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Abstract

We describe a connection between the tree-width of graphs and the Sherali–Adams reformulation
procedure for 0/1 integer programs. For the case of vertex packing problems, our main result can be
restated as follows: let G be a graph, let k ≥ 1 and let x̂ ∈ RV (G) be a feasible vector for the formulation
produced by applying the level-k Sherali–Adams algorithm to the edge formulation for STAB(G). Then
for any subgraph H of G, of tree-width at most k, the restriction of x̂ to RV (H) is a convex combination
of stable sets of H.

1 Introduction

A 0/1 packing set is a feasible region of the form P b
A = {x ∈ {0, 1}n : Ax ≤ b}, where A is a nonnegative,

m × n matrix, and b ∈ <n
+. Given such a matrix A we can define its clique graph, which is the graph GA

with a vertex corresponding to each column of A and an edge between two vertices j1 and j2 if there exists
some row i with ai,j1 > 0 and ai,j2 > 0.

Given a vector α ∈ <n, denote by suppt(α) the support of α, i.e. the set {j : αj 6= 0}. We will use the
notation GA[α] to abbreviate GA[suppt(α)], that is, the subgraph of GA induced by suppt(α).

In this note we consider the relationship between valid inequalities αT x ≤ β that are “simple”, as measured
by the tree-width (defined below) of an appropriate subgraph GA[α] and the strength of the relaxation
provided by the Sherali–Adams operator (also defined below). Given a set of rows R of a matrix A, we
denote by A(R) the corresponding submatrix.

Definition 1.1 Consider a 0/1 packing set P b
A. The tree-width of a valid inequality αT x ≤ β is the mini-

mum, over all subset R of rows of A such that αT x ≤ β is valid for P
b(R)
A(R), of the tree-width of GA(R)[α].

Our main result is:

Theorem 1.2 Consider a 0/1 packing set P b
A. Let k ≥ 1, and suppose that a vector x̂ ∈ <n satisfies the

constraints imposed by the level-k Sherali–Adams operator applied to P b
A.

(1) x̂ satisfies every valid inequality αT x ≤ β whose tree-width is at most k − 1.

(2) Suppose A is 0/1 and b is integral. Then x̂ satisfies every valid inequality αT x ≤ β whose tree-width is
at most min{k, n− 1}.

In Section 3 we describe some applications of Theorem 1.2. We show how some rich families of valid
inequalities for vertex packing problems (in particular, antiweb-wheel inequalities) are guaranteed to be
satisfied when we apply the Sherali–Adams procedure. We also describe a class of inequalities that have
fixed Sherali–Adams rank but unbounded N0-rank.
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1.1 Preliminaries

1.1.1 Tree-width

For a graph G, its vertex set is denoted by V (G). Let H be a graph. A tree-decomposition [RS86] of H is a
pair (T,X) where T is a tree and X = {Xt : t ∈ V (T )} is a family of subsets of V (H) such that

(i) For all v ∈ V (H), the set {t ∈ V (T ) : v ∈ Xt} forms a subtree of T , and

(ii) For each {u, v} ∈ E(H) there is a t ∈ V (T ) such that {u, v} ⊆ Xt.

The width of the decomposition is max {|Xt| : t ∈ V (T )} − 1. The tree-width of H is the minimum width
of a tree-decomposition of H. We note that tree-width has emerged as a fundamental measure of the
“complexity” of a graph. A full survey is beyond the scope of this paper – see, for example [RS86], [R97].
Broadly speaking, graphs of low-tree width are “simple”. This simplicity can be exploited in combinatorial
optimization – combinatorial problems on graphs of small tree-width can in many cases be efficiently solved
by dynamic programming. See, for example [ALS91]. Cook and Seymour [CS94], [CS03] have described
sophisticated extensions and implementations of these ideas. See [H04] for a recent survey of results on
tree-width, branch-width and related topics.

1.1.2 The Sherali–Adams procedure

The Sherali–Adams operator is one of several “lift-and-project” procedures that, given a formulation for a
0/1 integer program, produce a tighter formulation by adding new variables and constraints. The lifting step
is that of adding the new variables, and typically (though not always) one projects the new formulation to
the space of the original variables.

Let k ≥ 1 be an integer. The Sherali–Adams level-k formulation derived from P b
A is the following (in slightly

redundant form).

