
Faster approximation algorithms for packing and covering problems∗

D. Bienstock† G. Iyengar‡

August 13, 2004

Abstract

We adapt a method proposed by Nesterov [19] to design an algorithm that computes ε-
optimal solutions to fractional packing problems by solving O∗(ε−1

√
Kn) separable convex

quadratic programs, where K is the maximum number of non-zeros per row and n is the number
of variables. We also show that the quadratic program can be approximated to any degree of
accuracy by an appropriately defined piecewise-linear program. For the special case of the max-
imum concurrent flow problem on a graph G = (V,E) with rational capacities and demands we
obtain an algorithm that computes an ε-optimal flow by solving shortest path problems – the
number of shortest paths computed grows as O(ε−1 log(1

ε )) in ε, and polynomially in the size
of the problem. In contrast, previous algorithms required Ω(ε−2) iterations. We also describe
extensions to other problems, such as the maximum multicommodity flow problem and covering
problems.

1 Packing problems

The prototypical example of the problems considered in this paper is the maximum concurrent
flow problem defined as follows. Given a graph G = (V,E), where each edge e ∈ E has a positive
capacity ue, and K commodities with associated demands dk ∈ R|V |, k = 1, . . . ,K; solve

min maxe∈E

{∑k

k=1
fk,e

ue

}
s. t. Nfk = dk, k = 1, . . . ,K,

fk ≥ 0, k = 1, . . . ,K.

where N ∈ R|V |×|E| is the node-arc incidence of the graph. Here and below we will assume that
commodities are grouped by source, i.e., for each k there is one vertex s(k) with dk,s(k) > 0. We
will call a nonnegative vector fk ∈ R|E| a flow vector for commodity k if Nfk = dk, i.e. it routes
the corresponding demand dk. A nonnegative vector f = (f1, f2, . . . , fK) ∈ RK|E| is called a flow
if fk is a flow vector for commodity k, k = 1, . . . ,K. For a given flow f , the quantity (

∑
k fk,e)/ue

is called the load or congestion on the edge e ∈ E. Thus, the maximum concurrent flow problem
computes a flow that minimizes the maximum congestion. Problems of this nature arise in the
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context of routing in capacitated networks. Furthermore, many network design algorithms solve
maximum concurrent flow problems as subroutines in order to find a feasible routing.

The maximum concurrent flow problem is a special case of the fractional packing problem. Let
A ∈ [a1, . . . , a

T
m]T ∈ {0, 1}m×n, and let Q ⊆ Rn

+ be a polyhedron. Then the fractional packing
problem Pack(A,Q) is given by

λ∗A,Q
.= min λ(x) .= max1≤i≤m{aT

i x},
x ∈ Q.

(1)

The fractional packing problem is itself a special case of the generalized packing problem, where
each entry aij of the matrix A is assumed to be nonnegative, rather than aij ∈ {0, 1}.

A special case of the generalized packing problem of particular interest is the so-called block-
angular problem. In such problems, there exists a positive integers k > 0, and ni, i = 1, . . . , k,
with

∑
i ni = n, such that the set Q = Q1 × Q2 × · · ·Qk, Qi ⊆ Rni , i = 1, . . . , k. When Q is a

polyhedron this simply says that the nonzeros in the constraint matrix defining Q are arranged,
without loss of generality, into a block-diagonal structure with k blocks. The maximum concurrent
flow problem is clearly a block-angular problem with each block corresponding to a commodity;
the constraints in a given block describe flow conservation and nonnegativity of the flow variables
for the corresponding commodity.

Generalized packing problems are linear programs, and consequently can be solved to optimality
in polynomial time. Nevertheless, these problems and in particular the maximum concurrent flow
problem have long been recognized as extremely challenging. State-of-the-art implementations of
the simplex method, and also of interior point methods, running on fast machines, can require
an inordinate amount of time to solve maximum concurrent flow problems on networks with a
few thousand nodes, even when physical memory is adequate. Frequently, these codes can also
consume an extremely large amount of memory. Consequently, they often prove unusable. For
more background see [3].

It is not clear, from a theoretical standpoint, why traditional linear programming methods tend
to require a large number of iterations to solve maximum concurrent flow problems. However, it is
fairly clear why such methods tend to require a large running time. This is due to very expensive
matrix computations, e.g. matrix inversions or Cholesky factorizations, that must be repeatedly
carried out. As an example, consider a maximum concurrent flow problem on a network with |V |
vertices, |E| edges and with K commodities. The overall constraint matrix for the linear program
will have |E|+ K|V | rows and K|E| variables. Even when the graph is very sparse (|E| = θ(|V |)),
if we have K = θ(|V |) the numerical linear algebra will be over matrices of dimension θ(|V |2).
Further, even though the constraint matrix may be very sparse, the matrix computations will
usually experience “fill-in”.

These facts were recognized early on, in the context of block-angular linear programs, and were a
motivating factor for some of the earliest decomposition ideas in mathematical programming, such
as Dantzig-Wolfe decomposition and Lagrangian relaxation. See [14, 3] for further background.
The goal of these methods was to try to reduce the solution of the linear program min{cT x : Ax ≤
b, x ∈ Q} to a set of linear programs over Q. For a block-angular problem, a linear program over Q
reduces to a set of linear programs over the blocks; therefore, when there are many blocks and each
block is small relative to the overall Q, each iteration becomes cheap while direct solution of the
complete problem using a standard method may be impossible. For the concurrent flow problem a
linear program over Q reduces to a set of shortest path problems for each commodity. In essence,
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this approach leads to a model of computation where optimization over Q is viewed as the building
block of more complex algorithms; the critical theoretical issue then becomes that of minimizing
the number of iterations needed to achieve convergence.

This model of computation is perhaps not as precise as one would like it to be – we need to
clearly state what can be done in addition to optimization over Q. Nevertheless, the model does
capture the notion that we want to avoid matrix algebra over large matrices. In this paper we will
adopt this model – an algorithm that fits the model will be called a decomposition method, and
achieving low iteration counts will be a central goal in the design of our algorithms.

1.1 Modern results

The difficulty of the maximum concurrent flow problem, and its practical relevance, have long
provided a strong motivation for developing fast algorithms that can provide provably good, if not
optimal, solutions.

Shahrokhi and Matula [23] developed the first approximation algorithm for the maximum con-
current flow problem. They considered the special case where the capacity on all edges are equal.
The method in [23] considers an exponential potential function of the form∑

e∈E

eα(
∑

k
fk,e).

We will call a flow f with load at most (1+ ε) times the optimal load an ε-optimal flow. It is shown
in [23] that, given ε ∈ (0, 1), one can choose α = α(ε) such that ε-optimal flow can be computed by
minimizing the potential function to within an appropriate absolute error. The algorithm employed
in [23] is, roughly, a first-order procedure to minimize the potential function, i.e. a procedure
that approximates the potential function by its gradient, and the number of iterations required is
O(ε−3) times a polynomial in the number of nodes and edges. In addition, the algorithm maintains
a list of O(ε−2) paths, so that the dependence of the running time on ε is O(ε−5). Each iteration
consists of a shortest-path computation or a single-commodity minimum-cost flow problem – thus
this algorithm is a decomposition method.

The Shahrokhi-Matula result spurred a great deal of research that generalized the techniques to
broader packing and covering problems, gradually reducing the dependence of the iteration count
on ε to finally obtain ε−2, reducing the overall complexity to O(ε−2) times a polynomial in the
size of the graph, and also simplifying the overall approach. See [14, 16, 9, 10, 21, 22, 8, 5] for
details; [22, 8, 5] attain the best bounds for the maximum concurrent flow problem. All of these
algorithms rely, sometimes implicitly, on the exponential potential function, and can be viewed as
first-order methods. [27] uses a logarithmic potential function. [4] shows that the “flow deviation”
algorithm for the maximum concurrent flow problem in [7] yields an O(ε−2) algorithm; this time
using a rational barrier function.

A natural issue is that of proving lower bounds on the number of iterations needed to obtain
an ε-optimal solution to a packing problem; and, in particular, the dependence of the iteration
count on ε. Klein and Young [15] studied the complexity of Pack(A,Q) assuming that there
exists an oracle that, given c ∈ Rn, returns an optimal extreme point for the linear program
min{cT x : x ∈ Q}. The main result in [15] is that (under appropriate assumptions) the number of
oracle calls needed to find an ε-optimal solution to a packing problem an be as large as Ω(ρε−2 log m).
Here ρ = maxx∈Q max1≤i≤m aT

i x (known as the width of the problem). This result applies when
ρε−2 = O(m0.5−δ) for some δ > 0. In essence, thus, the result amounts to an Ω(m0.5) lower bound on
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the iteration count. The dependence on ε implied by the bound is striking, and it raises the question
of whether ε−2 is indeed a lower bound on the dependence on ε for the number of iterations required
by a decomposition method. We note here that the assumption that the optimization oracle returns
an extreme point of Q is critical in the proof in [15].

