
CORC Report TR-2003-03

Concurrent Flows in O∗(1
ε) iterations

Daniel Bienstock (dano@columbia.edu) and Garud Iyengar (garud@columbia.edu)
Columbia University
New York, NY 10027

August 15, 2003 – Version 2004-04-08

Abstract

We adapt a method proposed by Nesterov [N03] to obtain an algorithm that computes
ε-optimal solutions to packing problems by solving O∗(ε−1

√
Kn) separable convex quadratic

programs, where K is the maximum number of nonzeros per row and n is the number of
variables. We also show one can approximate the solution of the quadratic program to any degree
of accuracy by the solution of an appropriately defined piecewise-linear program. For the special
case of the maximum concurrent flow problem with rational capacities and demands we obtain
an algorithm that computes an ε-optimal flow by solving O∗(ε−1K3/2M

√
N (log 1

ε +LU +LD))
shortest path problems, where K is the number of commodities,M is the number of arcs, N is
the number of nodes, and LU and LD are, respectively, the number of bits needed to store the
capacities and demands. In contrast, previous algorithms required Ω(ε−2) iterations.

1 Introduction

Let A = [a1, . . . , a
T
m]T be an m × n 0-1 matrix. Let K denote the maximum number of non-zeros

in any row of A. Let Q ⊆ <n+ be a closed convex set. We are interested in approximately solving
the min-max problem

λ∗A,Q = min
{
λ(x) .= max

1≤i≤m
{aTi x} : x ∈ Q

}
(1)

We show how to employ a technique due to Nesterov [N03] to obtain, for any given ε ∈ (0, 1), a
point x̂ ∈ Q with λ(x̂) ≤ (1 + ε)λ∗A,Q, by solving at most

O(ε−1
√
Kn logm)

convex, separable quadratic programs over sets of the form

Q(λU) .= {x ∈ Q : 0 ≤ xj ≤ λU , 1 ≤ j ≤ n}, (2)

where λU > 0.
The maximum concurrent flow problem can be stated in the form (1). Here we are given a graph
G with N nodes and M edges, where each edge e has a positive capacity ue, and a list of K
commodities that need to be routed. The objective of the problem is to find a routing that
minimizes the maximum load on any edge. Let fk,e denote the amount of flow of commodity k

1

on edge e. Then the load on edge e is given by (
∑
k fk,e)/ue. We show that we can compute an

ε-optimal flow by solving

O∗
(
ε−1K3/2M

√
N
(

log
1
ε

+ LU + LD

))
shortest path problems, where LU and LD denote, respectively, the number of bits needed to store
the capacities and demands. In contrast, previous algorithms required Ω(ε−2) iterations.
Shahrokhi and Matula [SM91] presented an algorithm for the case of uniform capacities (i.e., equal
capacity for all edges). Their method seeks to approximately minimize an exponential potential
function of the form ∑

ij

eα(
∑

k
gke).

It is shown in [SM91] that, given ε ∈ (0, 1), one can choose α so that (approximately) minimizing
the potential function will yield a flow whose maximum load is at most 1 + ε times the optimum
(i.e., an ε-optimal flow). The algorithm given in [SM91] is, roughly, a first-order procedure to
minimize the potential function, and the number of iterations required to compute an ε-optimal
flow is most O(ε−7) times a polynomial in the number of nodes and edges. Each iteration consists
of a shortest-path computation, which is used to partially reroute a commodity.
[SM91] spurred a great deal of research, which generalized the techniques to broader packing and
covering problems, gradually reduced the dependence of the iteration count on ε to finally obtain
ε−2, and simplified the overall approach. See [KPST90, LMPSTT91, GK94, GK95, PST91, R95,
GaKo98, F00] for details. All of these algorithms rely, sometimes implicitly, on the exponential
potential function, and can be viewed as first-order methods. [VG97] uses a logarithmic potential
function. [BR02] shows that the flow deviation algorithm in [FGK71] yields an O(ε−2) algorithm;
this time using a rational barrier function. For an overview of potential function approaches,
see [B02].
Many of the methods in the prior literature can be applied to general packing problems. These are
of the form:

λ∗A,Q = min
x∈Q

max
1≤i≤m

{aTi x},

where as before Q ⊆ <n+ is a closed convex set, but now A is an m × n matrix with nonnegative
entries. The packing problem can be reduced to one of the form (1), as follows. Let N be the
number of nonzeros in A. For each entry aij > 0 we introduce a new variable yij and a new
constraint:

yij − aijxij = 0. (3)

Let
P =

{
y ∈ <N : ∃x ∈ Q such that (3) holds for all aij > 0

}
.

It follows that
λ∗A,Q = min

y∈P
max

1≤i≤m

∑
j :aij>0

yij .

Furthermore, P is closed convex, and because of (3), a convex separable quadratic program over
P reduces to one over Q. Hence, for any ε ∈ (0, 1) one can compute a point x̂ ∈ Q with λ(x̂) ≤
(1 + ε)λ∗A,Q, in at most O(ε−1

√
N logm) iterations.