It has a variable w[Y, N ] for every pair of disjoint subsets Y , N of {1, 2, · · · , n} with |Y ∪N | ≤ min{k+1, n}.
In addition, it has the constraints (i)–(iv) given next:

(i)

w[∅, ∅] = 1. (1)

(ii) For all disjoint subsets Y , N of {1, 2, · · · , n} with |Y ∪N | ≤ min{k + 1, n},

0 ≤ w[Y, N ] ≤ w[Y − j, N ] ∀ j ∈ Y (2)
w[Y, N ] ≤ w[Y, N − j] ∀ j ∈ N (3)

(iii) For all disjoint subsets Y , N of {1, 2, · · · , n} with |Y ∪N | ≤ k, and any j /∈ Y ∪N ,

w[Y ∪ j, N ] + w[Y, N ∪ j] − w[Y, N ] = 0 (4)

(iv) Let m denote the number of rows of A. For all disjoint subsets Y , N of {1, 2, · · · , n} with |Y ∪N | ≤ k,
and any i, 1 ≤ i ≤ m, ∑

j /∈N

ai,jw[Y ∪ j, N ] − biw[Y, N ] ≤ 0. (5)

Note that property (iii) implies that for any disjoint subsets Y , N of a subset U ,∑
Y⊆Z⊆U\N

W [Z,U \ Z] = W [Y, N ].

We say that x̂ ∈ <n
+ satisfies the level-k Sherali–Adams constraints if there is a vector ŵ ∈ <M

+ (M =∑k+1
j=0 2j

(
n
j

)
) which satisfies (i)–(iv) and such that x̂j = ŵ[j, ∅], for all 1 ≤ j ≤ n. [Note: the above

description of the operator is redundant, and
(

n
k+1

)
variables suffice]. Throughout, we abbreviate {j} as j.

We will also abbreviate by SAk the level-k operator. It is known that the SAn operator yields the convex
hull of P b

A. Further, for fixed k, one can optimize over the formulation produced by SAk in polynomial time.
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Other examples of lift-and-project operators include the Lovász–Schrijver procedures N and N+ [LS91], the
Balas–Ceria–Cornuéjols procedure, the Lasserre procedure [L01b] and the Σ procedure in [BZ02a]. Also see
[B79]. Laurent [L01b] has provided a common framework for understanding and comparing the N , N+, SA
and Lasserre operators. Also see Cook and Dash [CD01], Goemans and Tunçel [GT01]. Some recent results
on the rank of cutting-plane procedures are given by Cornuéjols and Li in [CL02].

Lift-and-project operators can be complex, and the benefit of obtaining a tighter formulation can be offset
by the overhead of running a larger formulation. Thus, it is of interest to describe the strength of an operator
in terms of fundamental properties of a problem. The main result in this paper is of this type. Further, it
is also of interest to compare the strength of the different lift-and-project operators, since they have widely
different computational overhead (refer to [L01b]). In particular, it is known that the SAk operator is at
least as strong than the k-step iterated N procedure, Nk.

1.1.3 Strategy for the proof of Theorem 1.2

Consider a tree-decomposition (T,X) of a graph G. If we view T as rooted, we obtain a recipe for constructing
G in a sequence of composition steps involving smaller graphs. The initial building blocks are the subgraphs
of G induced by the sets Xt for each leaf t of T (other than the root of T , if it is a leaf). In each composition
step, we take two graphs G1 and G2, each endowed with a set Bi (i = 1, 2) of “boundary vertices” and we
identify some members of B1 with an equal number of members of B2. Furthermore, the set of boundary
vertices of the resulting graph (to be used in future compositions) is a subset of B1 ∪B2. When we can find
such a composition strategy such that the set of boundary vertices of any intermediate graph is of cardinality
≤ k + 1, then G has tree-width ≤ k.

This insight is not new; it underlies much of the work cited above on Graph Minors, and, especially, algorithms
on bounded tree-width graphs. What is the significance of having a tree-decomposition of small width, in
terms of the vertex packing polyhedron of G?