For some time a parallel line of research has been followed in the nondifferentiable optimization
community. Roughly stated, the focus of the work has been to produce solutions with small absolute
error, rather than a small relative error as has been the focus of the algorithms community. This
line of work has produced a number of interesting ideas and results (see [3] for references). Among
them are decomposition algorithms that solve the generalized packing problem within additive
error ε in O(ε−2) iterations – however, these are not polynomial-time algorithms, even for fixed ε,
in that the O() notation hides constants that depend on the matrix A and the set Q. Recently
Nesterov [19] (also see [18]) obtained a major result: a decomposition algorithm that solves min-
max problems to within additive error ε in O(ε−1) iterations. Again, this algorithm is, in general,
not a polynomial-time algorithm, even for fixed ε. The algorithm combines, in a novel way, the
(essentially folklore) idea of making use of old iterate information with that of an approximate
second-order approximation of the exponential potential function. In Section 2.2 we present a
streamlined analysis of the key ideas in [19].

1.2 New results

We show how to adapt the technique in [19] to obtain an ε-optimal solution (i.e., a solution with a
relative error ε) to Pack(A,Q) by solving at most

O
(
ε−1
√

Kn log m
)

convex, separable quadratic programs over sets of the form

Q(λu) .= {x ∈ Q : 0 ≤ xj ≤ λu, 1 ≤ j ≤ n}, (2)

where λu > 0, K denotes the maximum number of nonzero terms in any row of A. While some
of the key ideas in this paper are derived from those in [19], the paper is self-contained. We also
adapt a binary search technique from [9]. It is quite possible that in our iteration bound some
of the constants and the dependency on m, n and K can be improved, with a somewhat more
complex analysis. Also note that in the block-angular case each optimization optimizations over
Q(λ) breaks up up into a separate problem over each block.

Also, suppose that Q is given by a (linear) optimization oracle. It follows that the separation
problem over Q(λ) can be solved by a polynomial number of oracle calls. Under appropriate
assumptions( [24]; see [12]) this implies that a convex QP over Q(λ) can be solved by making a a
polynomial number of calls to the optimization oracle for Q.

The generalized packing problem can be reduced to a fractional packing problem as follows.
Let N be the number of non-zeros in A. For each entry aij > 0 introduce a new variable yij and a
new constraint

yij − aijxij = 0. (3)

Let
P =

{
y ∈ RN : ∃x ∈ Q such that (3) holds for all aij > 0

}
.
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It follows that
λ∗A,Q = min

y∈P
max

1≤i≤m

∑
j :aij>0

yij . (4)

Furthermore, P is closed convex, and because of (3), a convex separable quadratic program over
P reduces to one over Q. Hence, our result for fractional packing problems implies that, for any
ε ∈ (0, 1), the number of iterations required to compute an ε-optimal solution for the generalized
packing problem is

O
(
ε−1
√

N log m
)
.

Using ideas derived from [17], we show how the quadratic programs can be approximated by
piecewise-linear programs. For the special case of maximum concurrent flows, this leads to an
algorithm that computes ε-optimal flow by solving

O∗
(

ε−1K2E
1
2

(
LU + |E|dlog De+ |E| log(

1
ε
)
)

+ ε−1|V ||E|
)

shortest path problems, where LU denotes the number of bits needed to store the capacities, D is
the sum of all demands and K is the number of commodities grouped by source.

This paper is organized as follows. Section 2 presents our results on packing problems. Sec-
tion 3 specializes our results to the maximum concurrent flow problem with rational capacities and
demands. Section 4 describes the application of our techniques to the maximum multicommodity
flow algorithms. Section 5 considers covering problems, and section 6 considers mixed packing and
covering problems.

1.3 Comparison with previous results

First we note that our results appear to violate the Ω(ε−2) Klein-Young lower bound. This is not a
contradiction since our algorithms bypass the requirements needed for the analysis in [15] to hold
– in particular, we dynamically change the bounds on the variables. This feature will, in general,
result in iterates in the interior of the set Q. In addition, some of our algorithms solve quadratic
programs over Q, again leading to interior solutions.

The previous fastest algorithms for finding ε-optimal solutions to generalized packing problems
have a worst-case complexity that grows proportional to ε−2. Our methods improve on this, but
at the cost of increasing the dependence on n and m. Hence, for ε fixed or moderately small, our
algorithms are not the fastest. Note that, for example, the algorithm for maximum concurrent flows
in [5] has complexity O∗(ε−2|E|(K + |E|)), where K is the number of origin-destination commodity
pairs. See also [22, 8] for similar bounds.

Another class of algorithms worthy of comparison are the standard interior-point polynomial-
time algorithms for linear programming. Even though these are certainly not decomposition meth-
ods, their running time has a dependence on ε that grows like log ε−1, and hence for very small
ε these algorithms are certainly faster than ours. Within this class, the algorithms proposed by
Kapoor and Vaidya [13], and Vaidya [25, 26] deserve special attention. These algorithms are not
decomposition algorithms and when applied to a packing problem, [26] computes as a subroutine
the inverse n × n matrices ([14] restates this as m × m). Inspite of this, it is possible that the
algorithms in [25, 26, 13] are faster than ours even for moderate ε.

In summary, the primary contribution of this paper is to show that there exist decomposition
methods for which the iteration count for computing ε-optimal solutions to generalized packing
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problems (among others) grows like O(ε−1) and is polynomial in n and m. We expect that the
actual running time of our algorithms can be improved using ideas such as those in [22, 8, 5], and
possibly using randomization as in [14].

1.4 Notation

In this paper, an ε-optimal solution will denote a solution that has a relative error at most ε. We will
also at various points compute solutions with a given absolute error. In all of these cases we clearly
indicate this. We will use the standard O∗() notation to supress polylog factors in parameters
such as m, n and K. Also, since our focus in this paper is to design decomposition algorithms
with improved dependence on ε, we will occasionally state O() and O∗() bounds in terms of their
dependence on ε, while suppressing polynomial factors in m, n and K.

2 Fractional packing problems Pack(A, Q)

In this section we present our algorithm for Pack(A,Q). As with many of the previous algorithms,
our algorithm consists of an outer binary search procedure for refining an estimate for λ∗A,Q and an
inner procedure that is a potential reduction algorithm.

2.1 Outer loop: Binary search

In this section we abbreviate λ∗A,Q as λ∗. We assume that we are given bounds λl ≤ λ∗ ≤ λu

such that λu ≤ O(min {m,K})λl. Such bounds can be computed in polynomial time, see [3, 9] for
details. Next, these bounds are refined using a binary search procedure introduced in [9] (see [3] for
an alternate derivation). In the binary search procedure below, absolute(Q,A,λu, δ) denotes
any algorithm that returns an x ∈ Q such that λ(x) ≤ λ∗ + δ, i.e. an x that has an absolute error
less than δ.

binary search

Input: values (λl, λu) with λl ≤ λ∗ ≤ λu ≤ 2 min{m,K})λl

Output: ŷ ∈ Q such that λ(y) ≤ (1 + ε)λ∗

while (λu − λl) ≥ ελl do

set δ = 1
3(λu − λl)

set x̂← absolute(Q,A, λu, δ)
if λ(x̂) ≥ 1

3λl + 2
3λu set λl ← 2

3λl + 1
3λu

else set λu ← 1
3λl + 2

3λu

return x̂

In section 2.2 we construct an algorithm absolute with the following properties.

Theorem 1 There exists an algorithm absolute(A,Q, λu, δ) that computes, for any δ ∈ (0, λu),
an x̂ ∈ Q with λ(x̂) ≤ λ∗ + δ by solving O

(√
Kn log mλu

δ

)
separable convex quadratic programs

over Q(λu).

As a consequence, we have the following complexity bound for the above binary search procedure.

6



Corollary 2 The complexity of the binary search procedure is O(ε−1Cq
√

Kn log m) plus a poly-
nomial in K, n and m, where Cq is the cost of solving a convex separable quadratic program over
Q(λu).

Proof: It is easy to check that in each iteration the gap (λu − λl) is decreased by a factor of
2/3. Thus, the total number H of iterations is O(log(ε/mK)) and the total number of quadratic
programs solved by binary search is

√
Kn log m

H∑
h=0

(
3
2

)h

.

The result follows from the fact that the last term dominates the sum.

2.2 Inner loop: ABSOLUTE(A, Q, λu, δ)

In this section we describe the absolute(A,Q, λu, δ) algorithm. We construct this algorithm using
techniques from [19].

Define Q̄ ∈ R2n as follows.

Q̄
.=
{
(x, y) ∈ R2n : x ∈ Q, xj = λuyj , yj ≤ 1, j = 1, . . . , n

}
.

Since λ∗ ≤ λu, Q̄ 6= ∅. Let P denote the projection of Q̄ onto the space of the y variables, i.e.

P =
{
y ∈ Rn : ∃x s.t. (x, y) ∈ Q̄

}
.

If Q is a polyhedron, so are Q̄ and P . Moreover, P ⊆ [0, 1]n. Define

λ∗P
.= min

{
λ(y) = max

1≤i≤m
{aT

i y} : y ∈ P

}
.

Then it follows that λ∗P = λ∗/λu ≤ 1.
In this section we describe an algorithm that, for any γ ∈ (0, 1), computes ŷ ∈ P , with λ(ŷ) ≤

λ∗(P ) + γ, by solving O(γ−1
√

Kn log m) separable convex quadratic programs over P . Note
that these programs reduce to separable convex quadratic programs over Q(λu), and in the case
of multicommodity flow problems, these break up into separable convex quadratic min-cost flow
problems over each commodity. Choosing γ = δ

λu
will accomplish the objective of this section.