A common feature to all of the prior algorithms is that they can be viewed, as (sometimes implicit)
Frank-Wolfe [FW56] algorithms, in that they iterate by solving linear optimization problems over Q

2

(a shortest path problem or a min-cost flow problem in the case of multicommodity flow problems),
and take convex combinations of iterates. [KY98] proved an O(ε−2) lower bound for Frank-Wolfe
algorithms for problem (1), under appropriate conditions. The algorithms described in this paper
bypass the requirements needed for the analysis in [KY98] to hold: in particular, we dynamically
change the bounds on the variables. This feature will, in general, result in iterates in the interior
of the set Q. This is the particular detail that renders the bound in [KY98] invalid.
While some of the key ideas in this paper are derived from those in [N03], the paper is self-contained.
It is quite possible that in our iteration bound, some of the constants and the dependency on m, n
and K can be improved, with a somewhat more complex analysis.

2 Outer loop: binary search

In this section we abbreviate λ∗A,Q as λ∗. First, one can obtain, in polynomial time, an upper bound
λU and a lower bound λL for λ∗ that differ by at most a factor of O(min {m,K}) (see [B02, GK94]
for details). Next, the bounds are refined using a binary search procedure introduced in [GK94]
(see [B02] for an alternate derivation). Here, ABSOLUTE(Q,A,λU , δ) denotes any algorithm that
returns an x ∈ Q such that λ(x) ≤ λ∗ + δ, i.e. an x that has an absolute error less than δ.

BINARY SEARCH

Input: values (λL, λU) with λL ≤ λ∗ ≤ λU ≤ 2 min{m,K})λL
Output: ŷ ∈ Q such that λ(y) ≤ (1 + ε)λ∗

while (λU − λL) ≤ ελL do

set δ = 1
3(λU − λL)

set x̂← ABSOLUTE(Q,A, λU , δ)
if λ(x̂) ≥ 1

3λ
L + 2

3λ
U set λL ← 2

3λ
L + 1

3λ
U

else set λU ← 1
3λ

L + 2
3λ

U

return x̂

Thus, our task is to supply the appropriate algorithm ABSOLUTE. In Section 3 we show:
Theorem: There exists an algorithm ABSOLUTE(A,Q, λU , δ) that computes, for any δ ∈
(0, λU), an x̂ ∈ Q with

λ(x̂) ≤ λ∗ + δ,

by solving O
(√

Kn logm λU

δ

)
separable convex quadratic programs over Q(λU).

As a consequence, we have the following complexity bound for the above BINARY SEARCH
procedure.

Corollary 2.1 The complexity of the BINARY SEARCH procedure is O(ε−1Cq
√
Kn logm) plus

a polynomial in K, n and m, where Cq is the cost of solving a convex separable quadratic program
over Q.

Proof: It is easy to check that in each iteration the gap (λU − λL) is decreased by a factor of
2/3. Thus, the total number of iterations H = O(log(ε/mK)) and the total number of quadratic
programs solved by BINARY SEARCH is

√
Kn logm

H∑
h=0

(
3
2

)h
.

3

The result follows from the fact that the last term dominates the sum.

3 Inner loop: ABSOLUTE(A,Q, λU , δ) algorithm

In this section we describe the ABSOLUTE(A,Q, λU , δ) algorithm. We construct this algorithm
using techniques from [N03].
Define Q̄ ∈ <2n as follows.

Q̄ =
{

(x, y) ∈ <2n : x ∈ Q, yj =
xj
λU

and yj ≤ 1 (1 ≤ j ≤ n)
}
.

Let P denote the projection of Q̄ to the space of the y variables, that is

P =
{
y ∈ <n : (x, y) ∈ Q̄ for some x

}
.

If Q is a polyhedron then so are Q̄ and P . Moreover, P ⊆ [0, 1]n. Let (with a slight abuse of
notation)

λ∗P = min{λ(y) = max
1≤i≤m

{aTi y} : y ∈ P}.

Then it follows that
λ∗P =

λ∗

λU
≤ 1.

In this section we describe an algorithm that, for any γ ∈ (0, 1), computes ŷ ∈ P , with λ(ŷ) ≤
λ∗(P) + γ, by solving O(γ−1

√
Kn logm) separable convex quadratic programs over P . Note

that these programs reduce to separable convex quadratic programs over Q(λU) (and in the case
of multicommodity flow problems, these break up into separable convex quadratic min-cost flow
problems over each commodity). Choosing γ = δ

λU
will accomplish the objective of this section.

