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QCQP:

min  fo(x)
st file) >0, 1<i<m

xr e R"

Here,
filx) = CIZTMiCL“ + (:Z-Ta: +d;
Each M; is n X n, wlog symmetric

Folklore result: QCQP is Strongly NP-hard
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CDT (Celis-Dennis-Tapia) problem

min :L'TQQx + ch

st 2l Qo+ clTx + dy

VAN
-

[
-

:UTQQ:C + CQT:E + do

where Q1 = 0, Q2 = 0



CDT (Celis-Dennis-Tapia) problem

min ZCTQ()CC + COTx
S.t. :ETle + C{:C +dy <0
ZIZTQQCC + ng +do < 0

where Q1 > 0, Q2 = 0

Generalization of the trust-region subproblem:

min :UTQ:I: +cla

st ||z — pl? <

which is solvable using many techniques



Theorem (Barvinok, 1993)

For each fixed integer p there is a polynomial-time algorithm

that given a system

ZCTMZ'QZZO, 1 <1 <p

— — )

|zl =1, zeR”

correctly determines feasibility.

— nonconstructive.



Weakening of Barvinok’s theorem
For each fixed p > 1, there is an algorithm that given a system
mTMZ-x:O, 1 <71 <np,
|z|| =1, zeR"
and given 0 < € < 1, either
e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge™!.

(so still nonconstructive)



Theorem (SIOPT, forthcoming).

For each fixed m > 1 there is an algorithm that given
min fo(x) = a! Agz + ch
s.t. azTA,,;ac—l—c;-F:v—l—d,,; < 0 1<11<m,
where A7 > 0, and 0 < € < 1, either
(1) proves that the problem is infeasible, or

(2) computes an e-feasible vector @ such that there exists no
feasible & € R™ with fo(x) < f(&) — €

in time polynomial in the number of bits in the data and log e ™1



Sketch:
Given a system
(BTAiQE—I—CZTCE—I—di < 0 1<11<m,
where Aj > 0, how to prove infeasibility or feasibility?

Assume

el A+ de+d = |z)? -1,

and | f;(x)| < U



Sketch:
Given a system
(BTAiQB—I—CZTCE—I—di < 0 1<11<m,

with xT Az + ez +dy = ||z||? — 1,and |fi(z)| < U

ZETAZ'ZC—I—C;'FU()ZC—I—dZ‘U(Q)—I—JS?:O 1<7<m, (la
2 2
ST+ W:;

— L_yd=0 2<i<m, (Ib)
1

2 2 - 822_|_w22 2 _ 1 1
ERE v =m+ L. (1c)
=2 ¢




el Ajr+ v +dpd+57 =0 1<i<m, (2a)

L_ys=0 2<i<m, (2b)
Ui

9 9
) 9 NSt w 2 ! 5
Hi’” ‘|‘Sl‘|—z [ —|—U0—m—|— . (C)
i=2 ¢

— (2a) fori = 1is ||z||> — v} + 57 = 0.

Adding it and all of (2b) yields

m 9
2 9 57+ w3 2 _ |
lz|* + 57+ ) T Yy =
i=2 ¢

Together with (2¢) this implies ’08 = 1.

[f vg = 1 then (2a) means that x is feasible.



New result on “true” version of CDT problem

min xTQ():L’ + ch

st. 1 Qu+cle+d <0, i=12

where Q1 > 0, Q2 > 0.
Sakaue, Nakatsukasa, Takeda, Iwata (2015); “simple” algorithm.

Assume KKT conditions hold.



H(A, M)z =y
xTQZ-:L'Jcm-ijtdi < 0, 1 =1,2
)\i(ZCTQZ'SC + c;-ra: +d;) = 0, i=1,2
A, > 0, 1 =1,2
Here
H = Qo+ AQ1+ Aa@2
y = —(co+ Arer + Aoco)
1. Compute a polynomially large set of candidates for i, Ao.