2.2.1 Potential reduction algorithm

For the purposes of this section, we assume that we are given a matrix A ∈ {0, 1}m×n with at
most K non-zeros per row, a (nonempty) closed convex set P ⊆ [0, 1]n, and a constant γ ∈ (0, 1).
Furthermore, it is known that λ∗P ≤ 1.

Define the potential function Φ(x) as follows [9, 21].

Φ(x) .=
1
|α|

ln

(∑
i

eαaT
i x

)
,

It is easy to show (see [9] for details) that for α ≥ 0

λ(x) ≤ Φ(x) ≤ λ(x) +
lnm

α
, ∀x ∈ P. (5)
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Let Φ∗ .= min{Φ(x) : x ∈ P} and choose α = 2 ln m
γ . Then (5) implies that we only need to compute

x ∈ P with Φ(x) ≤ Φ∗ + γ/2.
In what follows, the notation 〈x, y〉 will denote the usual Euclidean inner product xT y.

Algorithm QP

Input: P ⊆ [0, 1]n, 0/1 matrix A, α = ln m
γ , L = γ−1

√
8Knln(m)

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗P + γ
choose x(0) ∈ P . set t← 0.
while (t ≤ L) do

g(t) ← ∇Φ(x(t)

y(t) ← argminx∈P

{K|α|
2

n∑
j=1

(xj − x
(t)
j )2 + 〈g(t), x− x(t)〉

}

St(x) ← 2
(t + 1)(t + 2)

{
K|α|

n∑
j=1

(xj − x0
j )

2 +
t∑

h=0

(h + 1)[Φ(x(h)) + 〈g(h), x− x(h)〉]
}

z(t) ← argminx∈P {St(x)}

x(t+1) ←
( 2
t + 3

)
z(t) +

( t + 1
t + 3

)
y(t),

t ← t + 1

return y(L)

The following result is established in Section 2.2.2.

Theorem 3 For any t ≥ 0, Φ(y(t)) ≤ St(z(t)).

Theorem 3 implies the following corollary.

Corollary 4 Φ(y(L)) ≤ Φ∗ + γ/2.

Proof: Fix t ≥ 0. Let x∗ = argminx∈P {Φ(x)}. By definition

St(zt) ≤ St(x∗),

=
2

(t + 1)(t + 2)

{
Kα

n∑
j=1

(x∗j − x
(0)
j )2 +

t∑
h=0

(h + 1)[Φ(x(h)) + 〈g(h), x∗ − x(h)〉]
}
,

≤ 2Knα

(t + 1)(t + 2)
+ Φ∗, (6)

where (6) follows the following facts:

0 ≤ x∗i , x
(0)
i ≤ 1 ⇒ (x∗i − x

(0)
i ) ≤ 1,

Φ convex ⇒ Φ(x(h)) + 〈g(h), x∗ − x(h)〉 ≤ Φ(x∗).

Theorem 3 implies that Φ(y(t)) ≤ St(z(t)). Thus, we have that Φ(y(t)) − Φ∗ ≤ γ/2 for t ≥ L =√
8Kn ln m

γ .
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2.2.2 Proof of Theorem 3

The following result is a refinement of the Taylor series bound in [9] (see also [3, 20]). The proof is
provided in Appendix A.1.

Lemma 5 For all x, y ∈ P , we have Φ(y) ≤ Φ(x) + 〈∇Φ(x), y − x〉+ K|α|
2

∑
j(yj − xj)2.

The rest of the proof of Theorem 3 closely mirrors the development in Section 3 of [19]. The proof
is by induction on t. To establish the base case t = 0, note that

S0(z(0)) = K|α|
n∑

j=1

(z(0)
j − x0

j )
2 + Φ(x0) + 〈g0, z

(0) − x0〉

≥ K|α|
2

n∑
j=1

(z(0)
j − x0

j )
2 + Φ(x0) + 〈g0, z

(0) − x0〉

≥ K|α|
2

n∑
j=1

(y(0)
j − x0

j )
2 + Φ(x0) + 〈g0, y

(0) − x0〉 (7)

≥ Φ(y(0)), (8)

where (7) follows from definition of y(0) and (8) follows from Lemma 5.
To establish the induction step, assume that Φ(y(t)) ≤ St(z(t)). By definition, we have

St+1(x) =
( t + 1
t + 3

)
St(x)

+
( 2
t + 3

)
[Φ(xt+1) + 〈g(t+1), x− x(t+1)〉].

Since ∇2St = 4K|α|
(t+1)(t+2)I, and St is minimized at zt, we obtain

St+1(x) ≥
( t + 1
t + 3

)
St(z(t)) +

2K|α|
(t + 2)(t + 3)

∑
j

(xj − z
(t)
j )2

+
2

t + 3
[Φ(x(t+1)) + 〈g(t+1), x− x(t+1)〉]. (9)

By the induction hypothesis and the convexity of Φ, it follows that St(z(t)) ≥ Φ(y(t)) ≥ Φ(x(t+1))+
〈g(t+1), y(t) − x(t+1)〉. Substituting this bound in (9) and rearranging terms, we get

St+1(x) ≥ Φ(x(t+1)) +
2K|α|

(t + 2)(t + 3)

∑
j

(xj − z
(t)
j )2

+
〈
g(t+1),

( 2
t + 3

)
x +

( t + 1
t + 3

)
y(t) − x(t+1)

〉
,

≥ Φ(x(t+1)) +
2K|α|

(t + 3)2
∑
j

(xj − z
(t)
j )2

+
〈
g(t+1),

( 2
t + 3

)
x +

( t + 1
t + 3

)
y(t) − x(t+1)

〉
,

= Φ(x(t+1))
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+
K|α|

2

∑
j

(( 2
t + 3

)
xj +

( t + 1
t + 3

)
y

(t)
j − x

(t+1)
j

)2

+
〈
g(t+1),

( 2
t + 3

)
x +

( t + 1
t + 3

)
y(t) − x(t+1)

〉
, (10)

where (10) is obtained by substituting ( 2
t+3)z(t) = x(t+1)− ( t+1

t+3)y(t). Note that for x ∈ P , ( 2
t+3)x+

( t+1
t+3)y(t) ∈ P as well. Thus, the expression in (10) is lower bounded by:

St+1(x) ≥ Φ(x(t+1)) + min
y∈P

{K|α|
2

∑
j

(yj − x
(t+1)
j )2 + 〈g(t+1), y − x(t+1)〉

}
= Φ(x(t+1)) +

K|α|
2

∑
j

(yt+1
j − x

(t+1)
j )2 + 〈g(t+1), yt+1 − x(t+1)〉, (11)

≥ Φ(y(t+1), (12)

where (11) follows from the definition of y(t+1) and (12) follows from Lemma 5.
Remark: Note that the proofs of Corollary 4, Lemma 5 and Theorem 3 do not require α > 0.

2.2.3 Notes on algorithm QP

When defining the set Q̄ in Section 2.2 we impose the bounds yj ≤ 1 for all j. This bounding
technique is essential in that it effectively reduces width to at most n. This technique can be
read in the approach used in [9] and [14]. More recent algorithms, such as [8] and [5], do not
directly rely on this technique (arguably, their method for controlling width is similar in that they
directly control the magnitudes of the solution variables) and potentially our overall scheme could
be improved along the lines of [8] and [5]. The scaling technique in (3) is essential for the analysis
of algorithm QP to go through; the scaling methods implicit in [9] and [14] will not work in this
context.

2.3 Piecewise-linear approximation

Algorithm QP requires one to solve a sequence of separable quadratic programs over P . In
this section we describe a general method for approximating the the separable convex quadratic
function by piecewise-linear function with arbitrarily small error. This method is derived from one
given in Minoux [17],

Fix σ > 0 and w ≥ 0. Define a continuous convex piecewise-linear approximation Lσ,w(v) to
the quadratic function 1

2(v − w)2 : R+ 7→ R+ as follows

Lσ,w(v) .=
1
2
q2σ2 +

w2

2
− wv +

(
q +

1
2

)
σ(v − qσ), v ∈ [qσ, (q + 1)σ), q ∈ Z+.

For q ∈ Z+, the derivative L′σ,w(qσ) is not defined. The left-derivative L−σ,w(qσ) =
(
q − 1

2

)
σ − w

and the right-derivative L+
σ,w(qσ) =

(
q + 1

2

)
σ − w. For v ∈ (qσ, (q + 1)σ), q ∈ Z, the derivative

L′σ,w(v) exists and L′σ,w(v) = L+
σ,w(v) = L−σ,w(v) =

(
q + 1

2

)
σ−w. The following properties are easy

to obtain.

Lemma 6 The following hold for any σ > 0 and w ∈ R+.

10



(i) For q ∈ Z+, Lσ,w(qσ) = 1
2(qσ − w)2.

(ii) For v ∈ R+, 1
2(v − w)2 ≤ Lσ,w(v) ≤ 1

2(v − w)2 + σ2

8 ,

(iii) For v ∈ R+, v − w − σ
2 ≤ L

−
σ,w(v) ≤ v − w ≤ L+

σ,w(v) ≤ v − w + σ
2 .