Suppose again that we are considering the composition step involving G1 and G2 described above. Moreover,
suppose that we have a fractional vector x̂ (∈ RV (G)) such that for i = 1, 2, the restriction of x̂ to V (Gi) is
a convex combination of incidence vectors of stable sets of Gi. Will the same be true when we restrict x̂ to
V (G1) ∪ V (G2)? The difficulty here is that the two decompositions of x̂ have, in some sense, to agree on
B1 ∩ B2. We cannot expect that in general this will be the case – further conditions on x̂ are required. It
turns out that the conditions imposed by the SAk operator are enough, when k ≥ max{|B1|, |B2|}− 1. This
is at the core of the proof provided next.

2 Proof of Theorem 1.2

Lemma 2.1 Let H be a graph of tree-width k. Then there is a tree-decomposition of (T,X) of H of width
k such that every vertex of T has degree ≤ 3, and further satisfying:

(1) If t is a vertex of T with neighbors u, v, w then Xu = Xv = Xw = Xt, and u, v, w all have degree 2.

(2) If u and v are neighbors in T , both of degree ≤ 2, then either Xu ⊆ Xv, or Xv ⊆ Xu, or Xu∩Xv = ∅.

Proof. That T can be assumed to have vertices of degree at most 3 is straightforward. To obtain (1),
whenever t is a degree-3 vertex of T then subdivide the three edges incident with t to introduce new vertices
ti with Xti

= Xt, 1 ≤ i ≤ 3. (2) follows similarly.

The following result shows how the assumption A ≥ 0 plays a role in our proof.

Lemma 2.2 Let k ≥ 1 and A a nonnegative matrix. Suppose x̂ ∈ <n
+ satisfies the requirements of the SAk

procedure applied to P b
A. Let C be a subset of the columns of A and R a subset of the rows of A. Then

the restriction of x̂ to C satisfies the constraints generated by the level-min{k, |C|} Sherali–Adams procedure
when applied to

{
x ∈ {0, 1}C :

∑
j∈C aijxj ≤ bi ∀ i ∈ R

}
.

Proof. Let ŵ satisfy (1)–(5), and x̂j = ŵ[j, ∅] for 1 ≤ j ≤ n. Then for each pair of disjoint subsets Y , N
with Y ∪N ⊆ C and |Y ∪N | ≤ k, and for any i ∈ R,∑

j∈C−N

aijŵ[Y ∪ j,N ] ≤
∑
j /∈N

aijŵ[Y ∪ j, N ] ≤ biŵ[Y, N ], (6)

where the first inequality follows since A ≥ 0.
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In the remainder of the proof of Theorem 1.2, we will assume that R is the set of all rows – this assumption
is warranted by Lemma 2.2. We will also consider:

A.1. A fixed m × n nonnegative matrix A, a fixed x̂ ∈ <n, a fixed k ≥ 1, and a fixed ŵ ∈ <M (M =∑k+1
j=0 2j

(
n
j

)
) which satisfies conditions (i)–(iv) of the level-k Sherali–Adams procedure applied to P b

A,
and such that x̂j = ŵ[j, ∅], for all 1 ≤ j ≤ n,

Our ultimate goal is to show αT x̂ ≤ β, for any inequality αT x ≤ β valid for P b
A, of tree-width ≤ k − 1 in

case (1) of Theorem 1.2, and of tree-width ≤ min{k, n − 1} in case (2). To simplify nomenclature, we call
such an inequality appropriate. There is one way that α can be further constrained.

Lemma 2.3 If x̂ satisfies every appropriate inequality αT x ≤ β such that G[α] is connected, then x̂ satisfies
every appropriate inequality.

Proof. Consider an appropriate inequality αT x ≤ β such that G[α] is not connected. Then we can write
G = G1 ∪ G2 where the Gi have disjoint vertex sets. For i = 1, 2 let V i be the vertex set of Gi, let
βi = maxx∈P b

A

∑
j∈V i αjxj , and let x̄i ∈ P b

A attain this maximum. Since A ≥ 0, without loss of generality
we have x̄i

j = 0 for j /∈ V i. As a result, β ≥ β1 + β2 – this holds because the vector z defined by

zj =


x̄i

j , if j ∈ V i

0, otherwise,
(7)

is in P b
A, since the V i are disjoint. Thus the two valid inequalities

∑
j∈V i αjxj ≤ βi together dominate

αT x ≤ β. Since the tree-width of each Gi cannot exceed that of G, it suffices to show that
∑

j∈V i αj x̂j ≤ βi

in order to obtain αT x̂ ≤ β.

