Current work

Daniel Bienstock Columbia University

Summary of the approach so far

- We have developed a number of techniques for modifying a data set in a realistic manner, e.g. following weather physics
- The changes are not easily unrolled, i.e. it is not easy to recover the original data set, especially when changes are iterated
- We are not focusing, yet, on adversarial approaches though there is some low-hanging fruit
- When the node-breaker data sets become available we will apply the techniques to them.

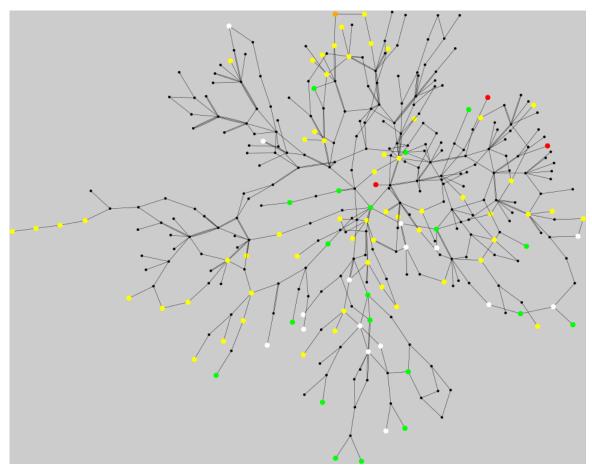
The Marseille_sous_realtor data set

- We have been working with this data set since early May.
- 403 buses (63 isolated), 115 generators at 80 buses
- **484** active branches, **9** without limit
- total active load: 3939
 Additionally, 21 negative loads adding to 2658 MW.
 "Net" load: 1281 MW.
- Total available (active) generation: **2385** MW.

The Marseille_sous_realtor data set

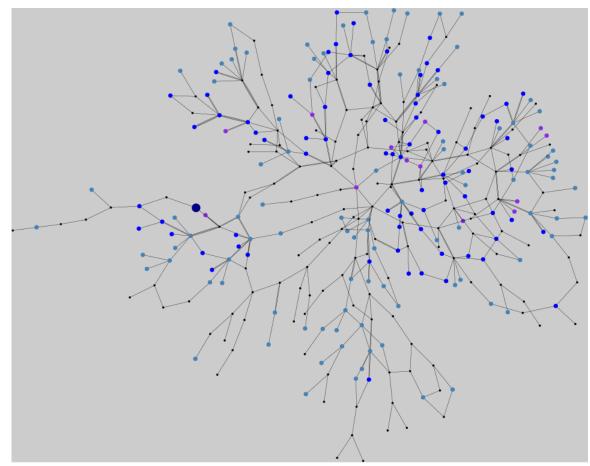
- We have been working with this data set since early May.
- \bullet 403 buses (63 isolated), 115 generators at 80 buses
- **484** active branches, **9** without limit
- total active load: 3968 Additionally, 21 negative loads adding to 2658 MW. "Net" load: 1281 MW.
- Total available (active) generation: **2385** MW.
- Positive **reactive** loads: **998** MW.
- Negative reactive loads (71): **320** MW.

Generators and negative loads

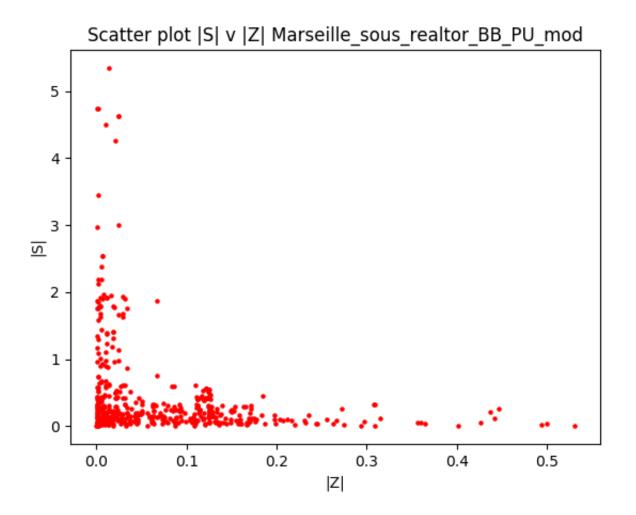


- Red, orange, yellow = generators in declining order of max output. Red = at least .5 times largest generator
 Yellow = less than .1 times largest generator
- White = generators at **zero** output
- Green = negative loads