2.4 Algorithm QPσ

Algorithm QPσ approximates each convex quadratic term 1
2(xj − x̄j)2 by the piecewise-linear

Lσj ,x̄j (xj) with possibly different σj ∈ (0, 1) for each variable xj . Thus, each optimization problem
in the course of Algorithm QPσ minimizes a piecewise-linear function over the convex set P .

Algorithm QPσ

Input: P ⊆ [0, 1]n, A, α = ln m
γ , L = γ−1

√
16Kn ln(m), σj ≤ 2−p, p = d3 ln(L)e =

d32 ln(16Kn ln(m)) + 3 ln( 1
γ )e

Output: ŷ ∈ P such that λ(ŷ) ≤ λ∗P + γ
choose x̂0 ∈ P . set t← 0.
while (t ≤ L) do

g(t) = ∇Φ(x̂(t))

ŷ(t) ← argminx∈P

{
K|α|

n∑
j=1

L
σj ,x̂

(t)
j

(xj)〈g(t), x− x̂(t)〉
}
,

Ŝt(x) ← 2
(t + 1)(t + 2)

{
2K|α|

n∑
j=1

L
σj ,x̂

(0)
j

(xj) +
t∑

h=0

(h + 1)[Φ(x̂h) + 〈gh, x− x̂h〉]
}

ẑ(t) ← argminx∈P {Ŝt(x)}

x̂(t+1) ←
( 2
t + 3

)
ẑ(t) +

( t + 1
t + 3

)
ŷ(t)

t ← t + 1

return y(L)

In view of Lemma 6, we would expect that Algorithm QPσ successfully emulates Algorithm
QPσ if the σj are small enough. In the Appendix we provide a proof of the following fact:

Theorem 7 For any t ≥ 0,

Φ(ŷ(t)) ≤ Ŝt(ẑ(t)) +
(5K|α|

2

)( t∑
h=1

1
h2

+ t
)
(
∑
k

σj).

This theorem implies the correctness of Algorithm QPσ:

Corollary 8 The output y(L) of Algorithm QPσ satisfies Φ(y(L)) ≤ Φ∗ + γ/2.

Proof: Suppose σj ≤ 2−p. Using Theorem 7 and Lemma 6(ii), we obtain

Φ(ŷ(t))− Φ∗ ≤ 2Kn|α|
(t + 1)(t + 2)

(
1 +

1
4
(2−2p)

)

11



+
(5K|α|n

2

)( t∑
h=1

1
h2

+ t
)
2−p,

< K|α|n
(2 + 2−(2p+1)

t2
+

5
2
(2 + t)2−p

)
.

Suppose t ≥ 2 and choose p ≥ 3 ln t. Then Φ(ŷ(t)) − Φ∗ ≤ 8K|α|n
t2

. A simple calculation now
establishes the result.

3 Concurrent flows with rational capacities and demands

In this section we discuss the special case of maximum concurrent flow with rational capacities and
show that the piecewise linear approximation introduced in section 2.3 can be solved efficiently for
this special case.

Suppose we have a network G = (V,E) with |V | nodes, |E| edges and K commodities. We
assume that the capacity ue of every edge e is a positive rational. The demand vector dk of every
commodity k is also assumed to be a rational vector. Since scaling capacities and demands by a
common positive constant does not change the value of the problem, we assume that all capacities
and demands are integers. Let fk,e denote the flow associated with commodity k on edge e and let
fk denote the |E|-vector with entries fk,e. Then the maximum concurrent flow problem is given by

λ∗ = min λ,

s.t.
∑K

k=1 fk,e ≤ λue, ∀k, e,
Nfk = dk, fk ≥ 0, k = 1, . . . ,K,

where N denotes the node-edge incidence matrix of the network. Let F = {f : Nfk = dk, fk ≥
0, k = 1, . . . ,K} denote the polyhedron of feasible flows.

In order to describe our piecewise-linear approach, we next review how the procedures we de-
scribed in the prior sections would apply to the concurrent flow problem.

Step 1: Define new scaled variables gk,e = fk,e/ue. This scaling leaves the objective unchanged
and the constraints are transformed to∑

k gk,e ≤ λ, e = 1, . . . , |E|,
g ∈ Q = {g ∈ RK×|E| : ∃f ∈ F with gk,e = fk,e/ue ∀k, e}

The problem is now in the canonical form described in Section 1, with m = |E| and n = K|E|.
Step 2: After i iterations of Binary Search (see Section 2.1), we get lower and upper bounds λl

and λu with

λu − λl

λl
≤

(
2
3

)i

O(min{m, K}). (13)

Let δ = 1
3(λu − λl). We seek a vector g with maxe

∑
k gk,e ≤ λ∗ + δ. Upon computing g, we either

reset λl ← λl + δ or λu ← λu − δ.

12



Step 3: Let P (λu) .= {z : ∃g ∈ Q with z = g/λu, 0 ≤ z ≤ 1}. Procedure Absolute computes the
vector g needed in Step 2 by approximately solving the scaled optimization problem

min λ,

s.t.
∑K

k=1 xk,e ≤ λ, e = 1, . . . , |E|,
x ∈ P (λu).

The value of this problem is λ∗/λu ≤ 1, and, Absolute computes a feasible x with maxe
∑

k xk,e ≤
λ∗/λu + γ, where γ = δ/λu.

In section 2.2.1 we show that in order to achieve the goal of procedure Absolute it is sufficient
that x satisfy Φ(x) ≤ Φ∗+γ/2. Corollary 8 in section 2.4 establishes that the output ŷ(t) produced
by Algorithm QPσ will satisfy this condition, provided:

(a) For each commodity k and edge e (i.e. each variable xk,e), we have σk,e ≤ 2−p.

(b) p ≥ d32 ln(16Kn ln(m)) + 3 ln( 1
γ )e .= p̄, and

(c) t ≥
√

16Kn ln m
γ .

Next we describe how to achieve (a)-(c) in the particular framework of the maximum concurrent
flow problem. Note that in terms of the initial flow variables fk,e, we have xk,e = 1

λuue
fk,e. We

apply the framework developed in section 2.3 to the concurrent flow problem as follows:

(1) We set p = p̄ + dlog De, where D is the sum of all demands, and

σk,e =
2−p

ue
, ∀k, e. (14)

This satisfies requirement (a) of Step 3.

(2) We modify Binary Search as follows. Every time a new upper bound λu is computed, we
replace it by a relaxed bound λ̂u ≥ λu, chosen so that 2p

λ̂u
=
⌊

2p

λu

⌋
. Note that λu ≤ D, and so

λ̂u ≤ λu
1−λu2−p ≤ λu(1 + O(2−p̄)). Since p̄ = 3

2 ln(Kn ln(m)) + 3 ln( 1
γ ), where γ = δ/λu, we have

that
λ̂U − λl

λu − λl
≤ 1 +

λuO (2−p̄)
λu − λl

≤ 1 + O

(
2−p̄

3γ

)
= 1 + o(1).

Thus, up to constants the the complexity bound in Corollary 2 remains unchanged. For sim-
plicity, in what follows we will use the notation λu to refer to the relaxed upper bound.

3.1 Solving the piecewise-linear problems

In this section we show how the modifications (1) and (2) above allow one to efficiently solve the
piecewise-linear problems encountered in algorithm QPσ.

The generic piecewise-linear problem that we need to solve is of the form

min
∑

k,e L̄k,e(xk,e)
s. t. x ∈ P (λu),

(15)
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where L̄k,e(·) = Lσk,e,x̄k,e
(·) is a continuous convex piecewise-linear function with breakpoints at

the integer multiples of 2−p

ue
and with pieces of strictly increasing slope.

For every k and e, define rk,e = 2puexk,e. In terms of the initial flow variables fk,e, we have
rk,e = 2p

λu
fk,e. Thus, after the change of variables the optimization problem is of the form

min
∑

k,e Lk,e(rk,e)
s. t. Nrk = 2p

λu
dk, ∀k,

rk,e ≤ 2pue, ∀k, e,

(16)

where Lk,e is continuous convex piecewise-linear function with breakpoints at the integers and
pieces of strictly increasing slope. The optimization problem (16) just a min-cost flow problem,
with integral demands and capacities. In summary, as discussed in the previous section, given λu

we will have to solve 2t problems of the form (16), where t is as in (c).
We solve each such problem using an approach similar to that described in [17] and in [1]

(Chapter 14). This approach is reminiscent of the cost-scaling (or capacity scaling) method for
solving standard (linear) minimum-cost flow problems. Our algorithm is described in Appendix A.3.
The algorithm assumes that a feasible, integral solution to (16) has been already computed (we
will account for this work separately). Given such a solution, the algorithm solves problem (16) by
performing

O

(∑
k

∑
e

(p + log ue)

)
= O(K|E|p + KLU )

shortest path computations, where LU is the number of bits needed to represent the largest capacity.
Since p = p̄ + dlog De, over all iterations of algorithm QPσ the total number of shortest path
computations incurred in calls to the algorithm in Appendix A.3 is

O

(√
Kn ln(m)

ε
(K|E|(p̄ + dlog De) + KLU )

)
= O∗

(
ε−1K2|E|

1
2

(
LU + |E|dlog De+ |E| log(

1
ε
)
))

,

plus lower order complexity terms.
Finally, we account for the complexity of computing a feasible integral solution to (16). Note

that all the problems (16) arising in a given call to algorithm QPσ make use of the same value of
λu and p – consequently, the feasible integral flows need be computed once per commodity, per
call to QPσ. In total, this will be O∗(ε−1) feasible flow computations per commodity. Each such
computation essentially amounts to a maximum flow problem. We can solve such a problem using
e.g. any augmenting path algorithm (which essentially relies on shortest path computations). The
simplest such algorithm (see [1]) peforms O(|V ||E|) shortest path computations.