In the remainder of the analysis, we will also consider

A.2. A fixed appropriate inequality αT x ≤ β such that G[α] is connected.

A.3. A fixed tree-decomposition (X, T ) of GA[α] that satisfies the conditions of Lemma 2.1, of width ≤ k−1
in case (1) of Theorem 1.2, and of width ≤ min{k, n− 1} in case (2). In addition, we view T as rooted
at an arbitrary, but fixed, leaf r ∈ V (T ).

In order to describe our strategy for the proof, we need one further definition.

Definition 2.4 Let W and U be such that W ⊆ U ⊆ suppt(α). We say that U is W -decomposable if there
exist 0/1 vectors vi ∈ P b

A and weights 0 ≤ λi ≤ 1, for 1 ≤ i ≤ I (I some positive integer) such that

(a) suppt(vi) ⊆ U for all 1 ≤ i ≤ I,

(b)
∑I

i=1 λi = 1,

(c) x̂j =
∑

i λivi
j for all j ∈ U , and

(d) ŵ[Y,N ] =
∑
{λi : vi

j = 1 ∀j ∈ Y, and vi
j = 0 ∀j ∈ N}, for all disjoint subsets Y , N of W such that

|Y ∪N | ≤ k.

Informally, U is W -decomposable if the restriction of x̂ to U can be decomposed as a convex combination
of 0/1 feasible vectors, and furthermore the decomposition is more precise when restricted to W – it carries
over to the level-k Sherali–Adams iterates ŵ.

Our strategy to prove Theorem 1.2 will be as follows. For each vertex t ∈ V (T ), let Dt =
⋃
{Xs :

s a descendant of t} (note: t is a descendant of itself). We will show that Dr is Xr-decomposable. To
see that this implies Theorem 1.2, let vi, λi (1 ≤ i ≤ I) satisfy the conditions of Definition 2.4. Then
αT vi ≤ β for 1 ≤ i ≤ I. But Dr = suppt(α), and so condition (c) of Definition 2.4 completes the proof.

In order to prove that Dr is Xr-decomposable we will prove that Dt is Xt-decomposable for each t ∈ V (T ),
by induction, starting at the leaves of T and moving up toward r. To handle the start of the induction we
have the following.

Lemma 2.5 For each t ∈ V (T ), Xt is Xt-decomposable.
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Proof. Let t ∈ V (T ). Note that in both cases of Theorem 1.2 the SAk operator produces variables w[Y, N ]
for each pair Y , N such that Y ∪N = Xt. For each such pair with ŵ[Y, N ] > 0, define a vector vY,N ∈ {0, 1}n

where vY,N
j = 1 if and only if j ∈ Y . For each such pair also define λY,N = ŵ[Y, N ].

Requirement (a) of Definition 2.4 holds by construction. By the properties of the SAk algorithm, in particular
property (iii), requirements (b)–(d) are satisfied. For example, (b) follows since

∑
Y ŵ[Y, N ] = ŵ[∅, ∅] = 1.

What remains to be shown is that each vY,N ∈ P b
A. First consider case (1) of Theorem 1.2, and let i be

any row of A. We know that ŵ satisfies the constraint obtained when we apply condition (iv) of the SAk

procedure to row i, and pair Y , N , which is:∑
j∈Y

aijŵ[Y, N ] +
∑

j /∈Y ∪N

aijŵ[Y ∪ j, N ] ≤ bi ŵ[Y, N ],

and therefore ∑
j∈Y

aij ≤ bi.

Thus vY,N ∈ P b
A, as desired.

For case (2) of Theorem 1.2, let i again denote a row of A. If aij = 1 for at most bi elements j ∈ Y , then
clearly vY,N satisfies constraint i and we are done. If aij = 1 for more than bi elements j ∈ Y , take any fixed
element u ∈ Y with aiu = 1. We have that ŵ satisfies the constraint obtained when we apply condition (iv)
of the SAk procedure to the pair [(Y − u), N ] and row i, which is:

ŵ[Y,N ] +
∑

j∈Y−u

aijŵ[Y − u, N ] +
∑

j /∈Y ∪N

aijŵ[(Y − u) ∪ j, N ] ≤ bi ŵ[Y − u, N ].