3.1 Potential reduction algorithm

For the purposes of this section, we assume that we are given a 0-1, m× n matrix A with at most
K nonzeros per row, and a (nonempty) closed convex set P ⊆ [0, 1]n, and a constant γ ∈ (0, 1).
Furthermore, it is known that λ∗P ≤ 1.
Define the potential function ([GK94], [PST91]) Φ(x) as follows:

Φ(x) .=
1
α

ln

(∑
i

eαa
T
i x

)
,

where α = 2 lnm
γ . Let Φ∗ = min{Φ(x) : x ∈ P}. It is easy to show that for all x ∈ P

λ(x) ≤ Φ(x) ≤ λ(x) +
lnm
α

. (4)

(See [GK94] for details). Consequently, we only need to compute x ∈ P with Φ(x) ≤ Φ∗ + γ/2.
Notation: In what follows, to avoid confusion, we will occasionally use the 〈, 〉 notation to indicate
inner product.

4

ALGORITHM N

Input: P ⊆ [0, 1]n, A, α = lnm
γ , L = γ−1

√
8Knln(m)

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗P + γ
choose x0 ∈ P . set t← 0.
while (t ≤ L) do

set gt = ∇(Φ(xt)).
set yt ← argmin

{
Kα
2

∑n
j=1(xj − xtj)2 +

〈
gt, x− xt

〉
: x ∈ P

}
set Let zt ← argmin{St(x) : x ∈ P} where

St(x) =
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(xj − x0
j)

2 +
2

(t+ 1)(t+ 2)

t∑
h=0

(h+ 1)
[
Φ(xh) +

〈
gh, x− xh

〉]
.

set xt+1 ← 2
t+3z

t + t+1
t+3y

t, t← t+ 1.

return yL

The following result is established in Section 3.2.

Theorem 3.1 For any t ≥ 0, Φ(yt) ≤ St(zt).

Theorem 3.1 implies the following corollary.

Corollary 3.2 Φ(yL) ≤ Φ∗ + γ/2.

Proof: Fix t ≥ 0. Let x∗ = argmin{Φ(x) : x ∈ P}. Theorem 3.1 implies that

Φ(yt) ≤ St(zt) ≤ St(x∗) =
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(x∗j−x0
j)

2+
2

(t+ 1)(t+ 2)

t∑
h=0

(h+1)
[
Φ(xh) +

〈
gh, x

∗ − xh
〉]
.

Since Φ is convex, it follows that Φ(xh) +
〈
gh, x

∗ − xh
〉
≤ Φ∗, ∀0 ≤ h ≤ t. Thus, we have that

Φ(yt) ≤ 2Kα
(t+ 1)(t+ 2)

n∑
j=1

(x∗j − x0
j)

2 + Φ∗
(

2
(t+ 1)(t+ 2)

t∑
h=0

(h+ 1)

)
,

≤ 2Knα
(t+ 1)(t+ 2)

+ Φ∗ =
4Kn lnm

γ(t+ 1)(t+ 2)
+ Φ∗.

Consequently, Φ(yt)− Φ∗ ≤ γ/2 for t ≥ L =
√

8Kn lnm
γ .

3.2 Proof of Theorem 3.1

The following lemma follows from considering the second-order Taylor expansion of Φ restricted to
the line-segment from x to y.

Lemma 3.3 For x, y ∈ P , Φ(y) ≤ Φ(x) + [∇(Φ(x))]T (y − x) + Kα
2

∑
j(yj − xj)2.

5

The rest of the proof of Theorem 3.1 closely mirrors the development in Section 3 of [N03]. The
proof is by induction on t. For t = 0, note that

S0(z0) = Kα
n∑
j=1

(z0
j − x0

j)
2 + Φ(x0) +

〈
g0, z

0 − x0
〉

≥ Kα

2

n∑
j=1

(z0
j − x0

j)
2 + Φ(x0) +

〈
g0, z

0 − x0
〉

≥ Kα

2

n∑
j=1

(y0
j − x0

j)
2 + Φ(x0) +

〈
g0, y

0 − x0
〉
≥ Φ(y0). (5)

The first inequality in (5) follows by definition of y0, and the second by Lemma 3.3.
Suppose now that we have proved the result for t, and we wish to prove it for t+ 1. Note that

St+1(x) =
(t+ 1
t+ 3

)
St(x) +

(2
t+ 3

) [
Φ(xt+1) +

〈
gt+1, x− xt+1

〉]
.

Since ∇2St = 4Kα
(t+1)(t+2)I, and St is minimized at zt, we obtain

St+1(x) ≥
(t+ 1
t+ 3

)
St(zt) +

2Kα
(t+ 2)(t+ 3)

∑
j

(xj − ztj)2 +
2

t+ 3

[
Φ(xt+1) +

〈
gt+1, x− xt+1

〉]
. (6)

By induction, St(zt) ≥ Φ(yt) ≥ Φ(xt+1)+
〈
gt+1, y

t − xt+1
〉

(by convexity of Φ). Substituting in (6),

St+1(x) ≥ Φ(xt+1) +
2Kα

(t+ 2)(t+ 3)