In summary, we now have the following result:

Theorem 9 An ε-optimal solution to a maximum concurrent flow problem, on a graph G = (V,E)
with |V | nodes, |E| edges, and K commodities can be computed by solving

O∗
(

ε−1K2E
1
2

(
LU + |E|dlog De+ |E| log(

1
ε
)
)

+ ε−1|V ||E|
)

shortest path problems, plus lower complexity steps where LU denotes the number of bits needed to
store the capacities and D is the sum of demands.
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4 Maximum multicommodity flows

In this section we extend the techniques developed in the previous section to the maximum multi-
commodity flow problem (see [2]). See also [8, 5].

Let (sk, tk), k = 1, . . . ,K denote a set of source-sink node pairs. The goal of the maximum
multicommodity flow problem is to find a feasible multicommodity flow (one that satisfies the
capacity constraints on any edge) that maximizes the sum, over all k, of the amount of flow sent
from sk to tk. Our approach will be to reduce this problem into an equivalent maximum concurrent
flow problem.

Given a multicommodity flow, we will denote by Fk denote the flow sent from sk to tk, for
k = 1, . . . ,K. We denote by F ∗ the optimal value of the maximum multicommodity flow problem.
Finally, let

FL = max
k=1,...,K

{maxflow for commodity k alone } (17)

Then FL ≤ F ∗ ≤ FU = KFL. Moreover, for any feasible flow and any k we have Fk ≤ FL.
Suppose we introduce new variables Gk = FL−Fk ≥ 0. Then the maximum multicommodity flow
problem is equivalent to

G∗ .= min
K∑

k=1

Gk

s.t. Fk + Gk = FL, k = 1, . . . ,K, (18)
K∑

k=1

fk,e ≤ ue, e ∈ E,

fk nonnegative and satisfies flow conservation, k = 1, . . . ,K. (19)

Clearly,
∑

k Gk ≤ GU .= (K − 1)FL, and F ∗ + G∗ = FU . We assume that FL > 0, or else the
problem is trivial. Further, let δ = min

{
ε
K , 1

2

}
, and suppose (f̂k, F̂k, Ĝk), k = 1, . . . ,K, is a vector

satisfying:

(i)
∑K

k=1 fk,e ≤ (1 + δ)ue, ∀e,
(ii) constraints (18) and (19), and

(iii)
∑

k Ĝk ≤ (1 + δ)G∗.

Then
∑

k F̂k = FU −
∑

k Ĝk = F ∗ + G∗ −
∑

k Ĝk, and consequently∑
k F̂k

F ∗ ≥ 1− δ
G∗

F ∗ ≥ 1− δ
GU

FL
= 1− (K − 1)δ.

As a result, the vector ((1 + δ)−1f̂k), k = 1, . . . ,K, is an ε-optimal solution to the maximum
multicommodity flow problem.

In order to find a vector satisfying conditions (i)-(iii), we first establish a non-zero lower bound
for G∗. Consider the packing problem

min maxe∈E

{∑K

k=1
fk,e

ue

}
s.t. Fk = (1− δ/2)FL, ∀k,

fk satisfies flow conservation, ∀k.

(20)
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Note that (20) is a maximum concurrent flow problem. Let f̂ denote any (δ/4)-optimal solution
for (20). Consider the following two cases:

(a) λ(f̂) ≤ 1 + δ/2. In this case, f̂/(1 + δ/2) is a feasible flow with total flow (
∑

k Fk)/(1 + δ/2) ≥
(1− δ)KFL = (1− δ)FU , i.e. f̂/(1 + δ/2) is a δ-optimal multicommodity flow.

(b) λ(f̂) > 1 + δ/2. In this case, the packing problem (20) is infeasible. Thus, for any multicom-
modity flow satisfying the capacity constraints and flow conservation we have Fk < (1−δ/2)FL,
i.e. Gk > δFL/2 for at least one k. Hence, GL .= δFL/2 is a valid lower bound for G∗.

We next describe the procedure that computes a vector satisfying (i)-(iii). The procedure maintains
two bounds, 0 < GL ≤ G∗ ≤ GU , and a flow vector f̂ . The bound GL is initialized as indicated
above and GU = (K−1)FL. The flow vector f̂ is initialized as follows. Let k̄ denote the commodity
attaining the maximum in (17). Then f̂k̄ is set equal to any flow vector sending FL units from sk̄

to tk̄, while for all other k, the flow vector f̂k is the zero vector. Thus, the flow f̂ attains GU .
In any interation of the procedure, we set G = GL+GU

2 and compute an (δ/8)-approximate
solution to the packing problem

λ∗G = min max
{

maxe∈E

{∑K

k=1
fk,e

ue

}
,

∑
k

Gk

G

}
s.t. Fk + Gk = FL, ∀k,

fk satisfies flow conservation, ∀k.

(21)

Note that (21) is a concurrent flow problem in the graph G′ = (V ′, E′), V ′ = V ∪ {S, T}, E′ =
E ∪ {(S, T )} ∪ {(sk, S), (T, tk) : k = 1, . . . ,K}, u(sk,S) = u(T,tk) = ∞, and u(S,T ) = G (the flow on
edges (sk, S) and (T, tk) are both equal to Gk). Consequently, this task can be accomplished in
O∗(1

δ log(1
δ )) iterations of Algorithm QPσ where each iteration solves a piece-wise linear program

that reduces to a sequence of shortest path problems.
Let λG denote the congestion of any (δ/8)-optimal solution. There are two cases:

(a) λG > (1 + δ/8). Then we reset to GL ← G.

(b) λG ≤ (1 + δ/8). In this case we reset GU ← (1 + δ/8)G and update f̂ to be the solution we
computed to the packing problem.

The above procedure is repeated until GU − GL ≤ (δ/2)GL. At the start of the procedure,
GL = δFL/2 ≥ δGU/2K, and thus the number of bisection steps is bounded above by O(log(1

δ ))
(neglecting polynomial factors in n, m and K). To validate the procedure, note that each time
that GL is reset, i.e. case (a) holds, we have that λ∗G > 1, which implies that G ≤ G∗, and thus GL

is always a lower bound for G∗. When case (b) applies the flow vector obtained in that iteration
satisfies (i), (ii) and

∑
k Ĝk ≤ (1+ δ)G ≤ (1+ δ/8)GU . We conclude that at termination the vector

f̂ is as desired.
In summary, the number of iterations of Algorithm QPσ needed to find an ε-optimal maximum

multicommodity flow is bounded above by O
(

1
ε log2(1

ε )
)
, again neglecting polynomial factors in n,

m and K.
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5 Pure covering problems

The basic covering problem has the following structure:

µ∗ = max
x∈Q

min
1≤i≤m

{aT
i x}, (22)

where Q ⊆ Rn
+ is a compact, convex set, A = [a1, . . . , am]T ∈ Rm×n

+ and each positive aij has value
at least 1. For a given x ∈ Q, let µ(x) = min1≤i≤m{aT

i x}.

5.1 Upper and lower bounds

In order to start our procedure, we need polynomially separated upper and lower bounds for µ∗.
The following technique is used in [21]. For i = 1, . . . ,m, define

µi = max
x∈Q
{aT

i x}, x̄i = argmaxx∈Q{aT
i x}. (23)

Then, it is clear that
µ∗ ≤ µu

.= min
1≤i≤m

{µi}. (24)

Let x̄ = 1
m

∑m
k=1 x̄k. Then

µ(x̄) = min
1≤i≤m

{aT
i x̄} =

1
m

min
1≤i≤m

{ m∑
k=1

aT
i x̄k

}
≥ 1

m
min

1≤i≤m

{
aT

i x̄i

}
=

1
m

µu.

µl
.=

1
m

µu ≤ µ∗ ≤ µu. (25)

5.2 Refinement of bounds

In order to approximately compute µ∗ we would like to use a binary search procedure similar to
that described in section 2.1. In the covering case, however, we need a further elaboration. Given
any µu > 0 define

C(µu) .= {y ∈ [0, 1]n : ∃x ∈ Q s.t. x ≥ µuy} , (26)

and
µ∗u = max

y∈C(µu)
min

1≤i≤m
{aT

i y}. (27)

Then we have the following result.

Lemma 10 For any upper bound µu ≥ µ∗, we have that µ∗u = µ∗

µu
.

Proof: Let y∗ = argmax{µ(y) : y ∈ C(µu)}. Since y ∈ C(µu), there exists x̂ ∈ Q such that
x̂ ≥ µuy∗. Thus,

µ∗u = µ(y∗) ≤ µ(x̂)
µu
≤ µ∗

µu
.