By assumption the second term in the left-hand side has at least bi terms. It follows that ŵ[Y, N ] = 0. This
concludes the proof.

To handle the general inductive step of Theorem 1.2, let t ∈ V (T ) be a non-leaf vertex such that the inductive
hypothesis applies to every child of t. Recall that (T,X) is assumed to satisfy the conditions of Lemma 2.1.

Clearly, for any child s of t we must have Xs ∩Xt 6= ∅, or else G[α] is not connected.

Suppose first that there is a child s of t, of degree three in T . Then the result follows by Lemma 2.1 (1),
since Xs = Xt and thus Ds = Dt. Hence we may assume that every child of t has degree ≤ 2.
We organize the analysis into three cases:

(a) t has degree ≤ 2, and for some child s of t, Xt ⊆ Xs.

(b) t has degree ≤ 2, and for every child s of t, Xs ⊆ Xt.

(c) t has degree 3.

In case (a) we have Dt = Ds. Pick any j ∈ Xs\Xt. Then condition (iii) of the Sherali–Adams operator
implies that that Ds is (Xs − j)-decomposable, since Ds is Xs-decomposable by the inductive assumption.
Repeating this step, we will obtain that Ds (= Dt) is Xt-decomposable.

The remaining two cases, (b) and (c), are handled by the following result, as we will see.

Lemma 2.6 For h = 1, 2, suppose Uh is Wh-decomposable, where Wh ⊆ Uh ⊆ suppt(α). Assume that

(1) W 1 ⊆ W 2, and |W 2| ≤ k,

(2) U1 ∩ U2 = W 1, and

(3) there are no edges of GA[α] with one end in U1\W 1 and the other in U2\W 1.

Then U1 ∪ U2 is W 2-decomposable.

Postponing the proof of Lemma 2.6 for the moment, let us see how to apply the Lemma to cases (b) and (c)
above. For case (b), note that t has only one child, since the root of T was assumed to be a leaf. Denoting
this child by s, we set W 1 = Xs, U1 = Ds and W 2 = D2 = Xt. Then clearly (1) and (2) in Lemma 2.6 hold.
Further, (3) holds by the definition of tree decomposition, since for any edge {u, v} with u ∈ Ds and v ∈ Xt,
we must have that either u ∈ Xs or v ∈ Xs, and hence no edge as in (3) exists. Similarly, for case (c), let p
and q be the two children of t. Then we set W 1 = W 2 = Xt (= Xp = Xq) and U1 = Dp and U2 = Dq.
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Proof of Lemma 2.6. Let pi be 0/1 vectors and λi be reals (1 ≤ i ≤ I) that satisfy the conditions of Definition
2.4 with respect to W 1 and U1. Similarly, let qj be 0/1 vectors and µj be reals (1 ≤ j ≤ J) that satisfy the
conditions of Definition 2.4 with respect to W 2 and U2.

For each pair i, j with 1 ≤ i ≤ I and 1 ≤ j ≤ J such that

suppt(pi) ∩W 1 = suppt(qj) ∩W 1

we do the following. Define the vector vi,j ∈ {0, 1}n so that suppt(vi,j) = suppt(pi) ∪ suppt(qj). Thus,
suppt(vi,j) ⊆ U1 ∪ U2 ⊆ suppt(α). Since pi ∈ P b

A and qj ∈ P b
A, assumption (3) of this Lemma implies that

vi,j ∈ P b
A as well. In addition, if we write

Zi,j .= suppt(vi,j) ∩W 1

then

Zi,j = suppt(pi) ∩W 1 = suppt(qj) ∩W 1

by construction. Define the real γi,j by the following rule

γi,j = 0, if ŵ[Zi,j ,W 1 − Zi,j ] = 0, (8)

and

γi,j =
λiµj

ŵ[Zi,j ,W 1 − Zi,j ]
(9)

otherwise.

