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A simple example:
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But what if the red node suddenly injects power?
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If red node suddenly injects power, offset using blue node:
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Better example: red node is cheap but unreliable source

° ° °
100 50 + error
100 <—
Base case solution:
150 50 50
il e -
° ° °
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If the red node suddenly injects power, offset using blue node:
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e o " =
D
120 * luo¢ A
100 50 + D
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Examples:

o/
100 10-10

capacity = 15

Any combination with X + Y = 25 “works” so longas Y < 15.

30-20
70

—
beo 100 Xf

100
-~

Any combination with X + Y = 12 “works” so long as
Yy < -3
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Power engineering for non-engineers

conductor

stator

steam

AAA

energy current, voltage

source
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Power engineering for non-power engineers
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Power engineering for non-power engineers
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Power engineering for non-power engineers
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AC Power Flows
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AC Power Flows

Real-time:
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AC Power Flows

Real-time:
1® gm

Vi) «

m Voltage at bus k: v (t) = V™ cos(wt +6))

m Current injected at k into km: ikm(t) = 1M cos(wt + 0} ).
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AC Power Flows

Real-time:

10 m
—

V) «

m Voltage at bus k: v (t) = V™ cos(wt +6))
m Current injected at k into km: ikm(t) = 1M cos(wt + 0} ).
m Power injected at k into km: pxm(t) = vi(t)ikm(t).

Averaged over period T:
. T
" pem = T Jo P(t) = FVIIE cos(0) — O)).
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10 im
y

V) «

= o = 7 Jo P(E) = FVI cos(0) — 64,)
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10 km
—

v «

= o = 7 Jo P(E) = FVI cos(0) — 64,)

- Vk(t) —_ Vl:nax Re ej(wt-i—@;‘(/)’ ikm(t) — I[nr:x Re ej(wt+91l<m)
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10 km
—

v «

B Pim = %fOT p(t) = %V,ﬁ"axl,f,’jx cos(G,‘{ —GLm)
- Vk(t) —_ Vl:nax Re ej(wt-i—@;‘(/)’ ikm(t) — I[nr:x Re ej(wt+91l<m)

max v max 1
Ve = k&% I, = K1 ef0m

V2 V2
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10 km
—

v «

B Pim = %fOT p(t) = %V,ﬁ"axl,f,’jx cos(G,‘{ —GLm)
- Vk(t) —_ Vl:nax Re ej(wt-i—@;‘(/)’ ikm(t) — I[nr:x Re ej(wt+91l<m)

max v max 1
Ve = k&% I, = K1 ef0m

V2 V2

m pm = | Villlkm| cos(8) — 0},) = Re(Vilf,)
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10 im
y

V) «

Pkm = % fOT p(t) = %V,ﬁ"axl,f,’jx cos(G,‘{ — GLm)
- Vk(t) —_ Vl:nax Re ej(wt-i—@;‘(/)’ ikm(t) — I[nr:x Re ej(wt+91l<m)

Cymax o max
Vk: k 6‘16',(7 /km: km ej@,nk

V2 V2

pim = |Viclllim| cos(0) = 0},) = Re(Vily,)

qkm = /m( Vkmlljm) and Skm = Pkm +_jqkm
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m V= %ejezy, lkm = %e/efnk (voltage, current)
Pkm = Re(vkllrm)v 9km = /m(Vka;:m) (1)
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m V= %ejezy, lkm = %e/efnk (voltage, current)
Pkm = Re(vkllrm)v 9km = /m(Vka;:m) (1)

Ikm = Yik,my(Vk = Vin),
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m V= %ejezy, lkm = %e/efnk (voltage, current)
Pkm = Re(vkllrm)v 9km = /m(Vka;:m) (1)

lkm = Yik,my(Vk = Vin), Yik,my = admittance of km.  (2)
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m V= %ejezy, lkm = %e/efnk (voltage, current)
Pkm = Re(vkllrm)v 9km = /m(Vka;:m) (1)

lkm = Yik,my(Vk = Vin), Yik,my = admittance of km.  (2)

