial time we enumerate
expressions that, using the other operators, are not enumerated until after an exponential amount of work.
In addition, the expressions that we do enumerate are obtained from the obstructions to the constraints, i.e.,
are driven by the structure of the problem. Furthermore, expressions of the form γ>t are never enumerated
by the other algorithms.

The nature of the expressions we enumerate, and of the constraints placed upon them, are concrete algo-
rithmic details that distinguish our procedure from the other lifting procedures. In the following sections we
will present specific examples of inequalities that have unbounded rank for (say) the N+ operator but which
the Σk-algorithm satisfies for (small) fixed k.

4.4 Applications to set covering

In this section we consider a set-covering problem with feasible region F = {x ∈ {0, 1}n : Ax ≥ e }, where
the 0-1 matrix A is m×n. We would like to prove, as generalization of Theorem 3.19 that the Σk algorithm
implies all valid inequalities with coefficients 0, 1, 2, · · · , k. However, a direct inductive proof (on k) does not
work, and we need a stronger inductive assumption.

This is provided by the concept of pitch: we will prove that the Σk algorithm implies all inequalities of
pitch ≤ k which are valid for F . For completeness, we redefine pitch here.

Definition 4.19 Given an inequality aT x ≥ a0 with indices ordered so that 0 < a1 ≤ a2 ≤ · · · ≤ aJ and
aj = 0 for j > J , its pitch is the minimum integer π = π(a, a0) such that

∑π
j=1 aj ≥ a0.

In fact, not only is pitch ≤ k a the right inductive assumption, but it is a more appropriate concept, since it
serves to parameterize all valid inequalities, and any valid inequality has pitch ≤ n. We note the following
result, which follows directly from the definition of pitch.

Proposition 4.20 Consider a valid inequality aT x ≥ a0. Let I ⊆ suppt(a) be such that
∑

i∈I ai < a0. Then
the pitch of aT x ≥ a0 is at least |I|+ 1.

We denote by Ai the support of the ith row of A. We will assume, without loss of generality, that no Ai

contains another.

Observation. If
∑

j∈V xj ≥ 1 is valid for F for some set V , then there is a row h of A with Ah ⊆ V .

Proposition 4.21 Suppose αT x ≥ α0 is a valid inequality for F with nonnegative coefficients. Consider
the set-covering problem with feasible region G = {x ∈ {0, 1}suppt(α) : Âx ≥ e}, where Â is the submatrix of
A obtained by

(i) Using the columns in suppt(α), and

(ii) Using those rows i such that Ai ⊆ suppt(α).

Let ᾱ be the restriction of α to suppt(α). Then ᾱT x ≥ α0 is valid for G.
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Proof. Assume by contradiction that we can find a point x̂ ∈ G with αT x̂ < α0. Define x̆ ∈ {0, 1}n by setting
x̆j = x̂j if j ∈ suppt(α), and x̆j = 1 otherwise. Then by construction x̆ ∈ F , but αT x̆ < α0, a contradiction.

The following result describes a key structural property of valid inequalities for set covering problems, and
will be at the core of our proof of Theorem 1.2.

Proposition 4.22 Suppose αT x ≥ α0 is a valid inequality for F and with α ≥ 0 and α0 > 0. Then there is
a subset C = C(α, α0) of the rows of A with |C| ≤ π(α, α0), such that

(i) Ai ⊆ suppt(α) ∀ i ∈ C (90)

(ii) ∆i
.= Ai −

⋃
r∈C−i

Ar 6= ∅, ∀ i ∈ C, and (91)

(iii)
∑
i∈C

min {αj : j ∈ ∆i} ≥ α0. (92)

Proof. The proof of the Lemma will be by induction on π = π(α, α0). Since α0 > 0 we must have that∑
j∈suppt(α) xj ≥ 1 is valid for F , and thus the case π = 1 is proved.

In the remainder of the proof we assume that Ai ⊆ suppt(α) for every row i; without loss of generality we
can make this assumption by Proposition 4.21.

Assume now that π > 1. Suppose first that some row i of A satisfies Ai = suppt(α). Since by assumption no
row of A contains another, we have a set-covering problem with one constraint, namely

∑
j∈suppt(α) xj ≥ 1.

Thus, either π = 1, or αT x ≥ α0 is not valid for F , a contradiction in either case.

Hence, choose any row i(1); Ai(1) will then be properly included in suppt(α). Let j(1) be an index in Ai(1)

with minimum coefficient αj(1). Assume αj(1) < α0 (or else we are done by setting C = {i(1)}).

Let K = suppt(α)−Ai(1). Consider the set-covering problem with feasible region H = {x ∈ {0, 1}K : Āx ≥
e}, where Ā is the submatrix of A where

1. Ā has column set K.

2. for any row h of A, with j(1) /∈ Ah, Ā will have a row with Āh = Ah ∩K.

We claim that the inequality ∑
j∈K

αjxj ≥ α0 − αj(1) (93)

is valid for H. For otherwise, we can find x̄ ∈ H with
∑

j∈K αj x̄j < α0 − αj(1). In that case, define
x̆ ∈ {0, 1}n by setting x̆j = x̄j if j ∈ K, x̆j(1) = 1 and x̆j = 0 for all j ∈ Ai(1) − j(1) (recall that we are
assuming Ai ⊆ suppt(α) for all i). Clearly αT x̆ < a0. But x̆ ∈ F , because no row of A is contained in
another (and, in particular, not contained in Ai(1)). This contradiction shows that (93) is indeed valid for
H.

Since αj(1) > 0 it follows that the pitch of (93) is less than π. Since αj(1) < α0, the result now follows by
induction as j(1) is not contained in any set Āi.

Corollary 4.23 Suppose the inequality aT x ≥ a0 is valid for F and has pitch ≤ 1. Then aT x ≥ a0 is
dominated by aix ≥ 1 for some row i of A, or is dominated by the nonnegativity constraints.