We claim that the family of all vectors vi,j (at most |I||J | vectors) together with the reals γi,j show that
U1 ∪ U2 is W 2-decomposable. To see this, note that

∑
i,j

γi,j =
∑

Z⊆W 1

∑ {
λiµj

ŵ[Z,W 1 − Z]
: Z = suppt(pi) ∩W 1 = suppt(qj) ∩W 1

}
(10)

=
∑

Z⊆W 1

 ∑
j : Z=suppt(qj)∩W 1

µj

  ∑
i : Z=suppt(pi)∩W 1

λi

ŵ[Z,W 1 − Z]

 (11)

=
∑

Z⊆W 1

 ∑
j : Z=suppt(qj)∩W 1

µj

 (12)

=
∑

j

µj = 1. (13)

Similarly, assume Y , N are disjoint subsets of W 2. Then∑ {
γi,j : vi,j

h = 1 ∀h ∈ Y, and vi,j
h = 0 ∀h ∈ N

}
= (14)

∑
Z : Y⊆Z⊆W 2−N

 ∑
j : suppt(qj)∩W 2=Z

 ∑
i : suppt(pi)∩W 1=Z∩W 1

λiµj

ŵ[Z ∩W 1,W 1 − Z ∩W 1]


 = (15)

∑
Z : Y⊆Z⊆W 2−N

 ∑
j : suppt(qj)∩W 2=Z

µj

 = (16)

ŵ[Y, N ], (17)

as desired, where the last equation follows by property (d) of Definition 2.4. One similarly shows that for
any h ∈ U1 ∪ U2,

x̂h =
∑ {

γi,j : vi,j
h = 1

}
. (18)

This completes the proof.

At the end of the following section we will examine in what sense Theorem 1.2 is tight. In the rest of this
section we show how Theorem 1.2 can extend to valid inequalities αT x ≤ β of high tree-width. This result
relies on a generalization to packing problems of a technique introduced in [CC97] in the context of the
vertex-packing problem, which is itself related to the classical “vertex multiplication” technique.
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Definition 2.7 Let A′ ≥ 0 be m × n. Let p and q be columns of A′ and let A be the m × (n − 1) matrix
obtained from A′ by replacing columns p and q with a single column, denoted by (pq), which is equal to the
sum of p and q. We say that A is obtained from A′ by identifying p and q into (pq).

The following is clear:

Lemma 2.8 Let the matrix A be obtained from A′ by identifying columns p and q into the column (pq).
Suppose

∑n
j=1 αjxj ≤ β is valid for P b

A′ . Then

(αp + αq)x(pq) +
∑

j 6=p, q

αjxj ≤ β

is valid for P b
A.

Lemma 2.8 can be applied to a sequence of column identifications. Starting with an inequality αT x ≤ β
valid for P b

A, of small tree-width, the tree-width of the final inequality can be arbitrarily high. We have the
following result.

Lemma 2.9 Let A be the matrix obtained from A′ by identifying columns p and q into the column (pq). Let
1 ≤ k ≤ n − 1, and suppose that x̂ ∈ <n−1

+ satisfies the conditions imposed by the SAk procedure applied
to Ax ≤ b. Then the vector x̂′ ∈ <n defined by x̂′p = x̂′q = x̂(pq) and x̂′j = x̂j for all j 6= (pq), satisfies the
conditions imposed by the SAk procedure applied to A′x ≤ b.

Proof. We will show that x̂′ can be lifted to a vector ŵ′ ∈ <L, (L ==
∑k+1

j=0 2j
(
n
j

)
) that satisfies conditions

(i)–(iv) of the SAk procedure applied to A′x ≤ b.

This is done as follows. Let ŵ ∈ <M
+ (M =

∑k+1
j=0 2j

(
n−1

j

)
) satisfy conditions (i)–(iv) of the SAk procedure

applied to Ax ≤ b, with ŵ[j, ∅] = x̂j for all j. In order to construct ŵ′, suppose Y ′, N ′ are disjoint subsets
of the columns of A′ with |Y ′ ∪N ′| ≤ k.

(i) If |Y ′ ∩ {p, q}| = 1 and |N ′ ∩ {p, q}| = 1 then we set ŵ′[Y ′, N ′] = 0.

(ii) If (Y ′ ∪N ′) ∩ {p, q} = ∅, we set ŵ′[Y ′, N ′] = ŵ[Y ′, N ′].

(iii) Finally, suppose that Y ′ ∩ {p, q} 6= ∅ and N ′ ∩ {p, q} = ∅. Then we set

ŵ′[Y ′, N ′] = ŵ[ (Y ′ − p− q) ∪ (pq) , N ′].