2. Given A1, A9, solve Hx = y to obtain x.



)\Z'(JZTQZ'x + CZTSI} +d;) = 0, 1=1,2

is equivalent to

- Q; —H ¢
Ndet | —H 0 y| =0
ol oyl o4

S0, two determinantal equations

A1 detMi(A1, Ag) = A9 detMo(A1, Ag) = 0.



)\Z'(JZTQZ'x + CZTSIZ +d;) = 0, 1=1,2

is equivalent to

- Q; —H ¢
Ndet | —H 0 y| =0
ol oyl o4

S0, two determinantal equations
A1 detMi(A1, Ag) = A9 detMo(A1, Ag) = 0.

Recall H = Qo+ Q1+ Q2 1y = —(cog+ Aicp+ Aaco)



)\Z'(ZETQZ'x + C;-ril? +d;) = 0, 1=1,2

1S equivalent to

- Q; —H ¢
Nodet | —H 0 vy = 0
¢l oyl odi

So, two determinantal equations
A1 detMi( A, Ag) = A9 detMo(A1, Ao) = 0.
Theorem: If the two equations hold then: detB(A;) = 0.

Here, B, of the form A FE + F', is the Bézoutian.

Bis n? x nZ?.



Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n'°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged; and we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢") (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals?



ACOPF
Input: an undirected graph G.

e For every vertex ¢, two variables: e; and f;

e For every edge {k, m}, four (specific) quadratics:

H]im(ek7fk7€m7fm)7 H]gm<ek7fk‘aem7fm)

Hijk(ekafkyemafm)a Hg’k<ek7fk7em7fm> @



min g Wy
k

st. Ly < Y Hl (e frsem, fn) < UL Vk
{k;m}ed(k)
Lg S Z H]?m ekafkaemafm) S U]{;Q VEk
{k;m}ed(k)
VE < e f)ll < V7 Yk

Vg — Z Hlim(ekvfhem)fm) Vk
{k;m}ed(k)
wy, = Fip(vg)



Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

Fact: The SDP relaxation sometimes has a rank-1 solution!!
Fact: And when not, sometimes it gives a good bound.



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
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e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth < aw if it has a chordal supergraph
with clique number < w + 1
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth < w if it is a subgraph of an inter-
section graph of subtrees of a tree, with < w —+ 1 subtrees overlapping at
any vertex

(Seymour and Robertson, early 1980s)



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime



Much previous work using treewidth
e Bienstock and Ozbay (Sherali-Adams + treewidth)
e Wainwright and Jordan (Sherali-Adams + treewidth)
e Grimm, Netzer, Schweighofer
e Laurent (Sherali-Adams + treewidth)
e Lasserre et al (moment relaxation + treewidth)

e Waki, Kim, Kojima, Muramatsu
older work ...

e Lauritzen (1996): tree-junction theorem

e Bertele and Brioschi (1972) (Nemhauser 1960s): nonserial dynamic pro-
gramiming

e Bounded tree-width in combinatorial optimization (early 1980s) (Arnborg
et al plus too many authors)



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem
gives fast SDP implementations:
Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime

— Perhaps low tree-width yields direct algorithms for ACOPF itselt?

That is to say, not for a relaxation?



A classical problem: fixed-charge network flows
Setting: a directed graph G, and
oV arc (4, 7) a capacity u;;, a fived cost k;; and a variable cost c;j.
o At each vertex ¢, a net supply b;. We assume ) . b; = 0.
e By paying k;; the capacity of (¢, j) becomes u;; — else zero.

e The per-unit flow cost on (¢, j) is ¢;;.

Problem: At minimum cost, send flow b; out of each node .