In the rest of this section we will consider a fixed vector X̃ ∈ RV and matrix Ũ ∈ RV×V that satisfy the
constraints imposed by the Σk-algorithm. Our goal is to show that Theorem 1.2 holds, i.e., that for every
inequality aT x ≥ a0 with π(a, a0) ≤ k which is valid for F , X̃ satisfies the (homogenized) inequality∑

j

ajX[Yj ]− a0X[F ] ≥ 0, (94)

which implies Theorem 1.2 since by construction X̃[F ] = 1.
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4.4.1 Brief outline of the proof of Theorem 1.2

We will next outline our strategy towards this goal, which relies on using induction and on the fact that the
algorithm enforces constraints (82-85).

Suppose that we could express X̃ as a sum of other columns of Ũ , each of which satisfies (94). Since (94) is
homogeneous, it follows that X̃ satisfies (94) as well. This “decomposition” approach mirrors the strategy
we followed in the algorithm given in Section 3.3.

To fix ideas, consider an instance of constraint (84) arising from a particular choice of ω. Since this constraint
is satisfied by every column of Ũ , by Proposition 4.13 we have

X̃ =
|ω|∑
r=0

 ∑
β∈N (ω,r)

col[β]

 . (95)

Now (95) (or a similar decomposition if (85) applies instead of (84)) holds for every wall ω enumerated in
step 5. Consequently, by the discussion in the previous paragraph, our task would be complete if we could
select ω so that each column in the sum satisfies (94).

In our proof, the particular ω that will give the desired decomposition will be supplied by Proposition 4.22.
In order to show that each resulting β-column of Ũ satisfies (94) we will use a special proof for the case
r = 0, and for the column corresponding to ω>k−1 if (85) applies. For the cases where r > 0 we will use
induction.

The induction is applied as follows. Consider the term β corresponding to a particular r > 0. Let ũ = col[β].
We want to show that ∑

j

aj ũ[Yj ]− a0ũ[F ] ≥ 0. (96)

Since we are dealing with a set-covering problem and r > 0, each of the negations of order r yields a Yj

literal appearing in β. As we will argue, for each such j we have ũ[Yj ] = ũ[F ]. Thus, instead of having to
show (96) we will have to show ∑

j:Yj /∈β

aj ũ[Yj ]− (a0 −
∑

j :Yj∈β

aj)ũ[F ] ≥ 0

It turns out that this is a weaker condition, because, as we will show, the inequality∑
j:Yj /∈β

ajxj ≥ (a0 −
∑

j :Yj∈β

aj)

is valid for F and has pitch strictly less than the pitch of aT x ≥ a0. Hence, we can apply induction, after
another use of Proposition 4.22. Subsequent inductive steps will use (82) and (83) instead of (84) and
(85). Finally, for the basis of the induction we have to handle valid inequalities of pitch ≤ 1 – but all such
inequalities are satisfied by all columns of Ũ , as implied by Corollary 4.23.

4.4.2 Formal proof of Theorem 1.2

Now we continue with the formal proof. Note that since we are dealing with a set covering problem all
obstructions will be of the form

⋂
j∈Ah

Nj for some h.

The following observation will be of use later.

Proposition 4.24 Let θ =
⋂H

t=1 ωt be a tier enumerated in step 4 of the algorithm. Consider one of the
expressions θ#

o obtained from θ, and let ũ = col[θ#
o ]. Suppose 1 ≤ j ≤ n is such that Yj appears in θ#

o .
Then

ũ[Yj ] = ũ[F ]. (97)

Similarly, if θ>
o = (

⋂H−1
t=1 ω′t) ∩ ω>oH

H is obtained from θ, and Yj appears in
⋂H−1

t=1 ω′t, then (97) holds, as
well.
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Proof. This follows from (76), (79), step (6.1) and (87).

First, we will prove the base for the induction.

Lemma 4.25 Suppose
∑n

j=1 αjxj ≥ α0 is an inequality valid for F of pitch ≤ 1. Let ũ be any column of
Ũ . Then

∑n
j=1 αj ũ[Yj ]− α0ũ[F ] ≥ 0.

Proof. This follows from Corollary 4.23 and the fact that due to Step 6 of the algorithm, every column of Ũ
satisfies each of the set covering constraints Ax ≥ e, homogenized.

In order to develop the inductive proof outlined in the previous section, we need to parameterize those
expressions generated by the algorithm. This will be done through a value that essentially counts (in
reverse) the number of negations in an expression. In what follows, we use the following notation. Consider
expressions θ =

⋂H
t=1 ωt and θ#

o =
⋂H

t=1 ω′t generated in step 4 of the algorithm, where each ω′t is a negation
of order ot of ωt.

Definition 4.26 We will say that θ#
o is positive if 0 < ot for all t, 1 ≤ t ≤ H.

We let
Y(θ#

o ) =
{
1 ≤ j ≤ n : Yj appears in θ#

o

}
.

Note that since we are dealing with a set-covering problem, every j ∈ Y(θ#
o ) appears as Nj in some ωt and

is thus negated in constructing θ#
o , i.e., it appears as Yj in ω′t. Finally, we write

ρ(θ#
o ) = k −

H∑
t=1

ot. (98)

Note: strictly speaking, we should write ρ(θ#
o , θ), but as θ will always be clear from the context we will omit

it. Also note that ρ(θ#
o ) < k when θ#

o is positive. Furthermore, it is important to notice that the definition
of ρ uses θ#

o itself, and not its simplification. We will also write

Y(F) = ∅,

and
ρ(F) = k.

The ρ parameter will be used to drive the induction. Next we have the main result, which implies Theorem
1.2.

Theorem 4.27 Consider an expression γ so that either γ = F , or γ is some positive θ#
o enumerated in

Step 4. Let

n∑
j=1

αjxj ≥ α0 (99)

be an inequality valid for F with π(α, α0) ≤ ρ(γ). Then the column ũ of Ũ corresponding to γ satisfies

n∑
j=1

αj ũ[Yj ]− α0ũ[F ] ≥ 0. (100)

Proof. The proof will be by induction on ρ(γ), which, as just discussed, is positive. Lemma 4.25 therefore
handles the base of this induction.