∑
j

(xj − ztj)2 +
〈
gt+1,

2
t+ 3

x+
t+ 1
t+ 3

yt − xt+1
〉

≥ Φ(xt+1) +
2Kα

(t+ 3)2

∑
j

(xj − ztj)2 +
〈
gt+1,

(2
t+ 3

)
x+

(t+ 1
t+ 3

)
yt − xt+1

〉

= Φ(xt+1) +
Kα

2

∑
j

((2
t+ 3

)
xj +

(t+ 1
t+ 3

)
ytj − xt+1

j

)2

+
〈
gt+1,

(2
t+ 3

)
x+

(t+ 1
t+ 3

)
yt − xt+1

〉
, (7)

where (7) is obtained by substituting (2
t+3)zt = xt+1 − (t+1

t+3)yt. Note that for x ∈ P , (2
t+3)x +

(t+1
t+3)yt ∈ P as well. Thus, the expression in (7) is lower bounded by:

Φ(xt+1) + min
y∈P

Kα2 ∑
j

(
yj − xt+1

j

)2
+
〈
gt+1, y − xt+1

〉 =

Φ(xt+1) +
Kα

2

∑
j

(
yt+1
j − xt+1

j

)2
+
〈
gt+1, y

t+1 − xt+1
〉
, (8)

by definition of yt+1. By Lemma 3.3, the quantity in (8) is at least Φ(yt+1), as desired. This
concludes the proof.

6

4 Piecewise-linear approximations

Algorithm N requires that we solve a separable quadratic programs over P . In this section we
describe a general method for using piecewise-linear functions to approximate separable convex
quadratics with arbitrarily small error. This method is derived from one given in Minoux [M84],
Let 0 < σ and w ∈ R. Define a continuous piecewise-linear approximation Lσ,w(v) to the function
1
2(v − w)2 (valid for v ≥ 0) as follows.

Lσ,w(v) .=
1
2
q2σ2 +

w2

2
− wv +

(
q +

1
2

)
σ(v − qσ), ∀v ∈ [qσ, (q + 1)σ), q ∈ Z+.

Note that for v = qσ, q ∈ Z, the derivative L′σ,w(v) is not defined. Instead, we can define the

left-derivative L−σ,w(v) =
(
q − 1

2

)
σ and the right-derivative L+

σ,w(v) =
(
q + 1

2

)
σ. On the other

hand, v ∈ (qσ, (q + 1)σ), q ∈ Z, the derivative of Lσ,w(v) equals
(
q + 1

2

)
σ, and for convenience we

say this is the common value of the left- and right-derivatives. The following properties are easy
to obtain.

Lemma 4.1 For any σ > 0 and w,

(i) For any integer q ≥ 0, Lσ,w(qσ) = 1
2(qσ − w)2,

(ii) For any v ∈ R, 1
2(v − w)2 ≤ Lσ,w(v) ≤ 1

2(v − w)2 + σ2

8 ,

(iii) At any v ∈ R, v − w ≤ L+
σ,w(v) ≤ v − w + σ

2 and v − w − σ
2 ≤ L

−
σ,w(v) ≤ v − w.

4.1 Approximate Algorithm N

The following approximate version of Algorithm N uses a separate linear approximation for each
quadratic term and possibly different σj ∈ (0, 1) for each variable xj .

ALGORITHM Nσ

Input: P ⊆ [0, 1]n, A, α = lnm
γ , L = γ−1

√
10Knln(m), σj ≤ 2−p, p > 3

2 ln(Kn ln(m))+3 ln(1
γ)

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗P + γ
choose x̂0 ∈ P . set t← 0.
while (t ≤ L) do

set gt = ∇(Φ(x̂t)).
set ŷt ← argmin

{
Kα

∑n
j=1 Lσj ,x̂tj (xj) +

〈
gt, x− x̂t

〉
: x ∈ P

}
set ẑt ← argmin{Ŝt(x) : x ∈ P} where

Ŝt(x) =
4Kα

(t+ 1)(t+ 2)

n∑
j=1

Lσj ,x0
j
(xj)

+
2

(t+ 1)(t+ 2)

t∑
h=0

(h+ 1)
[
Φ(x̂h) +

〈
gh, x− x̂h

〉]
.

set x̂t+1 ← 2
t+3 ẑ

t + t+1
t+3 ŷ

t, t← t+ 1.

return yL

7

Algorithm Nσ replaces the quadratic objectives in Algorithm N with appropriate piecewise-linear
approximations Lσj ,x̂tj . In view of Lemma 4.1, we would expect that Algorithm Nσ successfully
emulates Algorithm N if the σj are small enough. In the Appendix we provide a proof of the
following fact:

Theorem 4.2 For any t ≥ 0, Φ(ŷt) ≤ Ŝt(ẑt) + 3Kα
(∑t

h=1
1
h2 + t

)
(
∑
k σj).

Here we use this result to prove the correctness of Algorithm Nσ.

Corollary 4.3 Algorithm Nσ Φ(yL) ≤ Φ∗ + γ/2.

