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Background

2003 North American blackout: initiated by several line trips

When a power line overheats it becomes exposed to several
risk factors

If the line overheats enough, it may sag and experience a
contact/arc, which will cause a trip

If overheating is detected, and is deemed risky, the line will
may be preemptively tripped

What is risky? What is a critical temperature?

2003 event: critical temperatures estimates were sometimes
incorrect.
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IEEE Standard 738

A comprehensive method for determining the temperature of
a power line,

as a function of current and pause physical
properties of the conductor .

It attempts to account for: wind, and ambient temperature,
day of the year, latitude and longitude, angle between wind
and conductor, altitude of sun (and time of day), density and
viscosity of air, several other factors.

It also relies on the heat equation for a “static” calculation.

Note: power lines can be more than 100 miles long.

How can we account for data uncertainty, errors,
unavailability?
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The heat equation on a 1-dimensional line

Line modeled as one-dimensional object parameterized by x ,
0 ≤ x ≤ L.

Time domain: [0, τ ]

(for example: OPF intervals)

I (t) = current at time t, T (x , t) = temperature at x at time t.

Heat equation:

∂T (x , t)

∂t
= κ

∂2T (x , t)

∂x2
+ αI 2(t)− ν(T (x , t)− T ext(x , t)),

where κ ≥ 0, α ≥ 0 and ν ≥ 0 are (line dependent) constants, and
T ext(x , t) is the ambient temperature at (x , t)
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This paper: stochasticity in the spatial domain (x)

CDC: stochasticity in the time domain (t)

The goal: algorithm- and data-driven estimates for “safe”
current/temperature limits
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Back to the stochastic heat equation

∂T (x , t)

∂t
= αI 2 − ν(T (x , t)− G (h(x)).

Recall: x ∈ [0, L], t ∈ [0, τ ]

Integrate and divide by L, get

1

L

∫ L

0

∂T (x , t)

∂t
dx = αI 2(t)− ν

L

∫ L

0

T (x , t)dx +
ν

L

∫ L

0

G (h(x))dx .

1

L

∫ L

0

∂T (x , t)

∂t
dx =

d

dt

1

L

∫ L

0

T (x , t)dx =
dH(t)

dt
.

H(t) ,
1

L

∫ L

0

T (x , t)dx (average internal line temperature at t)
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Once more

dH(t)

dt
= αI 2(t)− νH(t) + νR.

H(t) ,
1

L

Z L

0
T (x, t)dx, R ,

1

L

Z L

0
G(h(x))dx,

Solution:

H(t) =

∫ t

0

e−ν(t−s)αI 2(s)ds + R(1− e−νt) + Ce−νt ,

where

C = H(0) =
1

L

∫ L

0

T (x , 0)dx .

Control goal: make I (t) “large”, but with P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε
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Constant control: I (t) = Ī , for all t ∈ [0, τ ]

H(t) =

Z t

0
e−ν(t−s)

αĪ 2(s)ds + R(1− e−νt ) + Ce−νt
,

where

C = H(0) =
1

L

Z L

0
T (x, 0)dx.

Constant current ⇒ H(t) = (αν Ī 2 + R)(1− e−νt) + Ce−νt

So, H ′(t) > 0 for Ī large enough, (and of constant sign for any Ī ).

So, P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε equivalent to P(H(τ ) > k) ≤ ε.

Solution:

Ī 2 ≤ ν

α

k − Ce−ντ − ρε(1− e−ντ )

1− e−ντ
= L(τ, k)
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So, H ′(t) > 0 for Ī large enough, (and of constant sign for any Ī ).
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H(t) =

Z t

0
e−ν(t−s)
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So, P
(
maxt∈[0,τ ] H(t) > k

)
≤ ε equivalent to P(H(τ ) > k) ≤ ε.

Solution:

Ī 2 ≤ ν

α

k − Ce−ντ − ρε(1− e−ντ )

1− e−ντ

= L(τ, k)
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) What about performance?
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We want to maximize:

“Total” current: τ
2 I1 + τ

2 I2,i ?

“Average” current? Square current?

F(I1, I2) : a monotonely increasing function of I1, I2
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Adaptive control

Simplification:
R is a discrete random variable. P(R = ri ) = pi , i = 1, 2, . . . , n (known).

1. At time τ = 0, we compute values I1, and I2,i for i = 1, 2, . . . , n.
These values are used as follows:

2. For all t ∈ [0, τ/2], we set I (t) = I1.

3. At time τ/2, we observe the value of R. Assuming R = ri , then
for all t ∈ [τ/2, τ ], we set I (t) = I2,i .

Goals:

(a) P(H(τ ) > k) < ε. k smaller than critical temperature

(b) I1 ≤ L(τ/2).

(c) Maximize:
n∑

i=1

F (I1, I2,i )pi
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max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε

H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u

(k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint is of the form:
n∑

i=1

I{v1 I 2
1 + v2 I 2

2 (i) > u − ri (1− e−ντ ) − Ce−ντ }pi ≤ ε.

Bienstock, Blanchet, Li Columbia

Heat



max
n∑

i=1

F (I1, I2,i )pi

s.t. P(H(τ ) > k) ≤ ε
H(τ ) ≤ u (k < u < critical temp)

I1 ≤ L(τ/2, k)

other constraints.

Recall:

H(τ ) =

∫ τ

0

e−ν(τ−s)αI 2(s)ds + R(1− e−ντ ) + Ce−ντ ,

= v1 I 2
1 + v2 I 2

2 (i) + ri (1− e−ντ ) + Ce−ντ in state i

So chance constraint s of the form:
n∑

i=1

I{v1 I 2
1︸︷︷︸

z1

+ v2 I 2
2 (i)︸ ︷︷ ︸

z2(i)

> u − ri (1− e−ντ ) − Ce−ντ︸ ︷︷ ︸
wi

}pi ≤ ε.
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max
n∑

i=1

F̃ (z1, z2(i)) pi

s.t.
n∑

i=1

I{z1 + z2(i) > wi}pi ≤ ε

z1 + z2(i) ≤ ui (wi < ui )

z1 ≤ k̄

other constraints.

Lemma: At optimality,

z1 + z2(i) = wi or ui , all i

→ Use binary variable

yi =

{
0 when z1 + z2(i) = wi

1 when z1 + z2(i) = ui
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Continuous knapsack problem

max
n∑

i=1

F̃ (z1,wi − zi )pi (1− yi ) + F̃ (z1, ui − zi )piyi

s.t.
n∑

i=1

uipiyi ≤ ε

0 ≤ z1 ≤ k̄

yi = 0 or 1, all i .
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Continuous knapsack problem

max
z1∈[0,k̄]

M(z1)

M(z1) ,
n∑

i=1

F̃ (z1,wi − zi )pi (1− yi ) + F̃ (z1, ui − zi )piyi

s.t.
n∑

i=1

uipi yi ≤ ε

yi = 0 or 1, all i .

Practicable!
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