Knapsack problem (subset sum) is a special case where G is a caterpillar.
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Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u
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Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

e Fach variable is associated with some vertex.
X, = variables associated with u

e Flach constraint is associated with some vertex.
A constraint associated with u € V(G) is of the form

> puXUX,) >0
{up}ed(u)

where py,() is a polynomial
o For any z;, {u € V(G) : z; € X, } induces a connected subgraph of G
e All variables in [0, 1], or binary

e Linear objective

Density: max number of variables 4+ constraints at any vertex

ACOPF": density = 4, FCNF': density = 4



Theorem

Given a problem on a graph with
e treewidth w,
e density d,
e max. degree of a polynomial p,,: 7,
e 11 vertices,

and any fixed 0 < € < 1,

there is a linear program of size (rows + columns) O(7w%% % n)
whose feasibility and optimality error is O(€)



Theorem

Given a problem on a graph with
e treewidth w,
e density d,
e max. degree of a polynomial p,,: 7,
e 11 vertices,
and any fixed 0 < € < 1,

there is a linear program of size (rows + columns) O(7w%%e~* n)
whose feasibility and optimality error is O(€)

e Problem feasible — LP e-feasible
additive error = € times L norm of constraint
and objective value changes by € times L1 norm of objective

e And viceversa

e Unless P = NP, need Q(€) error and Q(€™1) complexity



More general: (Basic polynomially-constrained mixed-integer LP)

min  cz

st. pi(z) >0 1<i<m
r;€{0,1} Vjel, 0<azx; <1, otherwise

Each p;(x) is a polynomial.
Theorem

For any instance where
e the intersection graph has treewidth w,
e max. degree of any p;(x) is T,
e 1 variables,

and any fixed 0 < € < 1, there is a linear program of size (rows +
columns) O(w¥e~“~1n) whose feasibility and optimality error is O(€)
(abridged).



Intersection graph of a constraint system: (Fulkerson? (19627))
e Has a vertex for every variably x;

o Has an edge {x;, ,} whenever z; and x; appear in the same constraint

Example. Consider the NPO

r]+ a5+ 2x; <1
QZ%—$§—|—ZC4 > 0,
333£U4+ZC§—£IZ6 > 1/2

OSI’jSl, 1§]§5, .T(;E{O,l}.

(b)



Main technique: approximation through pure-binary
problems

Glover, 1975 (abridged)

Let « be a variable, with bounds 0 < & < 1. Let 0 < v < 1. Then we
can approximate

L _
Tr = Zh:12 hyh

where each yy, is a binary variable. In fact, choosing L = [log,~vy '],
we have

z < Y 27"y < x4y

— Given a mixed-integer polynomially constrained LP
apply this technique to each continuous variable x;



Mixed-integer polynomially-constrained LP:

(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5 where each yp, ; € {0,1}

L =~ log,v~!



Mixed-integer polynomially-constrained LP:

(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

L =~ log, v~ !

) " L o—h N x
p(Z) > 0, |&; — 35127 "Gl < v = p(@) > —lpll(1 - (1 —~)7)
o m = degree of p(x)

e ||p||1 = 1-norm of coefficients of p(x)

e —|lplh(1 — (1 —=7)7) = —lplhmy



Mixed-integer polynomially-constrained LP:
(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise
substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

L =~ log, v~ !

Approximation: pure-binary polynomially-constrained LP:

(Q) min ¢'y
st pi(z) 2 —[pili1=(1=79)") 1<i<m

z = vector consisting of x; for 7 € I and all added y variables

zZi &€ {O, 1} V7



Mixed-integer polynomially-constrained LP:
(P) min 'z
st. pi(x) >0 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise
substitute: V5 ¢ I, x; — Zﬁzl 27y, 5, where cach yp, ; € {0,1}

L =~ log, we™1

Approximation: pure-binary polynomially-constrained LP:

(Q) min c'y
st pily) = —lpili(1—=(1=79)7) 1<i<m

z = vector consisting of x; for 7 € I and all added y variables

zi &€ {O, 1} V7

Intersection graph of P has treewidth < w =
Intersection graph of (@) has treewidth < Lw



Pure binary problems

e 1. binary variables and m constraints.

e Constraint 4 is given by k[i] C {1,...,n}and S* C {0, 1}*li,
1. Constraint states: subvector ;) € St
2. 8" given by a membership oracle

e The problem is to minimize a linear function ¢!z, over x € {0,1}", and
subject to all constraints 2z, 1 <12 < m.
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Pure binary problems

e 1. binary variables and m constraints.

e Constraint 4 is given by k[i] C {1,...,n}and S* C {0, 1}*li,
1. Constraint states: subvector ;) € St
2. 8" given by a membership oracle

e The problem is to minimize a linear function ¢!z, over x € {0,1}", and
subject to all constraint 2z, 1 <12 < m.