Proof: Suppose σj ≤ 2−p. Using Theorem 4.2 and Lemma 4.1(ii), we obtain

Φ(ŷt) ≤ Φ∗ +
2Knα

(t+ 1)(t+ 2)
+ 3Kα

(
t∑

h=1

1
h2

+ t

)
n2−p, (9)

< Kαn
(
2 + 3(2 + t)2−p

)
. (10)

Suppose t ≥ 2 and choose p ≥ 3 ln t. Then Φ(ŷt)−Φ∗ ≤ 5Kαn
t2

. A simple calculation now establishes
the result.

5 Concurrent flows with rational capacities and demands

In this section we focus on the maximum concurrent flow with rational capacities and show that
the piecewise linear approximation introduced in Section 4 can be solved efficiently for this special
case.
Suppose we have a network G with N nodes, M edges and K commodities. We assume that the
capacity ue of every edge e is a positive rational. The demand vector dk of every commodity k
is also assumed to be a rational vector. Scaling capacities and demands by a common positive
constant does not change the value of the problem, and therefore we can assume that all capacities
and demands are integers. Let fk,e denote the flow associated with commodity k on edge e and let
fk denote theM-vector with entries fk,e. Then the maximum concurrent flow problem is given by

λ∗ = min λ,

s.t.
∑K
k=1 fk,e ≤ λue, ∀k, e,

Nfk = dk, fk ≥ 0, k = 1, . . . ,K,

where N denotes the node-edge incidence matrix of the network. Let F = {f : Nfk = dk, fk ≥
0, k = 1, . . . ,K} denote the polyhedron of feasible flows.
In order to describe our piecewise-linear approach, we next review how the procedures we described
in the prior sections would apply to the concurrent flow problem.

Step 1: Define new scaled variables gk,e = fk,e/ue. This scaling leaves the objective unchanged.
The constraints of the problem become∑

k gk,e ≤ λ, e = 1, . . . ,M,
g ∈ Q = {g ∈ RK×M : ∃f ∈ F with gk,e = fk,e/ue ∀k, e}

The problem is now in the canonical form described in Section 1, with m = M and
n = KM.

8

Step 2: After i iterations of BINARY SEARCH introduced in Section 2, we have lower and
upper bounds λL and λU to λ∗, with

λU − λL

λL
≤

(
2
3

)i
O(min{m, k}). (11)

Then, writing δ = 1
3(λU − λL), we seek a vector g with maxe

∑
k gk,e ≤ λ∗ + δ – having

computed this vector we either reset λL ← λL + δ or λU ← λU − δ.

Step 3: Procedure ABSOLUTE computes the vector g needed in Step 2 by solving the scaled
optimization problem

min λ,

s.t.
∑K
k=1 xk,e ≤ λ, e = 1, . . . ,M,

x ∈ P (λU) .= {z : ∃g ∈ Q with z = g/λU , 0 ≤ z ≤ 1}.

The value of this problem is λ∗/λU ≤ 1, and, we seek a vector x feasible for this problem,
and such that maxe

∑
k xk,e ≤ λ∗/λU + γ, where γ = δ/λU .

In Section 3.1 we show that in order to achieve the goal of procedure ABSOLUTE it is sufficient
to produce a vector x such that Φ(x) ≤ Φ∗ + γ/2. Corollary 4.3 in Section 4 establishes that the
output ŷt produced by Algorithm Nσ satisfies this condition provided:

(a) For each commodity k and edge e (i.e. each variable xk,e) we have σk,e ≤ 2−p.

(b) p > 3
2 ln(Kn ln(m)) + 3 ln(1

γ) .= p̄(n,m,K, γ), and

(c) t ≥
√

10Kn lnm
γ .

Note that in terms of the initial flow variables fk,e, we have xk,e = 1
λUuk,e

fk,e.
To adjust this framework to the concurrent flow problem, we set

σk,e =
2−p

ue
,∀k, e, . . . ,M, (12)

where p = p̄ + dlogDe and D is the sum of the demands. This satisfies requirement (a) of Step 3.
Further, we modify BINARY SEARCH: every time a new upper bound λU is computed, we
relax it, by replacing it with λ̂U ≥ λU , chosen so that 2p

λ̂U
=
⌊

2p

λU

⌋
. Note that λU ≤ D, and so

λ̂U ≤ λU

1−λU2−p
≤ λU (1 + O(2−p̄). Since p̄ = 3

2 ln(Kn ln(m)) + 3 ln(1
γ), where γ = δ/λU , we have

that
λ̂U − λL

λU − λL
≤ 1 +

λUO (2−p̄)
λU − λL

≤ 1 +O

(
2−p̄

3γ

)
= 1 + o(1).

Thus, up to constants the the complexity bound in Corollary 2.1 remains unchanged. For simplicity,
in what follows we will use the notation λU to refer to the relaxed upper bound.