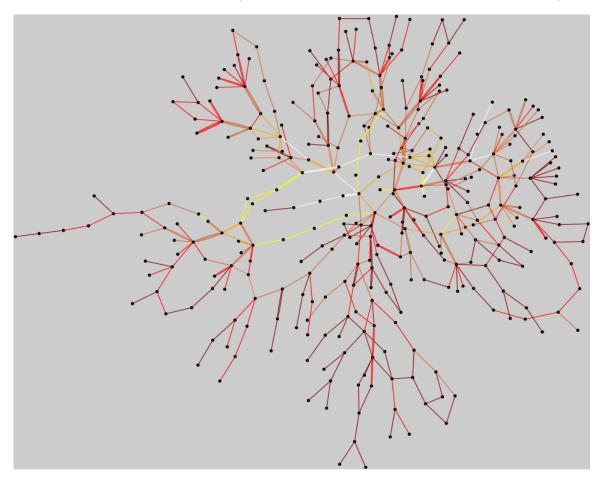
Actual active loads



- Dark to light ordered by declining magnitude.
 Blue = between .1 and .3 times largest load.
- One very big load



OPF Solution (cost = total generation)



- White: 200 MW and up (max ≈ 243)
- \bullet Yellow: between 170 and 200 MW
- \bullet Orange(s): between 20 and 170 MW, Red: between 10 and 20 MW
- The top twenty losses account for about half of all losses

(From prior meeting): flow decomposition

1. Number of generator-load paths

2. Average length of a path

3. Average $flux = \frac{\sum_{p} f_{p} |p|}{\text{number of paths}}$

- the sum is over all paths in the decomposition
- for a path p, f_p is its flow and |p| is its length (number of arcs)

4. Average
$$flux$$
 per MW = $\frac{\sum_{p} f_{p} |p|}{\text{sum of active power loads}}$
5. Average $rflux = \frac{\sum_{p} f_{p} (\text{sum of resistances along p})}{\text{number of paths}}$
6. Average $rflux$ per MW = $\frac{\sum_{p} f_{p} (\text{sum of resistances along p})}{\text{sum of active power loads}}$

statistic	value
no. of paths	327.00
ave length	5.47
ave flux	0.60
ave flux/MW	5.42
ave rflux/MW	0.03

statistic	value
no. of paths	327.00
ave length	5.47
ave flux	0.60
ave $flux/MW$	5.42
ave rflux/MW	0.03
9241pegase	
no. of paths	8973.00
no. of paths ave length	8973.00 4.60
1	
ave length	4.60

A Basic methodology for modifying cases, from previous meeting (same slide)

- 1. First, select a random, connected set of buses. Starting from a random bus, we run stochastic breadth-first search. This is standard breadth-first search where a new node is labeled with a given probability (which is part of the input) rather than always added to the search queue. Additionally, we sometimes cap the process when a given number N of buses has been reached.
- 2. We simulate a temperature increase in the selected zone. This is modeled as a uniform random rise in temperature in a given range.
- 3. Buses within the zone see a load increase linearly proportional to *percentage* temperature increase, plus a small random positive change.
- 4. The lines connecting buses within the selected zone are exposed to this increase. Lines connecting buses from inside to outside the zone are partly exposed. The impact of external temperature + wind cooling is modeled as an increase in conductor temperature (proportional to external temperature change) + random correction.

Using the model in e.g. Bockarjova and Andersson, for any two line temperatures T and $T + \Delta T$ we model change in line resistance as

$$R(T + \Delta T) - R(T) \approx 0.0039 \,\Delta T \, R(T).$$

We do not use a comprehensive model for wind cooling or solar heating. However, based on the experiments in Lindberg, we model

line limit = nominal value \times (1 - slowly growing function of percentage temperature increase)

In the above formula, we used the logarithm (base 10) of the percentage increase, times a random value between 0 and 1.