To prove the bound in the other direction, let x∗ = argmaxx∈Q µ(x). Define

ŷj =
min{x∗j , µu}

µu
, j = 1, . . . , n.
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Then ŷ ∈ C(µu) and to complete the proof it will suffice to show that, for any 1 ≤ i ≤ m,∑
j aij ŷj ≥ µ∗

µu
. To see that this is the case, fix i, and note that if x∗h > µu for some h with aih > 0,

then by the assumption on A,
∑

j aij ŷj ≥ ŷh = 1 ≥ µ∗

µu
(since µu ≥ µ∗). If on the other hand

x∗j ≤ µu for all j with aij > 0, then

∑
j

aij ŷj =
∑

j aijx
∗
j

µu
≥ µ∗

µu
,

as desired.
The rest of the algorithm mirrors that for the packing case, in that we will use a potential function
method to implement each step of the binary search. However, unlike in the packing case the
quadratic optimization problems solved in the course of approximately minimizing the potential
function are defined over the sets C(µu), rather than over Q itself. At the end of this section we
will comment on why our approach needs the sets C(µu).

Consider a typical step of the binary search. We are given a lower bound µl and an upper bound
µu on µ∗. Setting δ = µu−µl

3 , the outcome of the binary search step is a x ∈ Q with µ(x) ≥ µ∗ − δ;
if µ(x) ≥ µl + 2δ then we reset µl ← µl + δ, while in the other case we reset µu ← µl + 2δ, thereby
improving the gap between the two bounds by a factor of 2/3. In view of the above Lemma, we
equivalently seek a y ∈ C(µu) with µ(y) ≥ µ∗P (µu) − γ, where γ = δ

µu
; and we will compare µ(y)

with µl
µu

+ 2γ.
The computation of such a y is accomplished through the use of a potential function. For the

covering case, we now use:

Φ(x) =
1
β

log

(
m∑

i=1

e−βaT
i x

)
for a suitably chosen β > 0. We have the following analogue of equation (5)

−µ(x) ≤ Φ(x) ≤ −µ(x) +
lnm

β
. (28)

Thus, given γ > 0, in order to compute y ∈ P (µu) with µ(y) ≥ µ∗u − γ we set β = 2 ln m
γ and

compute y ∈ C(µu) with Φ(y) ≤ Φ∗ + γ/2, where Φ∗ .= miny∈P (µu) Φ(y). For this purpose we can
use Algorithm QP given in section 2, verbatim. To see that this is a valid approach, recall that the
proofs in Section 2 and that of Lemma 5 are all valid for negative values of α.

Thus, neglecting polynomial factors in n and m, and polylog factors in γ, we will need O∗(γ−1)
iterations to compute y, and, in summary, we will compute an ε-optimal solution to the covering
problem in O∗(ε−1) iterations.

Of course, these iterations are quadratic programs over sets C(µu), not the original constraint
set Q. But note that if Q is block-angular, then so is C(µu). Also, y ∈ C(µu) if and only if there
exists s ≥ 0 such that µuy +s ∈ Q. In other words, if we are given a linear inequality description of
Q, then we obtain one for C(µu) with twice as many variables but with the same general structure.

Also, suppose that Q is given by a linear optimization oracle. Under appropriate assumptions,
a convex quadratic program over C(µu) reduces to a polynomial number of linear programs over
Q [24]. The key ingredient here is that that the separation problem over C(µu) can be solved by
making a polynomial number of calls to the optimization oracle over Q. To see that this is the
case, recall that we assumed Q ⊆ Rn

+ and write

Q≤(µu) .= {y ≥ 0 : ∃x ∈ Q s.t. x ≥ µuy} .
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Then, for any c ∈ Rn, we have that

max
{∑

j

cjyj : y ∈ Q≤(µu)
}

= max
{∑

j

c+
j yj : y ∈ Q≤(µu)

}
, (29)

where r+ .= max{r, 0}. Since the objective vector in the right-hand side of (29) is nonnegative, it
follows that this term is equal to

(µu)−1 max
{∑

j

c+
j yj : y ∈ Q

}
.

Thus, a linear optimization problem over Q≤(µu) reduces to an equivalent linear optimization
problem over Q. Consequently, the separation problem over Q≤(µu) requires a polynomial number
of oracle calls (to the optimization oracle over Q). Since

C(µu) = Q≤(µu) ∩ {y ∈ Rn : yj ≤ 1 ∀j} ,

we can conclude that the same for C(µu), as desired.

5.3 Why do covering problems require quadratic optimization over C(µu)

In order to motivate our use of the sets C(µu), it is worth revisiting some of our techniques used
for packing problems, in particular, the use of the potential function, which we adapted from
the packing case in a straighforward manner in order to handle covering problems (essentially, by
changing the sign of the exponent).

To understand the difference between packing and covering problems let us examine the role of
the sets P in packing problems. In the context of a fractional packing problem Pack(A,Q) with
A ∈ {0, 1}m×n, the critical observation is that λ∗ ≤ λu implies that xj ≤ λu for all j = 1, . . . , n.
In this setting the set P = λ−1

u Q ∩ [0, 1]n. Next, consider a generalized packing problem with a
nonnegative matrix A. We show that by introducing new variables this problem can be reduced to
a packing problem Pack(A,Q) with A ∈ {0, 1}m×n. The combined effect of adding variables and
of scaling by λ−1

u is the following: if aij > 0 then we generate a new variable of the form aij

λu
xj .

The fact that λ∗ ≤ λu implies that, without loss of generality, we can place an upper bound of 1 on
this new variable; or equivalently, λ∗ ≤ λu implies that the set Q̄ = {x ∈ Q : aij

λu
xj ≤ 1 ∀ aij > 0}

is nonempty, and λ(x) ≤ λu if and only if x ∈ Q̄. For any A ∈ {0, 1}m×n and x ∈ P , we have∑
j aijxj ≤ K for all i, where K denotes the maximum number of nonzeros terms in any row of

A. This bound is instrumental in the proof of Corollary 4 and Lemma 5, both of which are critical
in the analysis of the algorithm. In particular, the iteration count depends on K, and not on the
“width” [21] of the problem.

However, when dealing with a covering problem this approach fails. Given an upper bound µu

on µ∗, and a coefficient aij > 0, we cannot assume that µu

aij
is an upper bound on xj . The reason

for this is that there might be a different row i′ with 0 < ai′j < aij . Instead, we can only assume
that xj ≤ µu

akj
, where akj is the smallest positive coefficient in column j of A. However, when we

use this bound the arguments in Corollary 4 and Lemma 5 do not go through – instead of getting
a dependence on K we obtain a dependence on the maximum ratio between positive entries in any
given column j of A. Finally, we may be unable to place a (simple) upper bound on some xj , even
when A ∈ {0, 1}m×n and there is a known upper bound µu ≥ µ∗, because the structure of the set
Q may simply prevent us from doing so – in other words, a set of the form Q ∩ {xj ≤ µu} may be
empty, in contrast with what happens in the packing case.
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5.4 A special case

Consider the case where all positive entries of A have a common value. Without loss of generality,
A ∈ {0, 1}m×n. In addition suppose that Q is “downwards closed”, that is to say for any x ∈ Q,
if 0 ≤ x′ ≤ x then x′ ∈ Q as well. The combination of the two assumptions overcomes the
two difficulties listed above; and in this case the sets P have a particularly simple structure.
Suppose we are given an upper bound µu on µ∗. Then µuP ⊆ Q. In fact, optimizing a separable
quadratic program over P is equivalent to optimizing a separable quadratic program over the set
{x ∈ Q : 0 ≤ xj ≤ µu ∀ j}.

6 Algorithms for mixed packing and covering

In this section consider the mixed packing-covering problem

λ∗
.= min λ(x) .= max1≤i≤mp{pT

i x},
s.t. min1≤i≤mc{cT

i x} ≥ 1,
0 ≤ x ∈ Rn.

(30)

Here, the vectors pi, i = 1, . . . ,mp and ci, i = 1, . . . ,mc, are assumed to be nonnegative vectors.
We will present an algorithm that computes for any ε > 0, an ε-approximation to λ∗ in O∗(1

ε ) steps.
As before, each step consists of solving a separable, convex quadratic program, but now in addition
these quadratic programs are solved over sets of the form lj ≤ xj ≤ uj , 1 ≤ j ≤ n. Thus, each step
can be solved in O(n) time while using O(n) space.

6.1 Polynomially separated upper and lower bounds

In this section, we compute upper and lower bounds on λ∗. The analysis in this section is identical
to the analysis in [28].

Let p = 1
mp

∑mp

i=1 pi. For each k = 1, . . . ,mc let

λk = min
{
pT x : cT

k x ≥ 1, x ≥ 0
}

, (31)

= min
1≤j≤n

{
pj

ckj

}
.

Let x(k) denote the vector that achieves the minimum in (31), i.e.

x
(k)
j =

{
1

ckj
, j = argmin1≤j′≤n

{
pj′
ckj′

}
,

0, otherwise.

Then, it is clear that
λ∗ ≥ λl = max

1≤k≤mc

{λk} .