9

5.1 Solving the piecewise-linear problems

In this section we show how to efficiently solve the piecewise-linear problems encountered in algo-
rithm Nσ, using the fact that σk,e is defined as in (12) and that, at any iteration, 1

λU
is an integer

multiple of 2−p (which is what our modification to BINARY SEARCH achieves).
The generic piecewise-linear problem that we need to solve is of the form

min
∑
k,e L̄k,e(xk,e)

s. t. x ∈ P (λU),
(13)

where b ∈ <KM is a fixed vector, and for any k and e, L̄k,e(·) is a continuous piecewise-linear
function with breakpoints at the integer multiples of 2−p

uk,e
and with pieces of strictly increasing

slope. Suppose we change variables, by setting, for every k and e, rk,e = 2puk,exk,e. In terms
of the initial flow variables fk,e, we have rk,e = 2p

λU
fk,e. Thus, after the change of variables the

optimization problem is of the form

min
∑
k,e Lk,e(rk,e)

s. t. Nrk = 2p

λU
dk, ∀ k

rk,e ≤ 2puk,e ∀ k, e.
(14)

This is just a min-cost flow problem, with integral demands and capacities. Further, for any k
and e, Lk,e continuous, piecewise-linear, with breakpoints at the integers and with pieces of strictly
increasing slope.
To solve this problem we use an approach similar to that described in [M84] and in [AMO93]
(Chapter 14), which essentially amounts to capacity-scaling. The primary computational overhead
in this algorithm arises from shortest path computations, used to compute shortest augmenting
paths. For completeness, the Appendix provides a more detailed description of the algorithm.
Using the definition of p, we have:

Theorem 5.1 An ε-optimal solution to a maximum concurrent flow problem, on a graph with N
nodes, M edges, and K commodities can be computed by solving

O∗
(
ε−1K3/2M

√
N
(

log
1
ε

+ LU + LD

))
shortest path problems, plus lower complexity steps, where LU and LD, respectively, denote the
number of bits needed to store the capacities and demands.

10

References

[AMO93] R. Ahuja, T. L. Magnanti, and J. Orlin, Networks Flows: Theory, Algorithms, and
Practice, ISBN 013617549X. Prentice Hall. (1993).

[B02] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming
Problems, Theory and Practice, ISBN 1-4020-7173-6. Kluwer Academic Publishers, Boston
(2002). An early version also appears as CORE Lecture Series Monograph ISSN-0771 3894,
Core, UCL, Belgium (2001) (download from www.core.ucl.ac.be).

[BR02] D. Bienstock and O. Raskina, Asymptotic analysis of the flow deviation method for the
maximum concurrent flow problem, Math. Programming 91 (2002), 379–492.

[F00] L.K. Fleischer, Approximating Fractional Multicommodity Flow Independent of the Number
of Commodities, SIAM J. Disc. Math., 13 (2000), 505 – 520.

[FW56] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logistics
Quarterly 3 (1956), 149 – 154.

[FGK71] L. Fratta, M. Gerla and L. Kleinrock, The flow deviation method: an approach to store-
and-forward communication network design, Networks 3 (1971), 97 – 133.

[GaKo98] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and
other fractional packing problems, Proc. 39th Ann. Symp. on Foundations of Comp. Sci. (1998)
300-309.

[GK94] M.D. Grigoriadis and L.G. Khachiyan, Fast approximation schemes for convex programs
with many blocks and coupling constraints, SIAM Journal on Optimization 4 (1994) 86 – 107.

[GK95] M.D. Grigoriadis and L.G. Khachiyan, An exponential-function reduction method for
block-angular convex programs, Networks 26 (1995) 59-68.

[GK96] M.D. Grigoriadis and L.G. Khachiyan, Approximate minimum-cost multicommodity flows
in Õ(ε−2KNM) time, Mathematical Programming 75 (1996), 477 – 482.

[M84] M. Minoux. A polynomial algorithm for minimum quadratic cost flows. European J. Oper.
Res. 18 (1984) 377-387.

[KPST90] P. Klein, S. Plotkin, C. Stein and E. Tardos, Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts,
Proc. 22nd Ann. ACM Symp. on Theory of Computing (1990), 310 – 321.

[KY98] P. Klein and N. Young, On the number of iterations for Dantzig-Wolfe optimization and
packing-covering approximation algorithms, Proceedings IPCO 1999, 320 – 327.

[LMPSTT91] T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos and S. Tragoudas, Fast
approximation algorithms for multicommodity flow problems, Proc. 23nd Ann. ACM Symp.
on Theory of Computing (1991), 101-111.

[N03] Y. Nesterov, Smooth minimization of non-smooth functions, CORE Discussion Paper,
CORE, UCL (2003).

11

[PK95] S. Plotkin and D. Karger, Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows, In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, (1995), 18-25.

[PST91] S. Plotkin, D.B. Shmoys and E. Tardos, Fast approximation algorithms for fractional
packing and covering problems, Math. of Oper. Res. 20 (1995), 495 – 504.