Network Equations

N
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m V= Wefek v lkm = %efelnk (voltage, current)
Pkm = Re(vklltm)a dkm = /m(Vka,fm) (3)

lhm = Yik,my(Vik = Vi), Yik,my = admittance of km.  (4)

Network Equations

Z Prm = Pr, Z G = Gk Yk (5)

kmed(k) kmes(k)
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. Vmax . Imax .
V= f e19V lem = k—\}"iefelnk (voltage, current)

Pkm = Re(vklltm)v dkm = /m(Vka;:m) (3)

lhm = Yik,my(Vik = Vi), Yik,my = admittance of km.  (4)

Network Equations

Z Prm = Pr, Z G = Gk Yk (5)

kmed(k) kmes(k)

Generator: Py, | Vk| given. Other buses: P, Qx given.
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Optimal power flow (economic dispatch, tertiary control)

Bienstock

wh o '
ar ) R=m .
SR
-kt T T R . *
'y -8
2
ih

Used periodically to handle the next time window
(e.g. 15 minutes, one hour)

Choose generator outputs
Minimize cost (quadratic)
Satisfy demands, meet generator and network constraints

Constant load (demand) estimates for the time window
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DC-OPF:

min c(p) (convex piecewise-linear or quadratic)

s.t.
BY=p—d (6)
lyii(0i —6;)] < uj for each line jj (M)
Pg”"’ < pg < P for each bus g (8)
Notation:
p = vector of generations € R", d = vector of loads € R"
B € R™", (bus susceptance matrix)
—Yii, ij € & (set of lines)
Vij: Bi=1< Zkikjres Yhis i=J
otherwise

)
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Managing changing demands

Average Hourly Load, PJM Mid-Atlantic Region

55,000

50,000

45,000

40,000

Load, MW

35,000

30,000

25,000

20,000
° 2 a8 72 96 120 144 168
Hour of week
——7/27/2009 ("85 deg)  ——1/5/2009 (40deg) ——4/6/2000 (*55 deg)

UK Electricity Demand and Wind Generation April 2015

MW wind

8 days ull 347 GWh A 9 days lull 339 GWh

wwrueaze \ [

8 8 8 8 8 8 8

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

— demand —wind

Bienstock Columbia University

Controlling variability in power systems



v
|7 Q) ouzif14 (o) 0122114 () 01/23/14

Morning Peak Evening Peak

Display Data Paints
v

Original Forecast [ DayAhead W Instantanecus

Bienstock Columbia University

Controlling variability in power systems



QLDT 5 minute Demand and Price for period 19/02/2016 00:00 to 20/02/2016 02:35

RRP (Regional Reference Price)
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What happens when there is a generation/load mismatch

conductor
.,

energy current, voltage
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What happens when there is a generation/load mismatch

conductor
.,

energy current, voltage

Frequency response:
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What happens when there is a generation/load mismatch

conductor
.,

energy current, voltage

Frequency response:
mismatch AP
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What happens when there is a generation/load mismatch

conductor
.,

energy current, voltage

Frequency response:
mismatch AP = frequency change Aw ~ —cAP
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The swing equation

Hw = pm(t) — pe(t) — Dw

m w = w(t) = frequency

® pm(t) = mechanical power supplied by motor
m pe(t) = electrical power supplied by motor

m D > 0 (tamping)
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

“Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability).
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

“Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability). Agent: algorithmic computations,
humans.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

“Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability). Agent: algorithmic computations,
humans.

Once (?) a day: unit commitment problem. Chooses which
generators will operate in the next day or half-day.
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Managing changing demands

Primary frequency control. Handles instantaneous (small)
changes. Agent: physics.

Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

“Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability). Agent: algorithmic computations,
humans.

Once (?) a day: unit commitment problem. Chooses which
generators will operate in the next day or half-day. Agent:
algorithms, humans.