Theorem. If intersection graph has treewidth < W, then:
there is an LP formulation with O(2"n) variables and constraints.

e Not explicitly stated, but can be obtained using methods from Laurent
(2010)

e “Cones of zeta functions” approach of Lovasz and Schrijver.

e Poly-time algorithm: old result.



Pure binary problems

min ¢z

s.b. oz € St 1<i< m,
r € {0,1}"

Theorem. If intersection graph has treewidth < W, then:
there is an LP formulation with O(2"n) variables and constraints.
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min ¢z

st Xy € St 1<i< m,
r € {0,1}"
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An alternative approach?

min ¢z

s.t. oz € St 1<i< m,
r € {0,1}"

conv{y € {0, 1} . y € S'} given by A’z > b’

T

min cx
st. Az > b0 1<i<m,
r € {0,1}"

But: Barany, Pér (2001):

for d large enough, there exist 0,1-polyhedra in R? with

g\ A
facets
log d




Corollary: (polynomially-constrained mixed-integer LP)

min  clz

st. pi(z) >0 1<i<m
r;€{0,1} Vjel, 0<ax; <1, otherwise

Each p;(x) is a polynomial.
Theorem

For any instance where
e the iIntersection graph has treewidth w,
e max. degree of any p;(x) is T,
e 1 variables,

and any fixed 0 < € < 1, there is a linear program of size (rows +
columns) O(w¥e~“~1n) whose feasibility and optimality error is O(€)
(abridged).



Application? Mixed-integer Network Polynomial
Optimization problems
Input: an undirected graph G.
e Variables and constraints associated with vertices.
e X, = variables associated with wu.

e A constraint associated with u € V(G) is of the form

> (X UX,) >0
{uv}ed(u)

where py,() is a polynomial
e All variables in [0, 1], or binary.
e Linear objective

e Interesting case: G of bounded treewidth.
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where py,() is a polynomial
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Trouble! Treewidth of G F# treewidth of intersection graph of constraints



Application? Mixed-integer Network Polynomial
Optimization problems
Input: an undirected graph G.
e Variables and constraints associated with vertices.
e X, = variables associated with wu.

e A constraint associated with u € V(G) is of the form

> (X UX,) >0
{uw}ed(u)

where py,() is a polynomial
e All variables in |0, 1], or binary.
e Linear objective

e Interesting case: G of bounded treewidth.
k
Zaja:j > ap, — k-clique
j=1



Vertex splitting

How do we deal with

D fuwyes(w) Puv(Xu U Xy) > 0 when [§(w)| large?
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Vertex splitting

How do we deal with

D fuwyes(w) Puv(Xu U Xy) > 0 when [§(w)| large?

Z Puos( Xy UX,) + y > 0 assoc. with uy
{uwteA

Z Puu(XuUX,) — y = 0. assoc. with up
{u,w}eB

(y is a new variable associated with either u4 or up)






A better idea




Theorem

Given a graph of treewidth < w, there is a sequence of vertex splittings
such that the resulting graph

e Has treewidth < O(w)

e Has maximum degree < 3.



Theorem

Given a graph of treewidth < w, there is a sequence of vertex splittings
such that the resulting graph

e Has treewidth < O(w)

e Has maximum degree < 3.
Perhaps known to graph minors people?

Corollary (abridged)

Given a network polynomial optimization problem on a graph G, with
treewidth < w there is an equivalent problem on a graph H with

treewidth < O(w) and max degree 3.

Corollary. The intersection graph has treewidth < O(w).
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