[R95] T. Radzik, Fast deterministic approximation for the multicommodity flow problem, Proc.
6th ACM-SIAM Symp. on Discrete Algorithms (1995).

[SM91] F. Shahrokhi and D.W. Matula, The maximum concurrent flow problem, Journal of the
ACM 37 (1991), 318 – 334.

[VG97] J. Villavicencio and M.D. Grigoriadis, Approximate Lagrangian decomposition using a
modified Karmarkar logarithmic potential, in Network Optimization (Pardalos and Hager,
eds.) Lecture Notes in Economics and Mathematical Systems 450 Springer-Verlag, Berlin
(1995), 471 – 485.

12

A Appendix

A.1 Proof of Theorem 4.2

Lemma A.1 At any iteration t of Algorithm Nσ, we have that

Ŝt(x) − Ŝt(ẑt) ≥
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(xj − ẑtj)2 − Kα

2(t+ 1)(t+ 2)

∑
j

(
2σj +

1
2
σ2
j

)
.

Proof: Define

S̄t(x) =
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(xj − x̂0
j)

2 +
2

(t+ 1)(t+ 2)

t∑
h=0

(h+ 1)
[
Φ(x̂h) +

〈
ĝh, x− x̂h

〉]
.

Since S̄t is a quadratic function, it follows that

S̄t(x) − S̄t(ẑt) =
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(xj − ẑtj)2 + [∇(S̄t(ẑt))]T (x− ẑt). (15)

Consider the function Ŝt, restricted to the one-dimensional segment between ẑt and x. This function
is piecewise-linear, and convex, and is minimized at ẑt (by definition of ẑt). Hence, as we traverse
the segment from ẑt to x, the slope of the first piece of the piecewise-linear function must be
nonnegative. Since P ⊆ [0, 1]n, by Lemma 4.1 (iii), the second term in the right-hand side of (15)
is at least − 2Kα

(t+1)(t+2)

∑n
j=1 σj , and consequently:

S̄t(x) − S̄t(ẑt) ≥
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(xj − ẑtj)2 − Kα

(t+ 1)(t+ 2)

n∑
j=1

σj .

The result now follows by Lemma 4.1 (ii).
Theorem 4.2 is established by induction on t. By definition, we have that

Ŝ0(ẑ0) = 2Kα
n∑
j=1

Lσj ,x̂0
j
(ẑ0
j) + Φ(x̂0) +

〈
ĝ0, z

0 − x0
〉
,

≥ Kα
n∑
j=1

Lσj ,x̂0
j
(ẑ0
j) + Φ(x̂0) +

〈
ĝ0, z

0 − x0
〉
,

≥ Kα
n∑
j=1

Lσj ,x̂0
j
(ŷ0
j) + Φ(x̂0) +

〈
ĝ0, y

0 − x0
〉
,

≥ Kα

2

n∑
j=1

(y0
j − x0

j)
2 + Φ(x0) +

〈
g0, y

0 − x0
〉
≥ Φ(y0). (16)

The first bound in (16) follows from Lemma 4.1(ii) and the second as in Theorem 3.1.
Next, the inductive step. Let x ∈ P . By Lemma A.1, we have

Ŝt(x) ≥ Ŝt(ẑt) +
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(ẑtj − x̂0
j)

2 − Kα

(t+ 1)(t+ 2)

n∑
j=1

(
2σj + σ2

j /2
)
,

≥ Ŝt(ẑt) +
2Kα

(t+ 1)(t+ 2)

n∑
j=1

(ẑtj − x̂0
j)

2 − 3Kα
(t+ 1)2

(n∑
j=1

σj
)
,

13

Applying the induction hypothesis, and continuing as in the proof of Theorem 3.1, we obtain the
following analog of the inequality following (8):

Ŝt+1(x) ≥ Φ(x̂t+1) + min
y∈P

{Kα
2

∑
j

(
yj − x̂t+1

j

)2
+
〈
ĝt+1, y − x̂t+1

〉}
− 3Kα

(t+1∑
h=1

1
h2

+ t
)(n∑

j=1

σj
)
.

Applying Lemma 4.1 again, we obtain

Ŝt+1(x) ≥ Φ(x̂t+1) + Kα
∑
j

Lσj ,x̂t+1
j

(
ŷt+1
j

)
+
〈
ĝt+1, ŷ

t+1 − x̂t+1
〉

−3Kα
(t+1∑
h=1

1
h2

+ t+ 1
)(n∑

j=1

σj
)
,

≥ Φ(x̂t+1) +
Kα

2

∑
j

(
ŷt+1
j − x̂t+1

j

)2
+
〈
ĝt+1, ŷ

t+1 − x̂t+1
〉

−3Kα
(t+1∑
h=1

1
h2

+ t+ 1
)(n∑

j=1

σj
)
,

≥ Φ(ŷt+1)− 3Kα
(t+1∑
h=1

1
h2

+ t+ 1
)(n∑

j=1

σj
)
,

where the last inequality follows from Lemma 3.3.