Bienstock Columbia University

Controlling variability in power systems



THE ENERGY CHALLENGE

Wind Energy Bumps Into Power Grid’s Limits

The Maple Ridge Wind farm near Lowville, N.Y. It has been forced to shut down when regional electric lines bex

congested

By MATTHEW L. WALD

Published: August 26, 2008

‘When the builders of the Maple Ridge Wind farm spent $320 million
to put nearly 200 wind turbines in upstate New York, the idea was to
get paid for producing electricity. But at times, regional electric lines
have been so congested that Maple Ridge has been forced to shut
down even with a brisk wind blowing.
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CIGRE -International Conference on Large High Voltage
Electric Systems '09

m Large unexpected fluctuations in wind power can cause
additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed — control difficult

A solution — expand transmission capacity! Difficult
(expensive), takes a long time

m Problems already observed when renewable penetration high

Bienstock Columbia University

Controlling variability in power systems



CIGRE -International Conference on Large High Voltage
Electric Systems '09

“Fluctuations” — 15-minute timespan
Due to turbulence (“storm cut-off")

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20 — 30%

Many countries are getting into this regime
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Control model

w; + w; = output of renewable at bus i.
w; = forecast, w; = error (uncertain).

0j = response at bus j.

Generic linear control:
51' = — E Qi Wi
i

m A: matrix of all values «jj; (A,..., A) €K
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Control model

w; + w; = output of renewable at bus i.
w; = forecast, w; = error (uncertain).

0j = response at bus j.

Generic linear control:
51' = — Z aj,- w;
m A: matrix of all values «jj; (A,..., A) €K
meg > ;(1—ay) = 0 Vifor “full-dimensional”

uncertainty set.
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Chance-constrained problems (one period)

Optimization Problem

min Z ck(Pg)
k

Pe,A

s.t. the following system is feasible:

— Flow balance:

renewables linear control
—— —~ =
B = PE + w+w - Aw — p?

— Line limits:
P(|fkm|>fkn,;fx) < €km Y  km

(ignoring e.g. generator constraints)
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Safety-constrained problems (one period)

Optimization Problem

min Z ck(P%)
K

Ps.A

s.t. the following system is feasible:
— Flow balance:

renewables linear control
—— —~ =
B =P+ w+w - Aw — p?

— Line limits:
|E(fkm)| + Vim Std(fxm) < £V km

km
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Optimization Problem

; g
min ; cx(Py)

)

s.t. the following system is feasible:
— Flow balance:
renewables linear control
B6 = P& + m - ﬂ
— Line limits, V km
7l VimlE(PE + W+ w — Aw — PO + v Std(fim) < I,

_ pd

wlz-m = “shift factors” — from row-differences of pseudo-inverse of B



Optimization Problem

- g
Pngli ; cx(Py)

)

s.t. the following system is feasible:
— Flow balance:
renewables linear control
B6 = P& + m - ﬂ
— Line limits, V km
7l VimlE(PE + W+ w — Aw — PO + v Std(fim) < I,

_ pd

— from row-differences of pseudo-inverse of B



Optimization Problem

min, ;Ck(Pf)
s.t. the following system is feasible:
— Flow balance:
renewables linear control
BO = PE+ Trw - Aw
— Line limits, V km
7l VimlE(PE + W+ w — Aw — PO + v Std(fim) < I,

_ pd

wlz-m = “shift factors” — from row-differences of pseudo-inverse of B
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Optimization Problem

s.t.
— Flow balance:
Y (T—az) =0 Vi, > (PE+wi—P) =0
J i
— Line limits, V km
TimYkm|E(PE + % + w — Aw — P)| + v Std(fim) < £
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mE(PE+w+ w—Aw — PY) = P& + w— P9

m Var(fy) = yim] (1= A)Q(l — AT)my;
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mE(PE+w+ w—Aw — PY) = P& + w— P9

m Var(fy) = yim] (1= A)Q(l — AT)my;

Q = covariance of w.
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mE(PE+w+ w—Aw — PY) = P& + w— P9

m Var(fy) = yim] (1= A)Q(l — AT)my;

Q = covariance of w.

m Yields SOCP formulation for safety-constrained problem.
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mE(PE+w+ w—Aw — PY) = P& + w— P9

m Var(fy) = yim] (1= A)Q(l — AT)my;

Q = covariance of w.
m Yields SOCP formulation for safety-constrained problem.

m Caution!
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mE(PE+w+ w—Aw — PY) = P& + w— P9

m Var(fy) = yim] (1= A)Q(l — AT)my;