Let x̄ =
∑mc

k=1 x(k). Then

cT
i x̄ =

mc∑
k=1

cT
i x(k) ≥ cT

i x(i) ≥ 1,
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i.e. x̄ is feasible for (30), and

max
1≤i≤mp

{pT
i x̄} ≤

mp∑
i=1

pT
i x̄ = mpp

T x̄ = mp

mc∑
k=1

λk = mcmpλl = λu

Thus, we have a lower bound λl and an upper bound λu such that λu ≤ mcmpλl.
As was the case with all other problems considered in this paper, the bounds will be refined

using a binary search technique. In the general step of the binary search we have a lower bound
0 ≤ λl and an upper bound λu on λ∗. Let δ

.= λu−λl
2 , and let γ

.= δ
λu

. Thus, the relative gap
between the bounds is 2γ. We achieve this by converting the problem into an equivalent pure
covering problem and computing a good solution for the covering problem.

Since λu is an upper bound on λ∗, it follows that for 1 ≤ i ≤ mp, if pij > 0 we can assume that
xj ≤ λu

pij
. For 1 ≤ i ≤ mp, write Si

.= {j : pij > 0}. We then have:

λ∗

λu
= min max1≤i≤mp{

∑
j∈Si

yij},
s.t. (x, y) ∈ T.

(32)

where T ⊆ Rn
+ ×Rn

+ is the set of pairs (x, y), such that∑
j

cijxj ≥ 1, i = 1, . . . ,mc,

yij −
pij

λu
xj = 0, j ∈ Si, i = 1, . . . ,mp,

yij ≤ 1, j ∈ Si, i = 1, . . . ,mp,

x ≥ 0.

Note that λl
λu
≤ λ∗

λu
≤ 1, and 1− λl

λu
= 2γ. Rather than work with T itself, we change variables once

again, by defining variables zij = 1− yij . As we show below, this reformulation allows us to refine
the bounds on λ∗

λu
. To this end, consider the following covering problem:

µ∗ = max µ
s.t.

∑
j∈Si

zij ≥ µ(|Si| − (1− γ)), i = 1, . . . ,mp,∑
j cijxj ≥ µ, i = 1, . . . ,mc,

(x, z) ∈ Q,

(33)

where Q ⊆ Rn
+ ×Rn

+ is the set of pairs (x, z), such that

zij +
pij

λu
xj = 1, j ∈ Si, i = 1, . . . ,mp,

zij ≥ 0, j ∈ Si, i = 1, . . . ,mp,

x ≥ 0.

Let S denotes the largest |Si| and let (x̄, ȳ) denote any γ
3S -optimal solution of (33). Consider the

following two cases:

(a) µ(x̄, z̄) <
(
1− γ

3S

)
. In this case we claim that that 1 − γ is a lower bound on λ∗

λu
. Otherwise,

there exists (x̂, ŷ) ∈ T with
∑

j∈Si
yij ≤ 1−γ for each 1 ≤ i ≤ mp. Then it follows that µ∗ ≥ 1,

and a γ
3S -optimal solution to (33) must have µ ≥

(
1− γ

3S

)
, a contradiction.
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(b) µ(x̄, z̄) ≥
(
1− γ

3S

)
. Then

∑
j cij x̄ij ≥ 1− γ

3S , and

∑
j∈Si

z̄ij ≥
(

1− γ

3S

)
(|Si| − (1− γ)) ≥ |Si| − (1− 2γ/3), i = 1, . . . ,mp.

Define ȳij = 1 − z̄ij , j ∈ Si, i = 1, . . . ,mp and (x̃, ỹ) = 1
1− γ

3S
(x̄, x̄). Then it follows that∑

j cij x̃ij ≥ 1, for all i = 1, . . . ,mc. Thus, (x̃, ỹ) ∈ T . The objective

∑
j∈Si

ỹij ≤
1− 2γ/3
1− γ

3S

≤ 1− γ

3
, i = 1, . . . ,mp.

Consequently, we jave improved upper bound on λ∗

λu
.

In conclusion, in either case the gap is decreased by at least a factor of 5/6.
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A Appendix

A.1 Improved Taylor expansion

The derivative of ∇Φ(x) = AT π(x), where

πi(x) =
eαaT

i x∑m
j=1 eαaT

i x
, i = 1, . . . ,m.

We want to show that ‖AT (π(x)− π(y))‖2 ≤ K|α|‖x− y‖2.
The construction of the bound will proceed in two steps.

(a) L1-bound on AT : Since π(x) ≥ 0 and
∑m

i=1 πi(x) = 1 for all x, we endow the π-space with the
L1-norm. Define ‖A‖1,2 as follows.

‖A‖1,2 = max
{
‖AT π‖2 : ‖π‖1 = 1

}
,

= max

{
‖

m∑
i=1

πiai‖2 : ‖π‖1 = 1

}
,

= max
1≤i≤m

{‖ai‖2} =
√

K.

where the first equality in the last step follows from the fact that ‖a‖2 is a convex function
and achieves its maximum at the extreme points of the feasible set and the final bound follows
from the fact that number of 1’s in the vectors ai is bounded above by K. Thus, we have that

‖AT (π(x)− π(y))‖22 ≤ ‖A‖21,2‖π(x)− π(y)‖2,
≤ K‖π(x)− π(y)‖21. (34)

(b) Strong convexity of the entropy function: The next step is to show an upper bound of the form
‖π(x)− π(y)‖1 ≤ C‖x− y‖2 for an appropriate C. Since we need an upper bound on a norm,
one way to achieve this is to bound it above by a strongly convex function.

Define H(π) =
∑m

i=1 πi log(πi) for π such that π ≥ 0 and
∑m

i=1 πi = 1. Then, ∇2H =
diag(1/πi), and

yT (∇2H)y =
m∑

i=1

y2
i

πi
.

The RHS is a convex function and on minimizing this function over π in the simplex, we obtain
that

yT (∇2H)y ≥
( m∑

i=1

|yi|
)2

(35)
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Thus, we have that

(∇H(π(x)−∇H(π(y)))T (π(x)− π(y)) = (∇2H(πθ)(π(x)− π(y)))T (π(x)− π(y)),
≥ ‖π(x)− π(y)‖21,

where πθ = θπ(x) + (1 − θ)π(y), θ ∈ [0, 1], the first equality follows from the mean value
theorem, and the second inequality follows form (35). Substituting the value of ∇H(π(x)) and
∇H(π(x)), it follows that

‖π(x)− π(y)‖21 ≤
m∑

i=1

(log(πi(x))− log(πi(y))) (πi(x)− πi(y)) ,

=
m∑

i=1

(
α(aT

i x)− log
(∑

j

eαaT
j x
))

(πi(x)− πi(y))

−
m∑

i=1

(
α(aT

i y) + log
(∑

j

eαaT
j y)
))

(πi(x)− πi(y)),

= α
m∑

i=1

(
aT

i (x− y)
)
(πi(x)− πi(y))

− log (
∑
j

eαaT
j y))

m∑
i=1

(πi(x)− πi(y))

+ log (
∑
j

eαaT
j y))

m∑
i=1

(πi(x)− πi(y)), (36)

= α
m∑

i=1

(
aT

i (x− y)
)
(πi(x)− πi(y)),

= α(x− y)T (AT (π(x)− π(y))),
≤ |α|‖x− y‖2‖AT (π(x)− π(y))‖2, (37)

where (36) follows from the fact that π(x), π(y) are both elements of the simplex and (37)
follows from the Cauchy-Schwartz inequality.

Combining (34) and (37) we get

‖AT (π(x)− π(y))‖2 ≤ |α|‖A‖21,2‖x− y‖2,
≤ K|α|‖x− y‖2.

A.2 Proof of Theorem 7

We begin with the approximate version of the Taylor expansion (see Lemma 5).

Lemma 11 At any iteration t of Algorithm QPσ, we have that for any x ∈ P

Ŝt(x)− Ŝt(ẑ(t)) ≥ 2K|α|
(t + 1)(t + 2)

{ n∑
j=1

(xj − ẑ
(t)
j )2 −

n∑
j=1

(
σj +

1
4
σ2

j

)}
.
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Proof: Fix x ∈ P . Recall that the function Ŝt(x) is defined as follows.

Ŝt(x) =
2

(t + 1)(t + 2)

{
2K|α|

n∑
j=1

L
σj ,x̂

(0)
j

(xj) +
t∑

h=0

(h + 1)[Φ(x̂h) + 〈gh, x− x̂h〉]
}
.

Define

S̄t(x) =
2

(t + 1)(t + 2)

{
K|α|

n∑
j=1

(xj − x̂
(0)
j )2 +

t∑
h=0

(h + 1)[Φ(x̂(h)) + 〈ĝ(h), x− x̂(h)〉]
}
.