A.2 Solving the piecewise-linear problems min-cost flow problems

We are given an optimizatin problem of the form described in Section 5.1,

min
∑
k,e Lk,e(rk,e)

s. t. Nrk = d̂k, 0 ≤ rk ≤ ûk, k = 1, . . . ,K,
(17)

where for every k and e, Lk,e is continuous, convex, piecewise-linear, with breakpoints at the integers
and with pieces of strictly increasing slope. Also, d̂k and ûk are integral and uk,e ≤ 2p for any k
and e.
If we compute a feasible, integral flow (which can be done in strongly polynomial time), we can
thus express the problem in circulation form the form

min
∑
k,e Lk,e(rk,e)

s. t. Nrk = 0, −αk ≤ rk ≤ βk, k = 1, . . . ,K,
(18)

where for every k and e, αk,e and βk,e are nonnegative and integral and of value ≤ 2p, and Lk,e is
a convex, continuous piecewise-linear function with breakpoints at the integers.
We will solve problem (18) by solving a sequence of problems – our approach is similar Let 0 ≤ h ≤ p
be an integer. For any k and e, define Lhk,e(rk,e) to be the continuous, piecewise-linear function,
with breakpoints at the integer multiples of 2h, where it agrees with Lk,e(rk,e). Thus, Lhk,e is convex.
Further, define αhk,e to be the smallest integer multiple of 2h that is at least as large as αk,e, and
similarly define βhk,e. Then, our level-h problem is:

min
∑
k,e L

h
k,e(rk,e)

s. t. Nrk = 0, −βhk ≤ rk ≤ αhk,, k = 1, . . . ,K,
(19)

14

Thus, the level-0 problem is (18), and we will solve it by solving the level-p problem, then the
level-(p − 1) problem, and so on inductively. Note that for 0 ≤ h ≤ p, the function Lhk,e has
2p−h breakpoints in the range of the level-h problem. Hence, the level-h problem can be seen
as an ordinary (e.g., linear) minimum-cost circulation problem, on the graph Ĝh obtained from
the original graph G by replacing each edge e with 2p−h parallel arcs, each with capacity 2h and
appropriate cost. (To avoid confusion, we use the term arc, rather than edge, which we reserve for
G). We stress that our algorithm will only implicitly work with Ĝh, as we will see.
The level-p problem is a standard minimum-cost circulation problem, and without loss of generality
we can compute an optimal circulation, all of whose entries are integer multiples of 2p, in strongly
polynomial time, as well as a set of optimal node potentials.
Inductively, suppose we have solved the level-h problem, and we have an optimal circulation rhk
(k = 1, · · · ,K) for this problem, each of whose entries is an integral multiple of 2h, as well as an
optimal set of node potentials πhk . Our task is to refine rhk into an optimal (and feasible) circulation
for the level-(h− 1) problem.
Note that by definition, for any k and e,

(a) Lhk,e and Lh−1
k,e agree at the integer multiples of 2h−1, and

(b) Let q ∈ Z+. Then the slope of Lh−1
k,e is less (resp., more) than the slope of Lhk,e in the interval[

2hq, 2hq + 2h−1
)

(resp., in the interval
[
2hq + 2h−1), 2h(q + 1)

)
).

(c) Either αh−1
k,e = αhk,e or αh−1

k,e = αhk,e − 2h−1, and similarly with βh−1
k,e and βhk,e.

Thus, it is easy to see that rhk , together with the potentials πhk , nearly satisfies the optimality
conditions for the level-(h − 1) problem. More precisely, suppose we were to convert rhk,e into a
circulation on the graph Ĝh−1 by following the following “greedy” rule: for any k and e, we “fill”
the parallel arcs corresponding to k, e in increasing order of cost (and thus, at most one arc will
have flows strictly between bounds). We may need an additional, “overflow” arc, also of capacity
2h−1 in the case that rhk,e = αhk,e > αh−1

k,e or in the similar case for βhk,e.
Denote by r̂hk,e the resulting circulation in Ĝh−1. Then by properties (a)-(c) above, it follows that
at most one of the parallel arcs corresponding to a pair k, e either fails to satisfy the optimality
conditions together with the potentials πhk or is an overflow arc. Consequently, we can obtain an
optimal circulation in Ĝh−1 in at most O(M) flow pushes (each pushing 2h−1 units of flow) or
recomputations of node potentials; and each such step requires the solution of a shortest path
problem. It is clear that (again because of (a) - (c)) all of this can be done without explicitly
considering the graph Ĝh−1: instead, we always keep a single flow value for commodity k on any
edge e, which is always an integral multiple of 2h−1 – if we wish to use one of the parallel arcs
corresponding to k, e in a push (or when searching for an augmenting path), then it takes O(1)
time to determine which of the arcs we will use. This completes the description of the inductive
step.

15

