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Better example: red node is cheap but unreliable source
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Examples:
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Any combination with X + Y = 25 “works” so long as Y ≤ 15.
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Any combination with X + Y = 12 “works” so long as
Y ≤ −3.
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Power engineering for non-engineers
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magnetic

field
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energy
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Power engineering for non-power engineers
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AC Power Flows

Real-time:

k m

V(t)
k

I(t) km

Voltage at bus k : vk(t) = Vmax
k cos(ωt + θVk )

Current injected at k into km: ikm(t) = Imax
km cos(ωt + θIkm).

Power injected at k into km: pkm(t) = vk(t)ikm(t).

Averaged over period T :

pkm
.

= 1
T

∫ T
0 p(t) = 1

2V
max
k Imax

km cos(θVk − θIkm).
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k m

V(t)
k

I(t) km

pkm
.

= 1
T

∫ T
0 p(t) = 1

2V
max
k Imax

km cos(θVk − θIkm)

vk(t) = Vmax
k Re e j(ωt+θVk ), ikm(t) = Imax

km Re e j(ωt+θIkm)

Vk
.

=
Vmax
k√

2
e jθ

V
k , Ikm

.
=

Imax
km√

2
e jθ

I
mk

pkm = |Vk ||Ikm| cos(θVk − θIkm) = Re(Vk I
∗
km)

qkm
.

= Im(VkmI
∗
km) and Skm

.
= pkm + jqkm
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Vk
.

=
Vmax
k√

2
e jθ

V
k , Ikm

.
=

Imax
km√

2
e jθ

I
mk (voltage, current)

pkm = Re(Vk I
∗
km), qkm = Im(VkmI

∗
km) (1)

Ikm = y{k,m}(Vk − Vm), y{k,m} = admittance of km. (2)

Network Equations

k
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Optimal power flow (economic dispatch, tertiary control)

Used periodically to handle the next time window
(e.g. 15 minutes, one hour)

Choose generator outputs

Minimize cost (quadratic)

Satisfy demands, meet generator and network constraints

Constant load (demand) estimates for the time window
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DC-OPF:

min c(p) (convex piecewise-linear or quadratic)

s.t.

Bθ = p − d (6)

|yij(θi − θj)| ≤ uij for each line ij (7)

Pmin
g ≤ pg ≤ Pmax

g for each bus g (8)

Notation:

p = vector of generations ∈ Rn, d = vector of loads ∈ Rn

B ∈ Rn×n, (bus susceptance matrix)

∀i , j : Bij =


−yij , ij ∈ E (set of lines)∑

k;{k,j}∈E ykj , i = j

0, otherwise
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Managing changing demands
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What happens when there is a generation/load mismatch

conductor

steam
magnetic

field

statorrotor

source
energy

ω

current,  voltage

Frequency response:
mismatch ∆P ⇒ frequency change ∆ω ≈ −c ∆P
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The swing equation

Hω̇ = pm(t)− pe(t)− Dω

ω = ω(t) = frequency

pm(t) = mechanical power supplied by motor

pe(t) = electrical power supplied by motor

D > 0 (tamping)
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Managing changing demands

1 Primary frequency control. Handles instantaneous (small)
changes.

Agent: physics.

2 Secondary control. Handles changes that span more than a
few seconds. Agent: algorithms, pre-set controls.

3 “Tertiary” control: OPF (Optimal power flow). Manages
longer lasting changes. Run every few minutes. Goal:
economic generation that meets demands while maintaining
feasibility (stability). Agent: algorithmic computations,
humans.

4 Once (?) a day: unit commitment problem. Chooses which
generators will operate in the next day or half-day. Agent:
algorithms, humans.
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

Large unexpected fluctuations in wind power can cause
additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed – control difficult

A solution – expand transmission capacity! Difficult
(expensive), takes a long time

Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems ’09

“Fluctuations” – 15-minute timespan

Due to turbulence (“storm cut-off”)

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20− 30%

Many countries are getting into this regime
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Control model

1 w̄i + wi = output of renewable at bus i .
w̄i = forecast, wi = error (uncertain).

2 δj = response at bus j .

Generic linear control:

δj = −
∑
i

αji wi

A: matrix of all values αji ; (A, . . . ,A) ∈ K

e.g.
∑

j (1− αji ) = 0 ∀i for “full-dimensional”
uncertainty set.
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Chance-constrained problems (one period)

Optimization Problem

min
Pg ,A

∑
k

ck(Pg
k )

s.t. the following system is feasible:

→ Flow balance:

B θ = Pg +

renewables︷ ︸︸ ︷
w̄ + w −

linear control︷ ︸︸ ︷
A w −Pd

→ Line limits:

P(|fkm| > f max
km ) < εkm ∀ km

(ignoring e.g. generator constraints)
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Safety-constrained problems (one period)

Optimization Problem

min
Pg ,A

∑
k

ck(Pg
k )

s.t. the following system is feasible:

→ Flow balance:

B θ = Pg +

renewables︷ ︸︸ ︷
w̄ + w −

linear control︷ ︸︸ ︷
A w −Pd

→ Line limits:

|E(fkm)| + νkm Std(fkm) ≤ f max
km ∀ km
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Optimization Problem

min
Pg ,A

∑
k

ck(Pg
k )

s.t.