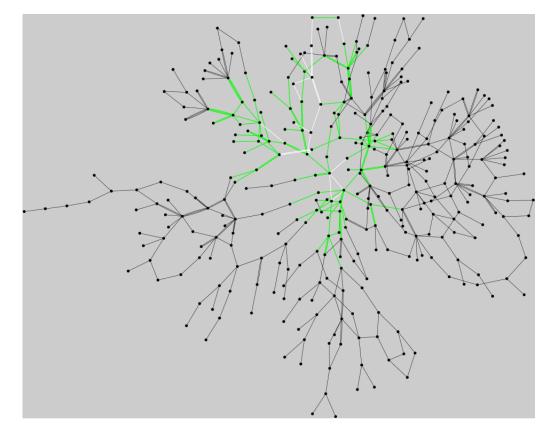
• We run both an interior-point local solver (either IPOPT within Matpower or Matpower's MIPS solver) and a conic relaxation solved using Gurobi.

Additional methodologies

- (Simple) **Random** search around a given case. Small changes allowed in: loads, max generation. Very small changes allowed in: line limits, or in impedances (maintaining r/x ratios, locally and statistically).
- (Simple) **Evolution** from base case to a critical case. Example: consider many cases that move the base load profile to another load profile in small increments, keeping everything else constant.
- Not so simple. **Gradient search.** Compute local maximum for active power losses. "Local" in the above sense (load-wise or impedance-wise)
- Less simple **Derivative-free optimization.** (Not yet implemented)

Test 1

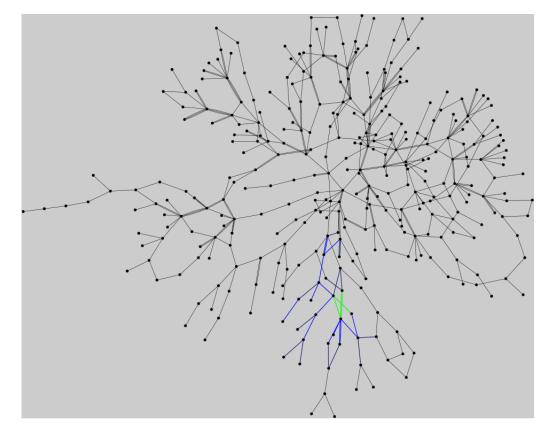
- Temperature range: [60, 80] increased in random connected set with up to 50 buses
- 1000 random trials
- Sample trial shown. White: average temperature over 70, green: 60 or more



 \bullet Load increase by about 7.5%. In this case relaxation proves infeasibility.

Test 2 "test966"

- Temperature range: [50, 60] increased in random connected set with up to 30 buses
- 1000 random trials
- Sample trial shown. Green = average temperature close to 60, blue, more than 55



• Small increase in loads but IPOPT fails to converge. Why?

test966, continued

- \bullet 65 branches affected, resistance increases in range ~[11,15]%, line limit decreases less than ~3%
- Overall total active load increased by less than 1.7% however some active loads increased by 25% (but only 20 buses affected). Average active load increase = 17%.

test966, continued

- \bullet 65 branches affected, resistance increases in range ~[11,15]%, line limit decreases less than ~3%
- Overall total active load increased by less than 1.7% however some active loads increased by 25% (but only 20 buses affected). Average active load increase = 17%.

Random search

- Increase the capacity of the ten least-used generators by a random multiple in range [1, 2]
- Randomly change active loads by $\pm 2\%$.
- 30 trials fail to produce a convergent IPOPT instance but relaxation always feasible^{*}.

test966, continued

- \bullet 65 branches affected, resistance increases in range ~[11,15]%, line limit decreases less than ~3%
- Overall total active load increased by less than 1.7% however some active loads increased by 25% (but only 20 buses affected). Average active load increase = 17%.

Another random search

- Increase the (active power) capacity of the ten biggest generators by a random multiple in range [1, 2] – percent reactive power capacity change ten times larger.
- Randomly change active loads in the range [-20, 0]%.
- Again, 30 trials fail to produce a convergent IPOPT instance but relaxation always feasible^{*}.

What is going on with test966?

• Experiment: use Marseille_sous data with test966 branch data.

Outcome: IPOPT converges!