Q = covariance of w.
m Yields SOCP formulation for safety-constrained problem.

m Caution! SOCP, but not easy in larger cases.

m Should use sparse formulation.

m Should use first-order or outer-envelope method.
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Previous work on chance-constrained OPF (review)

m Bienstock, Chertkov, Harnett

m Roald, Andersson, several coauthors
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Previous work on chance-constrained OPF (review)

m Bienstock, Chertkov, Harnett

m Roald, Andersson, several coauthors

Chance-constrained DC-OPF with linear control
5]' = — Z Qi Wi
i

can be implemented as convex optimization problem under
suitable assumptions
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Previous work on chance-constrained OPF (review)

Bienstock

m Bienstock, Chertkov, Harnett

m Roald, Andersson, several coauthors

Chance-constrained DC-OPF with linear control
5]' = — Z Qi Wi
i

can be implemented as convex optimization problem under
suitable assumptions

However such convex problems (SOCPs) beyond solvers
But first-order methods fast and accurate

Columbia University
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An extreme example of variability

2
TRy
b ¥
L k+D 2. 0,1,....k+1 = generators
. 1, ...k+1 = participating
a generators
K+2 b =load
b = stochastic node
k+1
0 1 «ee k

m Quantity k is large. Bus b has a load of L units.

m Stochastic injection at bus b = w, E(w) = u, Var(w) = o2.

Bienstock
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An extreme example of variability

2
TRy
b ¥
L k+D 2. 0,1,....k+1 = generators
. 1, ...k+1 = participating
a generators
K+2 b =load
b = stochastic node
k+1
0 1 «ee k

m Quantity k is large. Bus b has a load of L units.

m Stochastic injection at bus b = w, E(w) = p, Var(w) = o2,
20 > pu.

m Linear generation cost function at i (0 </ < k+1): ¢ip;.
<Cc=0C...=Ck < Ck41-

m Safety parameters equal to 3.
m (specify line limits later)
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u oo
b ¥
-

L k+D 2. 0,1,...,.k+1 = generators
. 1, ...k+1 = participating

a generators

K+2 b =load
b = stochastic node
k+1
0 1 «ee Kk

Unique optimal safety-constrained solution:
| Pg = L—pu—30.
m For1<i<k: aj=1/k and P® =30 /k.
B gyl = Pf+1 =0.
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u oo
b ¥
-

L k+D 2. 0,1,...,.k+1 = generators
. 1, ...k+1 = participating

a generators

K+2 b =load
b = stochastic node
k+1
0 1 «ee Kk

Unique optimal safety-constrained solution:
| Pg = L—pu—30.
m For1<i<k: aj=1/k and P® =30 /k.
B gyl = Pf+1 =0.

m Stochastic flow on ab = 30 — p — w, with variance o?.
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2
H c
b_¥
L k+D ®. 0,1,...k+1 = generators
. 1, ..k+1 = participating
a generators

K2 b=load
b = stochastic node
0 e

1 eee

Unique optimal safety-constrained solution:
| Pg = L—p—30o.
mForl<i<k: aj=1/k and Pig:3a/k.
B Q1 = PfH =0.

Stochastic flow on ab = 30 — p — w, with variance o~.
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2
H c
b_¥
L k+D ®. 0,1,...k+1 = generators
. 1, ..k+1 = participating
a generators

K2 b=load
b = stochastic node
0 e

1 eee

Unique optimal safety-constrained solution:
| Pg = L—p—30o.
mForl<i<k: aj=1/k and Pig:3a/k.
B Q1 = PfH =0.

Stochastic flow on ab = 30 — p — w, with variance o2,

Suppose we want to reduce variance on ab by 50%.
Then axy1 =1—+/.5~.293
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2
H c
b_¥
L k+D ®. 0,1,...k+1 = generators
. 1, ..k+1 = participating
a generators

K2 b=load
b = stochastic node
0 e

1 eee

Unique optimal safety-constrained solution:
| Pg = L—p—30o.
mForl<i<k: aj=1/k and Pig:3a/k.
B Q1 = PfH =0.