→ Flow balance:∑
j

(1− αji ) = 0 ∀i ;
∑
i

(Pg
i + w̄i − Pd

i ) = 0

→ Line limits, ∀ km

πTkmykm|E(Pg + w̄ + w − A w − Pd)| + νkm Std(fkm) ≤ f max
km

Bienstock Columbia University

Controlling variability in power systems



E(Pg + w̄ + w − A w − Pd) = Pg + w̄ − Pd

Var(fij) = y2
ijπ

T
ij (I −A)Ω(I −AT )πij ;

Ω = covariance of w .

Yields SOCP formulation for safety-constrained problem.

Caution! SOCP, but not easy in larger cases.

Should use sparse formulation.

Should use first-order or outer-envelope method.

Bienstock Columbia University

Controlling variability in power systems



E(Pg + w̄ + w − A w − Pd) = Pg + w̄ − Pd

Var(fij) = y2
ijπ

T
ij (I −A)Ω(I −AT )πij ;

Ω = covariance of w .

Yields SOCP formulation for safety-constrained problem.

Caution! SOCP, but not easy in larger cases.

Should use sparse formulation.

Should use first-order or outer-envelope method.

Bienstock Columbia University

Controlling variability in power systems



E(Pg + w̄ + w − A w − Pd) = Pg + w̄ − Pd

Var(fij) = y2
ijπ

T
ij (I −A)Ω(I −AT )πij ;

Ω = covariance of w .

Yields SOCP formulation for safety-constrained problem.

Caution! SOCP, but not easy in larger cases.

Should use sparse formulation.

Should use first-order or outer-envelope method.

Bienstock Columbia University

Controlling variability in power systems



E(Pg + w̄ + w − A w − Pd) = Pg + w̄ − Pd

Var(fij) = y2
ijπ

T
ij (I −A)Ω(I −AT )πij ;

Ω = covariance of w .

Yields SOCP formulation for safety-constrained problem.

Caution!

SOCP, but not easy in larger cases.

Should use sparse formulation.

Should use first-order or outer-envelope method.

Bienstock Columbia University

Controlling variability in power systems



E(Pg + w̄ + w − A w − Pd) = Pg + w̄ − Pd

Var(fij) = y2
ijπ

T
ij (I −A)Ω(I −AT )πij ;

Ω = covariance of w .

Yields SOCP formulation for safety-constrained problem.

Caution! SOCP, but not easy in larger cases.

Should use sparse formulation.

Should use first-order or outer-envelope method.
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Previous work on chance-constrained OPF (review)

Bienstock, Chertkov, Harnett

Roald, Andersson, several coauthors

1 Chance-constrained DC-OPF with linear control

δj = −
∑
i

αji wi

can be implemented as convex optimization problem under
suitable assumptions

2 However such convex problems (SOCPs) beyond solvers
But first-order methods fast and accurate
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An extreme example of variability

0
1 k

b = stochastic node

0,1,...,k+1 = generators

1, ...,k+1 = participating

 b = load

generators

k+1

k+2 

k+D
L

µ,  σ 2

b

a

Quantity k is large. Bus b has a load of L units.
Stochastic injection at bus b = ω, E(ω) = µ, Var(ω) = σ2.

2σ > µ.
Linear generation cost function at i (0 ≤ i ≤ k + 1): cipi .
c0 < c1 = c2 . . . = ck < ck+1.
Safety parameters equal to 3.
(specify line limits later)
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1 k

b = stochastic node

0,1,...,k+1 = generators

1, ...,k+1 = participating

 b = load

generators

k+1

k+2 

k+D
L

µ,  σ 2

b

a

Unique optimal safety-constrained solution:

Pg
0 = L− µ− 3σ.

For 1 ≤ i ≤ k : αi = 1/k and Pg
i = 3σ/k .

αk+1 = Pg
k+1 = 0.

Stochastic flow on ab = 3σ − µ− ω, with variance σ2.
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0 = L− µ− 3σ.

For 1 ≤ i ≤ k : αi = 1/k and Pg
i = 3σ/k .

αk+1 = Pg
k+1 = 0.

Stochastic flow on ab = 3σ − µ− ω, with variance σ2.

Suppose we want to reduce variance on ab by 50%.
Then αk+1 = 1−

√
.5 ≈ .293

sum of line flow variances > (.5 + (.293)2(D + 1))σ2.
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0,1,...,k+1 = generators

1, ...,k+1 = participating
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µ,  σ 2

b

a

Unique optimal safety-constrained solution:

Pg
0 = L− µ− 3σ.

For 1 ≤ i ≤ k : αi = 1/k and Pg
i = 3σ/k .

αk+1 = Pg
k+1 = 0.

Stochastic flow on ab = 3σ − µ− ω, with variance σ2.