By Proposition 4.24, if j ∈ Y(γ) then ũ[Yj ] = ũ[F ], and as a result

∑
j∈Y(γ)

αj ũ[Yj ] =

 ∑
j∈Y(γ)

αj

 ũ[F ].
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Consequently, if we could also prove that the inequality

∑
j /∈Y(γ)

αjX[Yj ] −

α0 −
∑

j∈Y(γ)

αj

X[F ] ≥ 0 (101)

is satisfied by setting X = ũ, we would complete the proof of the theorem. This is what we will do next.

Rewrite (101) as

n∑
j=1

ᾱjX[Yj ] − ᾱ0X[F ] ≥ 0, (102)

where, for 1 ≤ j ≤ n

ᾱj =

 αj , if j /∈ Y(γ)

0, otherwise.
(103)

and ᾱ0 = α0 −
∑

j∈Y(γ) αj . The inequality

ᾱT x ≥ ᾱ0 (104)

is clearly valid for F (since (99) is); without loss of generality ᾱ0 ≥ 0 (else (102) follows trivially) and by
definition of pitch, π

.= π(ᾱ, ᾱ0) ≤ π(α, α0).

First we claim that, in the case that γ = θ#
o , without loss of generality γ is a conjunction of strictly fewer

than k− 1 negated walls. Say γ =
⋂H

t=1 ω′t, where ω′t is a negation of ωt of order ot for 1 ≤ t ≤ H. We want
to argue that, without loss of generality, H < k− 1. But γ is positive, by assumption in this theorem. Thus
ot > 0 for 1 ≤ t ≤ H. Then by definition of ρ, we have that ρ(γ) ≤ k−H. Hence, if H ≥ k− 1 the Theorem
is proved by Lemma 4.25. In what follows we assume that H < k − 1.

Suppose we apply Proposition 4.22 to (104). Let C denote the resulting subset of rows of A. Thus we obtain
a set of obstructions, one from each row of C; since |C| ≤ π ≤ ρ(γ) ≤ k, the wall ω derived from this set of
obstructions will be enumerated in Step 3.

Hence, whether γ = F or γ = θ#
o , in Step 5 the algorithm will impose either

X[γ] =
|ω|∑
r=0

 ∑
β∈N (ω,r)

X[γ ∩ β]

 (105)

if |ω| < ρ(γ) (c.f. (98), and see the rule that determines for example that 5(a) applies), or

X[γ] = X[γ ∩ ω>R] +
R∑

r=0

 ∑
β∈N (ω,r)

X[γ ∩ β]

 (106)

otherwise, where R = ρ(γ)− 1.

Now one of (105) or (106) applies; the algorithm enforces that constraint on all columns of Ũ , hence by
Proposition 4.13

col[γ] =
|ω|∑
r=0

 ∑
β∈N (ω,r)

col[γ ∩ β]

 (107)

or

col[γ] = col[γ ∩ ω>R] +
R∑

r=0

 ∑
β∈N (ω,r)

col[γ ∩ β]

 (108)

will hold.

We will next show, using induction, that all columns of the form col[γ ∩ β] arising from values r > 0 satisfy
(102). Using a special proof, we will show the same fact for the case r = 0. Finally, assuming (108) applies,
we will show the same for col[γ ∩ ω>R]. This will complete the proof of the theorem.
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Case r > 0. Consider a fixed value r > 0, and consider a particular β ∈ N (ω, r). Thus, β is of the form⋂
j∈S

Yj ∩
⋂
j∈T

Nj

where |S| = r, ω =
⋂

j∈S∪T Nj , and S and T are disjoint. Let û = col[γ ∩ β]. We want to show that û
satisfies (102).

By Proposition 4.24, û[Yj ] = û[F ] for each j ∈ S. Thus, it suffices to prove that û satisfies the inequality

∑
j /∈S

ᾱjX[Yj ]−

ᾱ0 −
∑
j∈S

ᾱj

X[F ] ≥ 0 (109)

in order to prove that û satisfies (102).

But notice that by construction in Proposition 4.22, all rows in the set C have support contained in suppt(ᾱ).
Hence ᾱj > 0 ∀j ∈ S, and as a result the pitch of (109) is at most the pitch of (104) minus r, i.e.,
≤ ρ(γ)− r < ρ(γ). Consequently, if we can show that

ρ(γ ∩ β) ≥ ρ(γ)− r

then by induction we will have that û satisfies (109).

Consider the case γ = θ#
o . We have that γ ∩ β is obtained from θ ∩ ω by (i) negating literals in θ to obtain

θ#, and (ii) since γ ∈ N (ω, r), by negating exactly r literals in ω. Thus ρ(γ ∩ β) = ρ(γ)− r, as desired. In
the case γ = F this is also clear.

Case r = 0. Let û = col[γ ∩ β] = col[γ ∩ω]. For convenience, we restate here the properties satisfied by the
set of rows C which we are using in this proof, produced by applying Proposition 4.22 to ᾱT x ≥ ᾱ0:

(i) Ai ⊆ suppt(ᾱ) ∀ i ∈ C
(ii) ∆i

.= Ai −
⋃

r∈C−i

Ar 6= ∅, ∀ i ∈ C, and

(iii)
∑
i∈C

min {ᾱj : j ∈ ∆i} ≥ ᾱ0.

Further each i ∈ C gives rise to one obstruction and ω is the wall derived from these obstructions. Thus,
ω =

⋂
j∈J Nj , where J ⊆ {1, 2, · · · , n} is the set of all j appearing in at least two Ai, i ∈ C. Note that, by

(76) and Step 6 of the algorithm,

û[Nj ] ≥ û[γ ∩ ω] = û[F ] ∀ j ∈ J,

and consequently

û[Yj ] = 0, ∀ j ∈ J, (110)

Further, consider any row i ∈ C. By step (6.2) of the algorithm,
n∑

j=1

aij û[Yj ]− û[F ] ≥ 0.

Combining this with (110) we obtain ∑
j∈∆i

aij û[Yj ]− û[F ] ≥ 0

and consequently ∑
j∈∆i

ᾱj û[Yj ] ≥ (min {ᾱj : j ∈ ∆i}) û[F ]. (111)

By construction, the sets ∆i are pairwise disjoint. So if we sum (111) over all i ∈ C we obtain:

n∑
j=1

ᾱj û[Yj ] ≥

(∑
i∈C

min {ᾱj : j ∈ ∆i}

)
û[F ]

≥ ᾱ0û[F ], (112)
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where the last inequality follows by property (iii) of the set C. This concludes the proof in this case.