Then, by Lemma 6 (ii),

Ŝt(x)− Ŝt(ẑ(t)) ≥ S̄t(x)− S̄t(ẑ(t))− 2K|α|
(t + 1)(t + 2)

{ n∑
j=1

1
4
σ2

j

}
. (38)

Since S̄t is a quadratic function, it follows that

S̄t(x)− S̄t(ẑ(t)) =
2K|α|

(t + 1)(t + 2)

n∑
j=1

(xj − ẑ
(t)
j )2 + 〈∇S̄t(ẑ(t)), x− ẑ(t)〉. (39)

Consider the function Ŝt restricted to the one-dimensional segment between ẑ(t) and x. Ŝt is convex,
piecewise-linear, and is minimized at ẑ(t) (by definition of ẑ(t)). Hence, as we traverse the segment
from ẑ(t) to x, the slope of the first piece of the piecewise-linear function must be nonnegative. In
other words,

2
(t + 1)(t + 2)

{ n∑
j=1

[K|α|λj +
t∑

h=0

(h + 1)g(h)
j ](xj − ẑ

(t)
j )
}
≥ 0, (40)

where for 1 ≤ j ≤ n,

λj =


L+

σj ,x̂
(0)
j

(ẑ(t)
j ), xj ≥ ẑ

(t)
j ,

L−
σj ,x̂

(0)
j

(ẑ(t)
j ), otherwise,

and g
(h)
j is the j-th coordinate of g(h), j = 0, . . . , t. Since P ⊆ [0, 1]n, by Lemma 6 (iii) the second

term in the right-hand side of (39) is at least − 2K|α|
(t+1)(t+2)

∑n
j=1 σj ; consequently,

S̄t(x)− S̄t(ẑ(t)) ≥ 2K|α|
(t + 1)(t + 2)

{ n∑
j=1

(xj − ẑ
(t)
j )2 −

n∑
j=1

σj

}
.

Together with equation (38) this implies the desired result.
Theorem 7 is established by induction on t. By definition, we have that

Ŝ0(ẑ(0)) = 2K|α|
n∑

j=1

L
σj ,x̂

(0)
j

(ẑ(0)
j ) + Φ(x̂0) + 〈ĝ(0), z(0) − x0〉,

≥ K|α|
n∑

j=1

Lσj ,x̂0
j
(ẑ(0)

j ) + Φ(x̂0) + 〈ĝ(0), z(0) − x0〉,
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≥ K|α|
n∑

j=1

Lσj ,x̂0
j
(ŷ(0)

j ) + Φ(x̂0) + 〈ĝ(0), y(0) − x0〉,

≥ K|α|
2

n∑
j=1

(y(0)
j − x0

j )
2 + Φ(x0) + 〈g(0), y(0) − x0〉, (41)

≥ Φ(y(0)), (42)

where (41) follows from Lemma 6(ii) and (42) follows from the definition of y(0).
Next, the inductive step. Let x ∈ P . By Lemma 11, we have

Ŝt(x) ≥ Ŝt(ẑ(t)) +
2K|α|

(t + 1)(t + 2)

{ n∑
j=1

(ẑ(t)
j − x̂0

j )
2 −

n∑
j=1

(
σj +

1
4
σ2

j

)}
,

≥ Ŝt(ẑ(t)) +
2K|α|

(t + 1)(t + 2)

n∑
j=1

(ẑ(t)
j − x̂0

j )
2 − 5K|α|

2(t + 1)2
( n∑

j=1

σj

)
.

Applying the induction hypothesis, and continuing as in the proof of Theorem 3, we obtain the
following analog of the inequality following (11):

Ŝt+1(x) ≥ Φ(x̂(t+1))+min
y∈P

{K|α|
2

∑
j

(
yj − x̂

(t+1)
j

)2
+〈ĝ(t+1), y−x̂(t+1)〉

}
−
(5K|α|

2

)( t+1∑
h=1

1
h2

+t
)( n∑

j=1

σj

)
.

Applying Lemma 6 again, we obtain

Ŝt+1(x) ≥ Φ(x̂(t+1)) + K|α|
∑
j

L
σj ,x̂

(t+1)
j

(
ŷt+1

j

)
+ 〈ĝ(t+1), ŷt+1 − x̂(t+1)〉

−
(5K|α|

2

)( t+1∑
h=1

1
h2

+ t + 1
)( n∑

j=1

σj

)
,

≥ Φ(x̂(t+1)) +
K|α|

2

∑
j

(
ŷt+1

j − x̂
(t+1)
j

)2
+ 〈ĝ(t+1), ŷt+1 − x̂(t+1)〉

−
(5K|α|

2

)( t+1∑
h=1

1
h2

+ t + 1
)( n∑

j=1

σj

)
,

≥ Φ(ŷt+1)−
(5K|α|

2

)( t+1∑
h=1

1
h2

+ t + 1
)( n∑

j=1

σj

)
,

where the last inequality follows from Lemma 5.

A.3 Piecewise-linear min-cost flow problems

We are given an optimization problem of the form described in section 3.1,

min
∑

k,e Lk,e(rk,e)
s. t. Nrk = d̂k, 0 ≤ rk ≤ ûk, k = 1, . . . ,K,

(43)

where for every k and e, Lk,e is a continuous, convex, piecewise-linear function with breakpoints at
the integers and with pieces of strictly increasing slope, d̂k and ûk are integral, and uk,e ≤ 2q for
an appropriate integer q > 0. For each k and each vertex i, denote by d̂k,i the ith component of d̂k.
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We assume that for each k we have an integral flow that satisfies the constraints of (43). Thus, we
can convert (43) into an equivalent circulation form. Then we will have a problem of the form:

min
∑

k,e Lk,e(rk,e)
s. t. Nrk = 0, −ak ≤ rk ≤ bk, k = 1, . . . ,K,

(44)

where for every k and e, 0 ≤ ak,e, bk,e ≤ 2q and integral, and again Lk,e is a convex, continuous
piecewise-linear function with breakpoints at the integers (the Lk,e in (44) equal those in (43),
shifted by appropriate amounts).

We solve (44) by solving a sequence of circulation problems – our approach is similar to [17]. For
all integer h ∈ [0, q], k = 1, . . . ,K and e ∈ E, let L(h)

k,e denote the continuous, convex, piecewise-
linear function with breakpoints at the integer multiples of 2h, and which agrees with Lk,e at each
breakpoint.

Further, define a
(h)
k,e = d2−hak,ee and b

(h)
k,e = d2−hbk,ee. Then, the level-h problem is:

min
∑

k,e L
(h)
k,e(rk,e)

s. t. Nrk = 0,−b
(h)
k ≤ rk ≤ a

(h)
k , ∀k.

(45)

Thus, the level-0 problem is (44). We solve it by first solving the level-q problem, then the level-
(q − 1) problem, and so on. Note that for 0 ≤ h ≤ q, the function L(h)

k,e has 2q−h breakpoints
in the range of the level-h problem. Hence, the level-h problem can be seen as an ordinary (e.g.,
linear) minimum-cost circulation problem, on the graph Ĝ(h) obtained from the original graph G
by replacing each edge e with 2q−h parallel arcs, each with capacity 2h and appropriate cost. (To
avoid confusion, we use the term arc, rather than edge, which we reserve for G). We stress that
our algorithm will only implicitly work with Ĝh.

Inductively, suppose we have solved the level-h problem. We can assume, without loss of generality,
that all the entries of optimal circulation r

(h)
k are integer multiple of 2h. Let πh

k denote the node
potentials (see [17] or [1] for details). Our task is to refine r

(h)
k into an optimal circulation for the

level-(h− 1) problem.

Note that by definition, for any k and e,

(a) The functions L(h)
k,e and L(h−1)

k,e agree at integer multiples of 2h−1.

(b) Let q ∈ Z+. Then the slope of L(h−1)
k,e is less (resp. more) than the slope of L(h)

k,e in the interval[
2hq, 2hq + 2h−1

)
(resp. in the interval

[
2hq + 2h−1, 2h(q + 1)

)
).

(c) Either a
(h−1)
k,e = a

(h)
k,e or a

(h−1)
k,e = a

(h)
k,e − 2h−1, and similarly with the pair (b(h−1)

k,e , bh
k,e).

Thus, it is easy to see that r
(h)
k , together with the potentials π

(h)
k , nearly satisfies the optimality

conditions for the level-(h− 1) problem. More precisely, suppose we convert rh
k,e into a circulation

on the graph Ĝ(h−1) by following the following “greedy” rule: for any k and e, we “fill” the parallel
arcs corresponding to k, e in increasing order of cost (and thus, at most one arc will have flows
strictly between bounds). We may need an additional, “overflow” arc, also of capacity 2h−1 in the
case that r

(h)
k,e = a

(h)
k,e > a

(h−1)
k,e and similarly for b

(h)
k,e .
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Denote by r̂
(h)
k,e the resulting circulation in Ĝh−1. Then by properties (a)-(c) above, it follows that

at most one of the parallel arcs corresponding to a pair (k, e) either fails to satisfy the optimality
conditions with respect to the potentials π

(h)
k or is an overflow arc. Consequently, we can obtain

an optimal circulation in Ĝ(h−1) in at most O(|E|) flow pushes (each pushing 2(h−1) units of flow)
or computation of node potentials; and each such step requires the solution of a shortest path
problem. It is clear that (again because of (a)-(c) above) all of this can be done without explicitly
considering the graph Ĝ(h−1): instead, we always keep a single flow value for commodity k on any
edge e, which is always an integral multiple of 2(h−1) – if we wish to use one of the parallel arcs
corresponding to k, e in a push (or when searching for an augmenting path), then it takes O(1)
time to determine which of the arcs we will use. This completes the description of the inductive
step.

In summary, we have:

Lemma 12 Problem (43) can be solved by performing O(
∑

k

∑
e log uk,e) shortest path computa-

tions.
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