Suppose we want to reduce variance on ab by 50%.
Then αk+1 = 1−

√
.5 ≈ .293

D = 10, → sum of line flow variances ≈ 1.35σ2.
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Variance-aware SCOPF

min
Pg ,A

∑
k

ck(Pg
k ) + ∆(v2)

s.t.
∑
j

(1− αji ) = 0 ∀i ;
∑
i

(Pg
i + w̄i − Pd

i ) = 0

πTkmykm|E(fkm)| + νkm Std(fkm) ≤ f max
km ∀ km (9)

v2 .
= vector with entries Var(fij ).

∆ = “variance metric”.

Special case: ∆(Var(f )) =
∑

ij∈F ∆ij (Var(fij ))

∆ij convex nondecreasing, but F could depend on solution
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Variance metric
∑

ij∈F ∆ij(Var(fij))

1 F = all lines. Var-aware SCOPF is a convex optimization
problem.

2 F = set of N lines with largest flow variance, N fixed.
E.g. N = 50. Convex problem? Convex.

3 F = set of N lines with largest flow magnitude, N fixed.
Convex?

4 Logarithmic barrier function.

∆ij = −ρ log(f max
km − |E(fkm)| − νkm Std(fkm))

where ρ > 0
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Variance-aware SCOPF

min
Pg ,A

∑
k

ck(Pg
k ) +

∑
ij∈F ∆ij (Var(fij ))

s.t.
∑
j

(1− αji ) = 0 ∀i ;
∑
i

(Pg
i + w̄i − Pd

i ) = 0

πTkmykm|E(fkm)| + νkm Std(fkm) ≤ f max
km ∀ km (10)

min
Pg ,A

∑
k

ck(Pg
k )− ρ log(f max

km − |E(fkm)| − νkm Std(fkm))

s.t.
∑
j

(1− αji ) = 0 ∀i ;
∑
i

(Pg
i + w̄i − Pd

i ) = 0
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Variance-aware SCOPF

min
Pg ,A

∑
k

ck(Pg
k ) + ∆(v2)
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Correction vs Formal Variance-Aware Optimization

Several groups of authors:

1 Outer-approximation algorithm for chance-constrained
DC-OPF converges in few iterations.

2 Only a few lines are “at risk” in realistic cases.

3 Low-hanging fruit: instead of variance-aware optimization,
first solve SC-OPF problem, and then correct or adjust to
reduce variability without increasing cost (by much).
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GENERIC CORRECTION TEMPLATE

Input: an instance of the safety-constrained problem and a
variance metric.

Step I. Solve safety-constrained OPF problem, with
solution (P̄g , Ā).

Step II. Perform a small number of adjustment itera-
tions which shift (P̄g , Ā) to a new feasible solution that
attains an improved value of the variance metric, while at the
same time increasing generation cost in a moderate manner.
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Reroute(τ, Â)

Â : a given control matrix

So Var(fkm) = y2
kmπ

T
km(I − Â)Ω(I − ÂT )πkm

.
= V̂km

is fixed for every km

0 < τ < 1.

min
Pg

∑
k

ck(Pg
k )

s.t.
∑
i

(Pg
i + w̄i − Pd

i ) = 0

πTkmykm|E(fkm)| + νkm

√
V̂km ≤ (1− τ )f max

km ∀ km

Here, fkm is an implicit function of Pg and Â
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Bienstock Columbia University

Controlling variability in power systems



VShift(P̄g)

P̄g : generation vector. f̄ : corresponding flow vector.

min
A

∑
km∈F(f̄ )

∆km

(
y2
kmπ

T
km(I − A)Ω(I − AT )πkm

)
constraints on A:

∑
j

(1− αji ) = 0 ∀i

→ Keep power flows fixed, improve on control
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Correction procedure

Input: Feasible solution (Pg ,0,A0), 0 < τ < 1.

For k = 1, 2, . . . ,K perform iteration k:

1. Run Reroute(Ak−1, τ ). If infeasible STOP.
Else let Pg ,k be optimal.

2. Solve VShift(Pg ,k), with solution Âk .

3. Set Ak ← (1− λ)Ak−1 + λÂk .
0 < λ < 1 chosen so that Pg ,k ,Ak feasible

4. If ∆(Ak) ≥ ∆(Ak−1), STOP.

Thm.: In convex case if we stop in Step 4, then ∆ minimum.
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Example on case2746wp

2746 buses, 3514 branches, 520 generators

22 stochastic injection sites, sum of mean injections 4611.57
(penetration 18.5% penetration)

average ratio of standard deviation to mean ≈ 30%.

Variance metric:
∑

ij∈F Var(fij ), where F is the union of

The 100 lines with largest flow magnitude

Lines ij where |f̄ij |+ νij Std(fij ) ≥ (1− τ )f max
ij
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Two iterations

Initial variance metric: ≈ 6.3× 1004.

After one iteration: ≈ 4.65× 1004.

After two iterations: ≈ 4.50× 1004.
Approx. 40% reduction relative to original.

Cost nearly constant after two iterations

Variance-shifting SOCP has approximately 1.4× 1005 variables
and constraints and 1× 1006 nonzeros

Solution times of a few seconds

ThThu.Nov.16.140404.2017@blacknwhite
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