Case ω>R. Let û = col[γ ∩ ω>R] and write ω =
⋂

j∈J Nj . Recall that R = ρ(γ)− 1. Now,∑
j

ᾱj û[Yj ] =
∑

j∈suppt(ᾱ)

ᾱj û[Yj ]

≥
∑
j∈J

ᾱj û[Yj ]. (113)

Further, in step (6.2), the algorithm imposes the constraint (80), applied to γ ∩ ω>R, i.e., on the column û.
This amounts to imposing: ∑

j∈J

û[Yj ] − (1 + R)û[γ ∩ ω>R] ≥ 0. (114)

Now 1 + R = ρ(γ), by definition of R. Also, by step (6.1), û[γ ∩ ω>R] = û[F ]. So (114) is simply:∑
j∈J

û[Yj ] − ρ(γ)û[F ] ≥ 0. (115)

Thus, combining (113), (115) we obtain that ∑
j

ᾱj û[Yj ]

is at least û[F ], times the sum of the ρ(γ) smallest positive coefficients ᾱj . But we know that π(ᾱ, ᾱ0) ≤
π(α, α0) which by assumption is at most ρ(γ). Thus∑

j

ᾱj û[Yj ] ≥ ᾱ0û[F ],

as desired. This completes the proof.

Comment 4.28 Note that positive-semidefiniteness (Steps 7 and 8 of the algorithm) is not used in this
theorem.

4.5 Positive-semidefiniteness and set packing problems

As discussed previously, positive-semidefiniteness arises as a natural feature in all of the lifting algorithms
we described. An important question concerns how much positive-semidefiniteness provably adds to the
strength of the algorithms. This question was taken up in [LS91], with special attention paid to vertex-
packing problems. Among many other related results, it was shown in [LS91] that the N+-rank of clique
inequalities is 1, whereas their N -rank is in general much higher, thus showing that positive-semidefiniteness
can indeed help in a concrete way.

Before describing our results, we note that one can always rewrite a linear inequality in the form∑
j∈J+

ajxj +
∑

j∈J−

aj(1− xj) ≥ b

where all the aj are nonnegative and J+ ∩ J− = ∅. In the context of the Σ-algorithms, this is a natural
step since we introduce both variables Yj and Nj for every j. By reformulating the problem in this manner
one obtains more general results than those we will describe here. See [Z03]. In particular, one can show
how some high-pitch valid inequalities for set-covering problems are enforced by the Σk-algorithm for small
k (we will touch on this again at the end of this section). However, for the sake of simplicity, in this section
we will only explicitly deal with set-packing problems.

Consider the following packing system. Let I be an index set of cardinality at least three, and suppose that
for each i ∈ I we have a set Si ⊆ {1, 2, · · · , n} such that the Si are pairwise disjoint.

Consider the system of constraints

x(Si) + x(Sj) ≤ |Si|+ |Sj | − 1, ∀ i 6= j. (116)
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where, as we use the notation v(H) =
∑

j∈H vj . Thus, if |Si| = 1 for all i, we obtain a vertex-packing system
for an t-clique. Write S = ∪iSi, N = |S| =

∑
i |Si| and t = |I|.

The inequality ∑
j∈S

xj ≤ N − t + 1 (117)

is valid: for x ∈ {0, 1}S , if
∑

j∈S xj = N − t + 2 then there are at least 2 distinct sets Si such that xj = 1
for all j ∈ Si, violating (116). We will refer to (117) as the set-clique constraint.

Lemma 4.29 Consider a system of inequalities that contains, possibly among others, all constraints (116)
for some family {Si : i ∈ I} of pairwise disjoint sets. Then the vector X produced by the Σ2-algorithm,
using the positive-semidefiniteness condition 7, satisfies (117).

Proof. Pick a pair i, k of distinct elements of I. Clearly,⋂
j∈Si

Yj ∩
⋂

j∈Sk

Yj

is an obstruction to that constraint (116) corresponding to the pair i, k.

Consequently, for any i ∈ I,
⋂

j∈Si
Yj is a wall enumerated by the algorithm, and hence a tier, and, by

condition (78) imposed by the algorithm in Step 4, we have

X[
⋂

j∈Si

Yj ] ≥
∑
j∈Si

X[Yj ] − |Si| + 1, (118)

and as a result ∑
i∈I

X[
⋂

j∈Si

Yj ] ≥
∑

j∈∪iSi

X[Yj ] − N + t. (119)

Suppose that in addition we could show that

1 ≥
∑
i∈I

X[
⋂

j∈Si

Yj ] (120)

holds. Then, using (119) we obtain the desired result. The rest of the proof shows that (120) holds.

Let U be the matrix produced by the algorithm. For i ∈ I,

U [F ,
⋂

j∈Si

Yj ] = U [
⋂

j∈Si

Yj ,F ] = U [
⋂

j∈Si

Yj ,
⋂

j∈Si

Yj ] = X[
⋂

j∈Si

Yj ],

by condition (6.1) imposed by the algorithm in Step 6. Further, for a pair i, k of distinct indices in I,

U [
⋂

j∈Si

Yj ,
⋂

j∈Sk

Yj ] = U [
⋂

j∈Sk

Yj ,
⋂

j∈Si

Yj ] = 0,

by condition (6.5) imposed by the algorithm. Finally, U [F ,F ] = 1.

Let µ ∈ RV be defined by

µβ =


−1, if β =

⋂
j∈Si

Yj for some i ∈ I,
1, if β = F ,
0, otherwise.

(121)

Then µT Uµ = 1−
∑

i∈I X[
⋂

j∈Si
Yj ]. Since U � 0 this concludes the proof.