(and correspondingly when N ′ ∩ {p, q} 6= ∅ and Y ′ ∩ {p, q} = ∅).

By definition of identification, ŵ′ satisfies condition (iv) imposed by the SAk procedure. The other conditions
trivially hold.

3 Applications

In this section we examine Theorem 1.2 in the context of vertex packing problems, and show how it can be
used to produce polynomial-size formulations whose feasible solutions are guaranteed to satisfy all inequalities
of several types studied by other authors.

Given a graph G, we denote by STAB(G) the stable set polytope for G, and by SAk(G) the formulation
produced by the SAk operator. Note that in this formulation, each variable w[Y, N ] is such that the sets Y

and N correspond to disjoint subsets of the vertices. We denote by S̄A
k(G) the projection of SAk(G) to the

space of the variables w[j, ∅].

The odd-hole and odd-wheel inequality are among the first known inequalities for the stable set polytope.
Note that it was shown in [LS91] that the points in the Lovász–Schrijver polytope N(G), which equals
S̄A

1(G), satisfy the odd-hole inequalities, and similarly it can be shown that the points in S̄A
2(G) satisfy

the odd-wheel inequalities.

Cheng and Cunningham [CC97] consider several generalizations of odd-hole and odd-wheel constraints. All
these inequalities are of the generic form ∑

j∈V (H)

αjxj ≤ β, (19)
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where H is a certain subgraph of G. The simplest case they consider is that where H is an appropriate
subdivision of a wheel. A more complex case is that of a (again, possibly subdivided) p-wheel, which is
similar to a wheel except that the hub is replaced with a p-clique, all of whose members are adjacent to all
of the vertices on the rim of the wheel.

Cheng and de Vries [CdV02] first consider a more complex class of graphs, the t-antiwebs, defined as follows.
Let n and t be integers such that t ≥ 2, n ≥ 2t − 1 and n 6= 0 (mod t). An (n, t)-antiweb is a graph with
vertices {1, 2, · · · , n} and such that {i, j} is an edge if and only if min{i− j, n + j− i} ≤ t− 1. The antiwebs
were introduced, in slightly different form, by Trotter [T75], and were also studied by other authors ([EJR87],
[MS96], [S96]). [CdV02] also consider more complex graphs, the antiweb-wheels (similar to antiwebs, but
with an additional vertex, the hub, which is adjacent to all other vertices). Finally, they also introduce
another class of graphs, the t-antiweb-s-wheels. For integers n, t and s, an (n, t)-antiweb-s-wheel is the
graph obtained by starting with an (n, t)-antiweb, and adding to it an s-clique using new vertices, all of
which are adjacent to each vertex in the antiweb.

Two remarks about the above graphs. First, [CC97] and [CdV02] consider subdivisions of these graphs.
For carefully constructed subdivisions, they obtain inequalities of the form (19) that can be shown to be
facet-defining. These inequalities can also be separated in polynomial-time, under appropriate conditions:
in the case of the t-antiwebs, t must be bounded, and in the case of the t-antiweb-s-wheels, both t and s
must be bounded. The term “subdivision” is also dropped from their notation, e.g. when they refer to a
t-antiweb inequality it is implicit that this refers to an appropriate subdivision. We will use this convention
in what follows.

Second, in the language of [CdV02], the inequalities we described are simple. We will define this term below,
where we will also extend our analysis to non-simple inequalities.

Of the above graphs, the antiweb-wheels are the most complex in the sense that each of the other graphs is
a subgraph of an antiweb-wheel.

Lemma 3.1 The tree-width of an t-antiweb-s-wheel is at most 2t + s− 2.

The proof of this result is routine – note that subdividing a graph does not change its tree-width.

Corollary 3.2 Let k ≥ 2. Then any point in S̄A
k(G) satisfies all simple odd-hole inequalities, wheel in-

equalities, t-antiweb inequalities (for k ≥ 2t − 2) and t-antiweb-s-wheel inequalities (for k ≥ 2t + s − 2).