Stochastic flow on ab = 30 — p — w, with variance o2,

Suppose we want to reduce variance on ab by 50%.
Then axy1 =1—+/.5~.293
sum of line flow variances > (.5 + (.293)%(D + 1))o2.
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k+D ®. 0,1,...k+1 = generators
. 1, ..k+1 = participating

a K generators
K2 b=load
b = stochastic node
0 9

Unique optimal safety-constrained solution:
| Pg = L—p—30o.
mForl1<i<k: aj=1/k and Pig:?)O'/k.
B Q1 = PfH =0.

m Stochastic flow on ab = 30 — pu — w, with variance o2,

Suppose we want to reduce variance on ab by 50%.
Then aky1 =1—+.5=.293
D = 10, — sum of line flow variances ~ 1.35 2.
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Variance-aware SCOPF

; P& A(v2
min Ekjck( 0+ AW

st.Y (L—aj) =0 Wi Y (PE+w—Pf) =0
j

]

TamYikm E(fem)|l + Viem Std(fim) < £ ¥V km  (9)

m v2 = vector with entries Var(fj).

m A = “variance metric”.

Columbia University
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Variance-aware SCOPF

; P& A(v2
min Ekjck( 0+ AW

]

st.Y (L—aj) =0 Wi Y (PE+w—Pf) =0
j

TamYikm E(fem)|l + Viem Std(fim) < £ ¥V km  (9)

m v2 = vector with entries Var(fj).

m A = “variance metric”.
m Special case:  A(Var(f)) = > ;cx Aji(Var(fy))

Ajj convex nondecreasing,

Columbia University
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Variance-aware SCOPF

. Pg A 2
min Ekjck( 5) +  A(V?)

]

st.Y (L—aj) =0 Wi Y (PE+w—Pf) =0
j

TamYikm E(fem)|l + Viem Std(fim) < £ ¥V km  (9)

m v2 = vector with entries Var(fj).

m A = “variance metric”.

m Special case:  A(Var(f)) = > ;cx Aji(Var(fy))

Aj; convex nondecreasing, but F could depend on solution

Columbia University
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Variance metric Z,-jef Aji(Var(f;))

F = all lines. Var-aware SCOPF is a convex optimization
problem.

Bienstock Columbia University
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Variance metric .. Aj(Var(f;))

F = all lines. Var-aware SCOPF is a convex optimization
problem.

F = set of N lines with largest flow variance, N fixed.
E.g. N =50
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Variance metric .. Aj(Var(f;))

F = all lines. Var-aware SCOPF is a convex optimization
problem.

F = set of N lines with largest flow variance, N fixed.
E.g. N = 50. Convex problem?
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Variance metric .. Aj(Var(f;))

F = all lines. Var-aware SCOPF is a convex optimization
problem.

F = set of N lines with largest flow variance, N fixed.
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Variance metric Z,-jef Aji(Var(f;))

F = all lines. Var-aware SCOPF is a convex optimization
problem.

F = set of N lines with largest flow variance, N fixed.
E.g. N = 50. Convex problem? Convex.

F = set of N lines with largest flow magnitude, N fixed.
Convex?

Logarithmic barrier function.

Aj = —plog(fim™ — |[E(fim)| — Vim Std(fim))

where p >0
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Variance-aware SCOPF

min > al(PF) +  Ljer Bi(Var(fy)
’ k

i

st.Y (L—aj) =0 Wi Y (PE+w—Pf) =0
j

T8 VimlE(fam)| + Vim Std(fim) < £V km (10)

min zk:Ck(Pf)— p log(fim™ — [E(fim)| — vkm Std(fkm))

S.t.Z(l—Oéj,‘):O Vi; Z(P;g‘FV_Vi_Pid) =0

J
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Variance-aware SCOPF

fhax  / km

km

7Tlz—mykm|E(fkm)| + Vkm Std(fim) <

Columbia University
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Correction vs Formal Variance-Aware Optimization

Several groups of authors:

Outer-approximation algorithm for chance-constrained
DC-OPF converges in few iterations.

Only a few lines are “at risk” in realistic cases.
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Correction vs Formal Variance-Aware Optimization

Several groups of authors:

Outer-approximation algorithm for chance-constrained
DC-OPF converges in few iterations.