In contrast to this result, we also have:

Lemma 4.30 Suppose |Si| = t for every i ∈ I. For t ≥ 3 the N+-rank and the Sherali-Adams rank of the
set-clique constraint are both at least t− 2.
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Proof sketch. This proof is similar to those in the Appendix. Note that the x vector has n = t2 coordinates
if the Si comprise all the variables. Define

T = (t− 2)tt−1 + 1, w1 =
t− 2

t
T−1 and w2 =

2
(t− 1)tt−1

T−1. (122)

Consider the function λ that assigns, to each v ∈ {0, 1}n the value λ(v) defined using the following rules:

(a) Suppose
∑

j∈Si
vj = t − 1, for t − 1 indices i ∈ I; and

∑
j∈Si

vj = t for the remaining index i. Then
λ(v) = w1.

(b) Suppose
∑

j∈Si
vj = t − 1, for t − 2 indices i ∈ I; and

∑
j∈Si

vj = t for each of the two remaining
indices i. Then λ(v) = w2.

(c) In all other cases we set λ(v) = 0.

Note that points of type (a) are feasible for system (116), while those of type (b) are not. Also, there are tt

points of type (a), and t(t−1)
2 tt−2 = (t−1)tt−1

2 points of type (b), and thus∑
v∈{0,1}n

λ(v) = 1. (123)

As a result, λ can be extended to a measure on {0, 1}n, as follows: for a subset A ⊆ {0, 1}n, define

λ(A) =
∑
v∈A

λ(v).

Further, if we define the vector x̄ ∈ Rn by

x̄j = λ({v ∈ {0, 1}n : vj = 1}) =
∑
vj=1

λ(v)

for 1 ≤ j ≤ n, then a quick calculation shows that x̄ satisfies all inequalities (116) but violates (117).

Further, x̄ can be lifted to a vector ȳ indexed by the subset lattice of {1, 2, · · · , n}. For p ⊆ {1, 2, · · · , n} set

ȳp =
∑

{λ(v) : vj = 1 ∀ j ∈ p},

and a calculation shows that ȳ (and the corresponding matrix U ȳ) satisfy the requirements for both the rank
(t− 3) N+ operator and the level (t− 3) Sherali-Adams operator. .

This result can be strengthened, see [Z03]. In particular, when |S1| = |S2| = bn
3 c, and |Si| = 1 for all other

i, then the N+ and Sherali-Adams rank of (117) is bn
3 c.

The results above can be generalized in a different way. Let G be an undirected graph. Suppose that to each
vertex i we assign a nonempty set of 0-1 variables xk, k ∈ Si, where the index sets Si are pairwise disjoint,
and we impose the constraints:

x(Si) + x(Sj) ≤ |Si|+ |Sj | − 1, ∀{i, j} ∈ E(G).

This construction generalizes the standard vertex-packing polyhedron. A question of interest concerns the
rank of the corresponding generalizations of classical valid inequalities. As we have shown above, the set-
clique inequality has unbounded N+-rank, but is guaranteed by the Σ2- algorithm. In a similar way one
obtains, using the obvious notation (see [Z03] for details), and using the appropriate set-generalization of
Lemma 1.5 of [LS91]:

Lemma 4.31 The set-odd-hole, set-odd-antihole, and set-odd-wheel inequalities are all guaranteed by the
Σ2-algorithm.
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4.6 Further remarks

Consider the feasible system F introduced in [CCH89]:∑
j∈S

xj +
∑
j /∈S

(1− xj) ≥ 1
2
, ∀S ⊆ {1, · · · , n} (124)

x ∈ {0, 1}n (125)

This system was was analyzed in [CCH89], [CD01], [GT01], [L01] to show that either n or n − 1 iterations
of various procedures (Sherali-Adams, the N+ operator) are required to prove that F is empty.

Here we will show that running the Σ3-algorithm proves the same result. We will denote by C(S) the
inequality (124) corresponding to the set S. Note that corresponding to C(S) there is the (unique) 0-small
obstruction ⋂

j∈S

Nj ∩
⋂
j /∈S

Yj

and conversely, any expression of this form is the 0-small obstruction to some constraint. In fact, each
expression of this form corresponds to an atom of the subset algebra of {0, 1}n and every atom gives rise to
such an expression; thus in a sense our result is not surprising.

Lemma 4.32 Suppose we run the Σ3-algorithm. Consider an expression of the form

γ =
⋂
j∈A

Nj ∩
⋂
j∈B

Yj

where A ∩B = ∅ and 0 < |A ∪B|.

(a) If |A ∪B| < n, γ is negation of order one of a wall enumerated by the algorithm.

(b) γ is a tier enumerated by the algorithm.

Proof. Assume without loss of generality that A 6= ∅ and let k ∈ A. (a) The wall derived from the obstruction
to C({1, 2, · · · , n} −B − {k}) and the obstruction to C(A− {k}) is⋂

j∈A−{k}

Nj ∩
⋂

j∈B∪{k}

Yj ,

and γ is a negation of order one of this wall. (b) In this case, γ =
(⋂

j∈A−k Nj ∩
⋂

j∈B Yj

)
∩Nk and by (a),

applied to the expression within parentheses, we are done.

Theorem 4.33 The linear system produced by the Σ3-algorithm is infeasible.

Proof. Let X̄ be the vector produced by the Σ3 and Ū the corresponding matrix. We will prove that any
expression of the form

γ =
⋂
j∈A

Nj ∩
⋂
j∈B

Yj

where A ∩B = ∅ is such that

X̄[γ] = 0. (126)

Pending the proof of this claim, this completes the proof of the theorem, because by picking any j with
1 ≤ j ≤ n, and using step 1 of the algorithm, we will get

X̄[F ] = X̄[Yj ] + X̄[Nj ] = 0,

and since the algorithm also enforces X̄[F ] = 1 (step 6) we have an infeasible system, as desired.

We will prove equation (126) by induction on n − |A ∪ B|. Suppose first that n = |A ∪ B|. Since γ is an
obstruction, the algorithm enforces equation (77) and we conclude X̄[γ] = 0.
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For the general inductive step, suppose we have proved the result for expressions with more symbols than
γ. Pick any index h /∈ A ∪B. Consider the expression

Yh

⋂
γ.