Next we consider the non-simple inequalities. These were considered in [CC97], [CdV02], where the following
is proved:

Proposition 3.3 Let G′ be a graph, and suppose
∑n

i=1 aixi ≤ b is valid for STAB(G′). Suppose vertices
v1 and v2 are nonadjacent, and let G be the graph obtained from G′ by identifying v1 and v2 so as to obtain
a vertex v1,2. Then (a1 + a2)x1,2 +

∑n
i=3 aixi ≤ b is valid for STAB(G).

Note that this is a special case of Lemma 2.8. Applying this result repeatedly, one obtains inequalities of the
form (19) valid for STAB(G) where H is obtained from e.g. a t-antiweb-s-wheel by identifying nonadjacent
vertices. Even if s and t are fixed values, the tree-width of H can be arbitrarily large. In the terminology
of [CdV02], the resulting inequalities are called nonsimple while the standard wheel, etc., inequalities are
termed simple.
Using Lemma 2.9 we have the following result:

Corollary 3.4 Let k ≥ 2. Then any point in S̄A
k(G) satisfies all simple and non-simple odd-hole in-

equalities, wheel inequalities, t-antiweb inequalities (for k ≥ 2t − 2) and t-antiweb-s-wheel inequalities (for
k ≥ 2t + s− 2).

Another set of interesting graphs is considered by Lipták and Tunçel [LL03]. They consider the strength of
the N0, N and N+ operators of [LS91] when applied to the stable set problem, and they conjecture that the
N0- and N -rank of any graph are the same. For integer k odd, they consider the graph Gk whose vertex set
is {1, 2, · · · , 3k}, and which is the union of the cycle

(1, 4, 7, · · · , 3k − 2, 3k − 1, 3k, 3k − 3, 3k − 6, · · · , 3)

as well as a star with edges

{2 + 3i, 1 + 3i}, {2 + 3i, 3 + 3i}, {2 + 3i, 4 + 3i}

for each 0 ≤ i ≤ k− 2. In [LL03] it is shown that the N0-rank of this graph equals blog2
k+1
3 + 2c. We have:
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Proposition 3.5 The tree-width of Gk is 3. Consequently, the SA-rank of Gk is at most 3.

Thus, Proposition 3.5 provides an example where the N0-rank of an inequality is arbitrarily larger than the
SA-rank – we are not aware of an older example where the gap is unbounded. It is an interesting open
question whether Lipták and Tunçel’s conjecture is true.

Is Theorem 1.2 best possible? Consider the following (easy) result:

Proposition 3.6 Consider a set P b
A where A is 0/1 and b integral, and let αT x ≤ β be a valid inequality.

Suppose the set X ⊆ V (GA[α]) is such that GA[α] − X is bipartite. Then the SA rank of αT x ≤ β is at
most |X|.

In the case of a stable set problem, Proposition 3.6 can give a tighter bound than Theorem 1.2 – an example
is that of an odd-hole inequality, which has SA rank 1 (and not 2, which is what Theorem 1.2 gives). On
the other hand, the case of (n, t)-antiweb for t > 2 and n large is an example where Theorem 1.2 is much
stronger than Proposition 3.6. It seems conceivable that in the case of A 0/1 and b integral, the bound
provided by Theorem 1.2 could be improved by 1 unit.
Acknowledgment We thank anonymous referees whose suggestions helped us improve the presentation.

References

[ALS91] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms
2 (1991), 308-340.

[B79] E. Balas, Disjunctive Programming. Annals of Discrete Math. 5 (1979) 3–51.

[BZ02a] D. Bienstock and M. Zuckerberg, Subset algebra lift operators for 0-1 integer programming, to
appear, SIAM J. Optimization.

[CC97] E. Cheng and W. H. Cunningham, Wheel inequalities for stable set polytopes, Math. Programming
77 (1997), 389–421.

[CdV02] E. Cheng and S. de Vries, Antiweb-wheel inequalities and their separation problems over the stable
set polytopes, Math. Programming 92 (2002), 153–175.

[CD01] W. Cook and S. Dash, On the matrix-cut rank of polyhedra, Mathematics of Operations Research
26 (2001), 19 – 30.

[CS94] W.J. Cook and P.D. Seymour, An algorithm for the ring-router problem, Technical Report, Bellcore
(1994).

[CS03] W.J. Cook and P.D. Seymour, Tour merging via branch decomposition, INFORMS J. Computing
21 (2003).
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