Only a few lines are “at risk” in realistic cases.

Low-hanging fruit: instead of variance-aware optimization,
first solve SC-OPF problem, and then correct or adjust to
reduce variability without increasing cost (by much).
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GENERIC CORRECTION TEMPLATE

Input: an instance of the safety-constrained problem and a
variance metric.

Step I _Sol\ie safety-constrained OPF problem, with
solution (P8, .A).

Step Il. Perform a small number of adjustment itera-
tions which shift (P8, A) to a new feasible solution that
attains an improved value of the variance metric, while at the
same time increasing generation cost in a moderate manner.

Bienstock Columbia University

Controlling variability in power systems



Reroute(T, A)

m A : a given control matrix
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Reroute(r, A)

m A : a given control matrix

m So Var(fym) = y2 ml (I — ) (/—AT)ﬂ'km = Vim
is fixed for every km

e 0<7<1.
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Reroute(r, A)

m A : a given control matrix

m So Var(fkm) = ykmﬂ-km(l ) (/—AT)ﬂ'km = Vkm
is fixed for every km

R0<T <L
; g
min Zk:ck(Pk)

st. > (PE+w—Pf) =0

i
Trlz—mYkm‘E(fkm)‘ + Vkmm < (1_ 7.))cmax v km

Here, fim is an implicit function of P& and A
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VShift(P#)

m P& : generation vector. f : corresponding flow vector.

min > Bk (Vi = AR~ AT )7 )
A =
meF(f)

constraints on \A: Z(l— aji) = 0 Vi
J

— Keep power flows fixed, improve on control
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Correction procedure

Input: Feasible solution (P80, 4g), 0<7<1.
For k=1,2,...,K perform iteration k:

1. Run Reroute(Ay_1, 7). If infeasible STOP.
Else let P& be optimal.

2. Solve VShift(P8-¥), with solution Ay.

3. Set Ax — (1 —XA)Ar_1 + AN,
0 < X\ < 1 chosen so that P&k, A, feasible

4.1f A(A) > A(Ag_1), STOP.
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Correction procedure

Input: Feasible solution (P80, 4g), 0<7<1.
For k=1,2,...,K perform iteration k:

1. Run Reroute(Ay_1, 7). If infeasible STOP.
Else let P& be optimal.

2. Solve VShift(P8-¥), with solution Ay.

3. Set Ax — (1 —XA)Ar_1 + AN,
0 < X\ < 1 chosen so that P&k, A, feasible

4.1f A(A) > A(Ag_1), STOP.

Thm.: In convex case if we stop in Step 4, then A minimum.
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Example on case2746wp

m 2746 buses, 3514 branches, 520 generators

m 22 stochastic injection sites, sum of mean injections 4611.57
(penetration 18.5% penetration)

m average ratio of standard deviation to mean ~ 30%.

Bienstock Columbia University

Controlling variability in power systems



Example on case2746wp

m 2746 buses, 3514 branches, 520 generators

m 22 stochastic injection sites, sum of mean injections 4611.57
(penetration 18.5% penetration)

m average ratio of standard deviation to mean ~ 30%.

m Variance metric: . Var(f;), where F is the union of

Bienstock Columbia University

Controlling variability in power systems



Example on case2746wp

m 2746 buses, 3514 branches, 520 generators

m 22 stochastic injection sites, sum of mean injections 4611.57
(penetration 18.5% penetration)

m average ratio of standard deviation to mean ~ 30%.
m Variance metric: . Var(f;), where F is the union of

m The 100 lines with largest flow magnitude
m Lines ij where |f;| + v;Std(f;) > (1 — T) £
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Two iterations

m Initial variance metric: =~ 6.3 x 1094,
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Two iterations

m Initial variance metric: =~ 6.3 x 1094,
m After one iteration: ~ 4.65 x 1094,

m After two iterations: =~ 4.50 x 1094,
Approx. 40% reduction relative to original.

Cost nearly constant after two iterations

m Variance-shifting SOCP has approximately 1.4 x 10% variables

and constraints and 1 x 10% nonzeros

Solution times of a few seconds
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