By Lemma 4.32 this expression is a wall, and thus a tier; in step 4(iii)(a) the algorithm will impose:

X̄[γ] = X̄[Yh

⋂
γ] + X̄[Nh

⋂
γ]

and by the inductive hypothesis we are done.

Note: Laurent [L01] has conjectured that the Lasserre rank of (124 - 125) is n− 1. Also see [L02].

One can also show that the inequality shown in [CD01] to have N+-rank n is implied by the Σ2 algorithm:

Lemma 4.34 Consider the region {x ∈ {0, 1}n :
∑

j xj ≥ 1
2}. The Σ2-algorithm proves

∑
j xj ≥ 1.

Proof. This follows from constraint (75) imposed in Step 2 of the algorithm.

5 Future work

One critical area that we plan to address concerns how to make our algorithms practical. A simple idea
would be to project our formulations to the space of the original variables. However, we prefer the use of
additional variables indexed by the subset algebra as they reveal useful structure of the problem. We note
that Haus, Köppe and Weismantel [HKW01] have introduced algorithms for solving general integer programs
which rely on explicitly adding new variables, though in a rather different form than our algorithms. Also,
we point out the result in Section 3.3 – a polynomial enlargement of a formulation can imply an exponential
number of facets, even without requiring positive-semidefiniteness (already known in a different context).

A better idea would be to apply column generation so as to implement the Σk-algorithm. More precisely:
the real difficulty in implementing the algorithm, even for small values of k, is that the number of variables
and constraints (though polynomially bounded) may be too large to actually ask a Linear Programming
solver to handle (let alone a semidefinite programming solver). However, the number may be small enough
that we can generate the formulation, at least in some implicit format. Column generation would then be
used to select those variables and constraints that we actually want to use. Roughly speaking, then, we
obtain algorithms that enlarge formulations by adding variables and constraints related to elements of the
algebra, but without necessarily following the formal hierarchies described in this paper.

Another topic that relates to this work concerns problems that are not, strictly speaking, integer pro-
gramming formulations in the standard sense, but are instead feasibility problems that are given by lists of
forbidden configurations, i.e., obstructions. The Σ-algorithms can be directly adapted to handle such prob-
lems, and, more generally, to satisfiability problems. See [Z03]. There is a clear and well-known connection
between set theory and logic, and, further, there is a rich literature on the connection between logic and
optimization, and on incorporating techniques of logic to integer programming. See for example [H00], also
see [BH02]. This topic appears to be underlaid by Balas’ work on disjunctive programming, but we have not
found in the literature prior work relating logic to, in particular, the combination of the Lovász-Schrijver
technique of matrix lifting and the use of variables indexed by the subset algebra.

Finally, a question of interest concerns the relationship between our cuts and Gomory cuts. This question
has some substance since it is known that Gomory mixed-integer cuts are equivalent to general disjunctive
cuts. See [CL01b].

Acknowledgment We thank Monique Laurent and Bruce Shepherd for many useful comments. This paper
was partially written at Bell Laboratories, whose support to us is gratefully acknowledged.
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Appendix – Circulant matrices and set covering

In this section we consider a set-covering problem defined by a full-circulant matrix, i.e., a feasible region of
the form ∑

j 6=k

xj ≥ 1, for each k, 1 ≤ k ≤ n (127)

x ∈ {0, 1}n

for n > 1, and show that the valid inequality ∑
j

xj ≥ 2 (128)

has rank at least n− 3 for a procedure stronger than the Sherali-Adams and the N+ procedures combined.

First, we review the Sherali-Adams procedure. Suppose we have a feasible region of the form

Ax ≥ b (129)
x ∈ {0, 1}n.

For t ≥ 0, the level t Sherali-Adams operator is obtained as follows. For each polynomial of the form

f(Q, P ) .=
∏
j∈Q

xj ·
∏
j∈P

(1− xj)

where Q and P are disjoint subsets of {1, 2, · · · , n} and |Q|+ |P | = t, we multiply each constraint r of (129)
by f(Q,P ), obtaining a (valid) polynomial inequality of the form

(arx− br)f(Q,P ) ≥ 0. (130)

(where ar denotes the rth row of A). In addition, we write the (valid) inequality

f(Q, P ) ≥ 0. (131)

Next, we linearize the constraints (130) and (131): we replace x2
j with xj for each j, and then each product

of the form
∏

j∈H xj (H ⊆ {1, 2, · · · , n}) is replaced by a new variable y(H) (including the cases H = {j}
for some j).

Clearly, projecting the feasible region to the space of the x variables yields a valid relaxation. It is shown in
[SA90] that increasing values of t yield stronger relaxations. In [L01] it is also shown that each level of the
Sherali-Adams operator is at least as strong as the corresponding iteration of the Lovász-Schrijver operator
N (though not N+), and several known results imply that with t = n we obtain the convex hull of the
feasible region.

The following equivalent restatement of the Sherali-Adams operator will be useful below. This follows from
the fact that the linearization step imposes x2

j = xj , i.e., xj(1− xj) = 0 for all j. This restatement includes
some redundant steps, included to make the presentation easier, and is essentially given in [SA90], in any
case.

Step S1. For each j, 1 ≤ j ≤ n create a new variable x̄j , and add the new constraint

xj + x̄j = 1. (132)

Step S2. For each polynomial of the form

g(Q,P ) .=
∏
j∈Q

xj ·
∏
j∈P

x̄j

where Q and P are disjoint subsets of {1, 2, · · · , n} and |Q|+ |P | = t−1, we multiply each constraint of type
(129) or (132) by g(Q,P ), obtaining a (valid) polynomial inequality of the form

(αT x− α0)g(Q,P ) ≥ 0. (133)
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(note: in the case of (132) this is an equation). In addition, we write the (valid) inequality

g(Q,P ) ≥ 0. (134)

Step S3. Linearize the constraints (133) and (134) by setting x2
j = xj , x̄2

j = x̄j and xj x̄j = 0 for all j,
and then replacing each product of the form

∏
j∈K xj

∏
j∈L x̄j (K and L disjoint subsets of {1, 2, · · · , n}

with possibly |K ∪ L| = 1) with a new variable variable w(K, L). [Note: In the case of (134) we simply get
w(Q,P ) ≥ 0.]