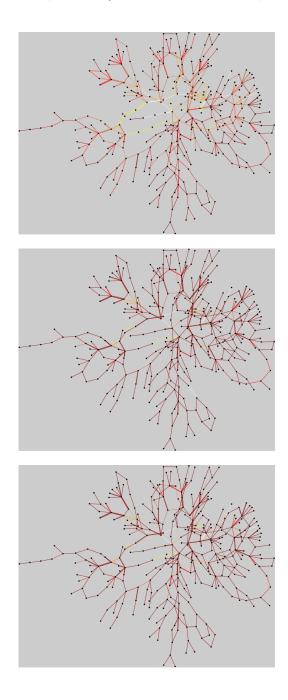
• Experiment: use Marseille_sous data with test966 loads.

Outcome: IPOPT failure. IPOPT converges to a point with "local infeasibility – problem may be infeasible." Conic relaxation easily converges.

What is going on with test966?

- Experiment: evolve Marseille_sous loads to test966 loads, in small increments (using Marseille_sous data otherwise).
- At the point where the case becomes infeasible IPOPT does not converge, random search allowing loads to change $\pm 2\%$.
- Randomly expand (by a wide margin) the capacity of the ten *largest* generators: roughly **50%** of the cases are feasible.
- Randomly expand (by a wide margin) the capacity of the ten generators with *smallest* output: roughly 100% of the cases are feasible.

(recall that in test966 we have changed the loads near the zero-output generators) Power flow comparison: base case, nearly infeasible case, added generation case

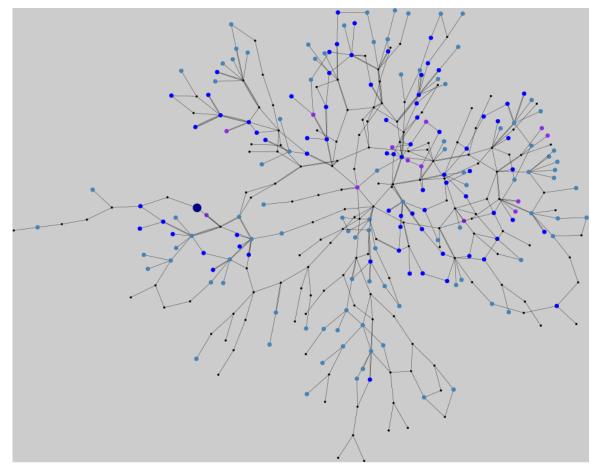


Not adversarial case generation, but ... back to start: generators and negative loads

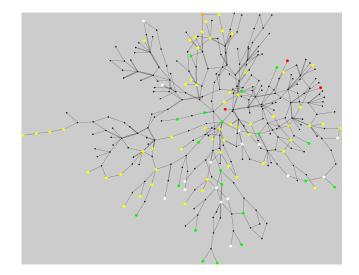


- Red, orange, yellow = generators in declining order of max output.
- White = generators at **zero** output
- Green = negative loads

Actual loads

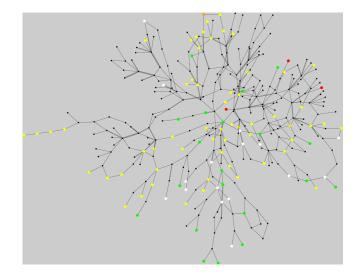


- Dark to light ordered by declining magnitude.
 Blue = between .1 and .3 times largest load.
- One very big load



Adversarial exercise

- **Increase** the capacity of the generators in the zero-output set.
- **Change** the cost function: make those generators cheaper than the rest.
- **Outcome:** very large duality gaps (30, 40%)
- The increases and changes need not be massive.
- Why? The conic relaxation seems to do a very poor job at capturing the power flow physics from the "bottom" to the "top" of the picture, especially losses.
- Other such games are possible.



A simple example

- Increase loads randomly in the range [10, 20]%
- \bullet Total active load increase $\ \thickapprox 50\%$
- Increase generation capacity by $\approx 44\%$ (less if count negative loads) concentrate this on top 10 least popular generators.
- Duality gap: $\approx 8\%$

One more method: for next time

- The techniques that we have discussed tend to move a system toward a more stressed state
- When taken to an extreme, this process can produce infeasible cases
- How to recover feasibility in an economically meaningful way?
- Last time: move some generation closer to loads, in an economically meaningful way (along power flow paths)
- Apply this technique to explore feasible cases with big duality gaps

Thu.May.31.180245.2018@blacknwhite