We leave it to the reader to verify that indeed this is an equivalent restatement of the Sherali-Adams level
t operator. Note: the variables y(H) in the standard Sherali-Adams operators correspond to the variables
w(H, ∅) in this new formulation.

Now we return to the full-circulant set-covering example (127). Denote En = {1, 2, · · · , n}. We will show
that (128) has Sherali-Adams rank (at least) n − 3. In order to do this, we have to produce nonnegative
values w(Q, P ) for each pair of disjoint subsets Q, P of En with |Q∪P | ≤ n−3 which satisfy the constraints
imposed in Steps S2 and S3, and which however violate (128). In detail, this is done as follows.

Consider a fixed pair of disjoint subsets Q, P of En with |Q∪P | ≤ n−3. Then when we multiply xj+x̄j−1 = 0
times g(Q,P ) ≥ 0 and linearize we get, when j /∈ Q ∪ P ,

w(Q ∪ j, P ) + w(Q,P ∪ j)− w(Q,P ) = 0, (135)

(where we abbreviate {j} as j) and if either j ∈ Q or j ∈ P we get the identity w(Q, P ) = w(Q, P ). When
we multiply

∑
j 6=k xj − 1 ≥ 0 times g(Q,P ) and linearize, we get three different cases depending on k.∑

j∈Q−k

w(Q,P ) +
∑

j∈En−(Q∪P )

w(Q ∪ j, P ) − w(Q,P ) ≥ 0, if k ∈ Q (136)

∑
j∈Q

w(Q,P ) +
∑

j∈En−(Q∪P )

w(Q ∪ j, P ) − w(Q,P ) ≥ 0, if k ∈ P (137)

∑
j∈Q

w(Q,P ) +
∑

j∈En−(Q∪P∪k)

w(Q ∪ j, P ) − w(Q,P ) ≥ 0, if k ∈ En − (Q ∪ P ). (138)

Note: there is no constraint (136) when Q = ∅. In addition, we require w ≥ 0, and

w(∅, ∅) = 1. (139)

These constraints guarantee that the vector w satisfies the level t Sherali-Adams constraints. In order to
show that the vector violates (128), we also require∑

j

w(j, ∅) < 2, (140)

The next series of Lemmas shows how to construct such values in a symmetric way, i.e., w(Q,P ) = w(Q′, P ′)
if |Q| = |Q′| and |P | = |P ′|.

Lemma 5.1 Suppose there exist nonnegative values z(q, p), for every pair q, p of nonnegative integers so
that:

z(q + 1, p) + z(q, p + 1)− z(q, p) = 0 if q + p ≤ n− 1 (141)
(q − 2)z(q, p) + (n− q − p)z(q + 1, p) ≥ 0 if q + p ≤ n− 3 and q > 0 (142)

(n− p− 1)z(1, p)− z(0, p) ≥ 0 if p ≤ n− 3 (143)
z(0, 0) = 1 (144)

nz(1, 0) < 2. (145)

Then there is a set of nonnegative values g(Q,P ) that satisfy (135), (136), (137), (138), (139) and (140).
In addition, (135) holds for all disjoint Q,P with |Q|+ |P | ≤ n− 1.
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Proof. For each pair of disjoint subsets Q, P of En with |Q ∪ P | ≤ n− 3, set

w(Q,P ) = z(|Q|, |P |).

Then (135) follows from (141), (139) from (144) and (140) from (145). It remains to show that (136) - (138)
hold.

In order to show this, consider a pair Q,P , and write q = |Q| and p = |P |. Assume first that q > 0. We
have to show that

(q − 1)z(q, p) + (n− q − p)z(q + 1, p) − z(q, p) ≥ 0 (146)

qz(q, p) + (n− q − p)z(q + 1, p) − z(q, p) ≥ 0 (147)

qz(q, p) + (n− q − p− 1)z(q + 1, p) − z(q, p) ≥ 0 (148)

corresponding, respectively to (136), (137) and (138). Clearly, (146) is more binding than (147), and (146)
is more binding than (148) because, by (135), z(q, p) ≥ z(q +1, p). Hence, (146), (147) and (148) hold if and
only if (146) does; but this is equivalent to (142). The case q > 0 is completed.

Suppose next that q = 0. Then (136) is not a constraint, and corresponding to (137) and (138) we have to
satisfy

(n− p)z(1, p) − z(0, p) ≥ 0, and (149)

(n− p− 1)z(1, p) − z(0, p) ≥ 0. (150)

and this holds because of (143). The proof is completed.

Now we will set about constructing values z(q, p) that satisfy the hypotheses of Lemma 5.1. In fact, we
will define z(q, p) for all for all q, p with q + p ≤ n. This is done as follows.

Define

κ =
2

n2 − n + 2
(151)

and set:

z(q, p) = 0, ∀ q ≥ 3 and p ≤ n− q (152)

z(2, p) = κ, ∀ p ≤ n− 2 (153)

z(1, p) = (n− 1− p)κ, ∀ p ≤ n− 1 (154)

z(0, p) =
(

(n− p)(n− 1− p)
2

+ 1
)

κ, ∀ p ≤ n (155)

Now we have:

Lemma 5.2 The choice of values z as in (151 - 155) satisfies the conditions of Lemma 5.1.

Proof. We show first that (141) and (142) hold. These are homogeneous inequalities, hence satisfied for
q ≥ 3 by (152).

Suppose next that q = 2. If p ≤ n− 3 then z(3, p) = 0 and z(2, p + 1) = κ = z(2, p), hence (141) holds,
and (142) is trivial.

Next, assume q = 1. Then z(1, p) = (n− 1− p)κ = (n− 2− p)κ+κ = z(1, p+1)+ z(2, p), so (141) holds.
Also, (142) is equivalent to −(n− p− 1)κ + (n− p− 1)κ ≥ 0, which is true.
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Finally, consider the case q = 0. Then (141) is equivalent to:

(n− p− 1) +
(n− p− 1)(n− 2− p)

2
+ 1 =

(n− p)(n− 1− p)
2

+ 1, (156)

which is true by inspection.

In order to show that (143) holds, notice that it is equivalent to

(n− p− 1)2 ≥ (n− p)(n− 1− p)
2

+ 1 (157)

=
(n− p− 1)2 + (n− p + 1)

2
(158)

which holds since p ≤ n− 3.

Next, note that z(0, 0) =
(

n(n−1)
2 + 1

)
κ = 1, so (144) holds.

Finally,

nz(1, 0) = n(n− 1)κ < 2 (159)

by definition of κ, hence (145) holds, as well.

Note: if we set x̄j = z(1, 0) = (n− 1)κ we obtain the fractional vector that fails to satisfy (128).

As a corollary of the above Lemmas we can now state:

Theorem 5.3 The Sherali-Adams rank of constraint (128) is at least n− 3.

In fact, there is more than can be said about this inequality. As shown in [LS91], Theorem 5.3 implies
that the N -rank of (128) is at least n − 3. But how about its N+-rank? In order to answer this question,
consider the 2n × 2n-matrix Ww, whose rows and columns are indexed by subsets of En, and whose I, J
entry is defined by:

Ww
I,J = w(I ∪ J, ∅). (160)

where the w are the values we construct in Lemma 5.1 using the z values we described above. We will prove
below that Ww � 0. Pending the proof of this fact, we can make some observations.

Consider a lifting procedure, denoted by Ŝ, which is essentially like the Sherali-Adams procedure, with an
additional positive semidefiniteness requirement. Unlike the standard Sherali-Adams procedure, which at
level t will create variables y(H) for each subset H ⊆ En of cardinality min{t + 1, n}, Ŝ creates variables yH

for every subset H ⊆ En. Specifically, at level t,

(i) The Sherali-Adams level t constraints are imposed on y (thus, this only concerns subsets of cardinality
t and min{t + 1, n}.

(ii) Denoting by W y the 2n × 2n-matrix whose I, J entry is yI∪J , we require W y � 0.

Clearly, Ŝ is at least as strong as the Sherali-Adams procedure. In fact, with a little work one can show that
Ŝ is at least as strong as n − 3 rounds of the Lovász-Schrijver operator N+. This follows because W y � 0
implies that several submatrices of W y are also positive semi-definite (see, for example, [L01], Lemma 5).

Thus, Ŝ is at least as strong as Sherali-Adams and N+ combined. In fact, it is far stronger: it solves vertex-
packing problems at level 1 [Z03]. Moreover, one can also similarly show that our Lemmas above imply that
at least n − 3 rounds of Ŝ are needed to satisfy (128). We conjecture that the Lasserre-rank of (128) also
grows as a function of n. Also, note that Letchford [Le01] describes a disjunctive procedure (on the original
space of variables) that proves (127) in the full-circulant example.

Now we return to the proof of Ww � 0. We will provide two proofs of this fact. The first one is actually
longer, but we also feel it is more revealing.

Theorem 5.4 Ww � 0.
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Proof. We will use Theorem 2.2. Consider abstract events Ij , 1 ≤ j ≤ n, and a probability measure Υ,
defined as follows: on an atom

α = (
⋂
j∈Q

Ij) ∩ (
⋂

j∈En−Q

Īj)

we set

Υ(α) = w(Q,En −Q), (161)

and then we extend Υ to the subset-algebra generated by the Ij (i.e., for any event A, Υ(A) is the sum of
Υ(α), over all atoms α contained in A).

We claim that for each Q ⊆ En,

Υ(
⋂
j∈Q

Ij) = w(Q, ∅), (162)

from which the theorem follows, by Theorem 2.2. In order to prove this, we will prove the stronger statement
that for disjoint subsets Q, P of En,

Υ(
⋂
j∈Q

Ij ∩
⋂
j∈P

Īj) = w(Q, P ). (163)

This claim will be proved by induction on t = n−|Q|−|P |. If t = 0 then |P | = En−Q and
⋂

j∈Q Ij∩
⋂

j∈P Īj

is an atom; consequently (163) follows by definition (161).

Suppose now that t > 0, and let k ∈ En −Q− P . Then

Υ(
⋂
j∈Q

Ij ∩
⋂
j∈P

Īj) = Υ(
⋂

j∈Q∪k

Ij ∩
⋂
j∈P

Īj) + Υ(
⋂
j∈Q

Ij ∩
⋂

j∈P∪k

Īj) (164)

= w(Q ∪ k, P ) + w(Q,P ∪ k) (by induction) (165)
= w(Q,P ) (by (135)) (166)

as desired. The theorem is proved.

Theorem 5.5 Ww � 0.

Proof. Consider the vector x̄ ∈ Rn where x̄j = z(1, 0) = (n − 1)κ for all j, which fails to satisfy (128), as
shown in the proof of Lemma 5.2. Let L denote the subset lattice of En. By the results described in Section
2 (in particular, consider eqs. (5) and (6)) the theorem will follow if we can show that x̄ can be lifted to a
vector y ∈ RL, such that y is a convex combination of zeta vectors for L, i.e.,

y =
∑
r∈L

αrζ
r,

where α ≥ 0 and
∑

r∈L αr = 1, and such that W y = Ww.

In order to achieve this end, we choose y in the obvious way: for H ⊆ En, set yH = w(H, ∅). Consider
the following vector α:

1. α∅ = κ.

2. For every pair p = {i, j} with i 6= j we set αp = κ.

Note that

yH =


0 if |H| > 2
κ if |H| = 2

(n− 1)κ if |H| = 1
1 if H = ∅

(167)

and the same holds true for
∑

r∈L αrζ
r: the first two statements trivially because of our choice of α, the

third because each singleton is contained in exactly n−1 pairs, and lastly
∑

r∈L αr = (1+n(n−1)/2)κ = 1.

A interesting question concerns the Lasserre rank of (128). Part of the difficulty here is that, despite the
characterization in [L01], it is still nontrivial to provide a simple description of what the Lasserre algorithm
actually does. Our numerical experiments suggest that the Lasserre rank of (128) is at least n/4, and we
have produced examples where it is larger than 2.
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