Some results on polynomial optimization problems

Daniel Bienstock, Columbia University

QCQP:

min
$$f_0(x)$$

s.t. $f_i(x) \ge 0, \quad 1 \le i \le m$
 $x \in \mathbb{R}^n$

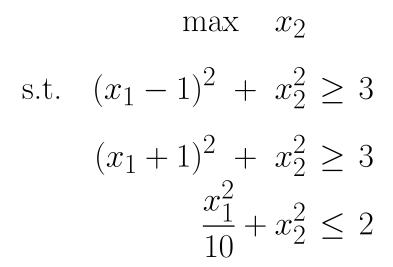
Here,

$$f_i(x) = x^T M_i x + c_i^T x + d_i$$

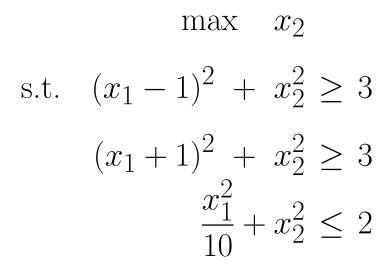
Each M_i is $n \times n$, wlog symmetric

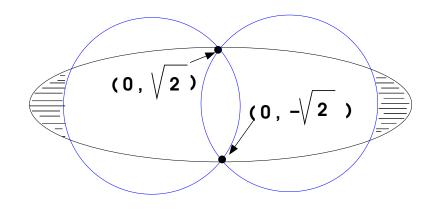
Folklore result: QCQP is Strongly NP-hard

A simple example



A simple example





CDT (Celis-Dennis-Tapia) problem

$$\min \quad x^T Q_0 x + c_0^T x$$
s.t.
$$x^T Q_1 x + c_1^T x + d_1 \leq 0$$

$$x^T Q_2 x + c_2^T x + d_2 \leq 0$$

where $Q_1 \succ 0$, $Q_2 \succ 0$

CDT (Celis-Dennis-Tapia) problem

$$\min \quad x^T Q_0 x + c_0^T x$$
s.t.
$$x^T Q_1 x + c_1^T x + d_1 \leq 0$$

$$x^T Q_2 x + c_2^T x + d_2 \leq 0$$

where $Q_1 \succ 0$, $Q_2 \succ 0$

Generalization of the trust-region subproblem:

$$\min \ x^T Q x + c^T x$$

s.t.
$$||x - \mu||^2 \le r^2$$

which is solvable using many techniques

Theorem (Barvinok, 1993)

For each fixed integer p there is a polynomial-time algorithm that given a system

$$x^T M_i x = 0, \quad 1 \le i \le p,$$

 $\|x\| = 1, \quad x \in \mathbb{R}^n$

correctly determines feasibility.

 \rightarrow nonconstructive.

Weakening of Barvinok's theorem

For each fixed $p \geq 1$, there is an algorithm that given a system

$$x^T M_i x = 0, \quad 1 \le i \le p,$$

 $\|x\| = 1, \quad x \in \mathbb{R}^n$

and given $0 < \epsilon < 1$, either

- **Proves** that the system is **infeasible**, or
- **Proves** that is ϵ -feasible,

in time polynomial in the data and in $\log \epsilon^{-1}$. (so still nonconstructive) **Theorem** (SIOPT, forthcoming).

For each fixed $m \geq 1$ there is an algorithm that given

 $\min \quad f_0(x) \doteq x^T A_0 x + c_0^T x$

s.t. $x^T A_i x + c_i^T x + d_i \leq 0 \quad 1 \leq i \leq m$,

where $A_1 \succ 0$, and $0 < \epsilon < 1$, either

(1) proves that the problem is infeasible, or

(2) computes an ϵ -feasible vector \hat{x} such that there exists no feasible $x \in \mathbb{R}^n$ with $f_0(x) < f(\hat{x}) - \epsilon$

in time polynomial in the number of bits in the data and $\log \epsilon^{-1}$

Sketch:

Given a system

$$x^TA_ix+c_i^Tx+d_i\ \le\ 0 \quad 1\le i\le m,$$

where $A_1 \succ 0$, how to prove infeasibility or feasibility?

Assume

$$x^T A_1 x + c_1^T x + d_1 = ||x||^2 - 1,$$

and $|f_i(x)| \leq U_i$.

Sketch:

Given a system

$$egin{aligned} &x^TA_ix+c_i^Tx+d_i \ \leq \ 0 & 1 \leq i \leq m, \end{aligned}$$
 with $x^TA_1x+c_1^Tx+d_1 \ = \ \|x\|^2-1, ext{ and } |f_i(x)| \leq U_i. \end{aligned}$

$$x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} = 0 \qquad 1 \le i \le m, \quad (1a)$$
$$\frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} - v_{0}^{2} = 0 \qquad 2 \le i \le m, \quad (1b)$$
$$\|x\|^{2} + s_{1}^{2} + \sum_{i=2}^{m} \frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} + v_{0}^{2} = m + 1. \quad (1c)$$

$$\begin{aligned} x^{T}A_{i}x + c_{i}^{T}v_{0}x + d_{i}v_{0}^{2} + s_{i}^{2} &= 0 & 1 \leq i \leq m, \quad (2a) \\ \frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} - v_{0}^{2} &= 0 & 2 \leq i \leq m, \quad (2b) \\ \|x\|^{2} + s_{1}^{2} + \sum_{i=2}^{m} \frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} + v_{0}^{2} &= m + 1. \end{aligned}$$

$$(2c)$$

$$\Rightarrow (2a) \text{ for } i = 1 \text{ is } \|x\|^{2} - v_{0}^{2} + s_{1}^{2} &= 0. \end{aligned}$$

Adding it and all of (2b) yields

$$||x||^{2} + s_{1}^{2} + \sum_{i=2}^{m} \frac{s_{i}^{2} + w_{i}^{2}}{U_{i}} - mv_{0}^{2} = 0$$

Together with (2c) this implies $v_0^2 = 1$.

If $v_0 = 1$ then (2a) means that x is feasible.

New result on "true" version of CDT problem

min
$$x^T Q_0 x + c_0^T x$$

s.t. $x^T Q_i x + c_i^T x + d_i \leq 0, \quad i = 1, 2$

where $Q_1 \succ 0$, $Q_2 \succ 0$.

Sakaue, Nakatsukasa, Takeda, Iwata (2015); "simple" algorithm.

Assume KKT conditions hold.

$$H(\lambda_1, \lambda_2)x = y$$

$$x^T Q_i x + c_i^T x + d_i \leq 0, \qquad i = 1, 2$$

$$\lambda_i (x^T Q_i x + c_i^T x + d_i) = 0, \qquad i = 1, 2$$

$$\lambda_i \geq 0, \qquad i = 1, 2$$

Here

$$H \doteq Q_0 + \lambda_1 Q_1 + \lambda_2 Q_2$$
$$y \doteq -(c_0 + \lambda_1 c_1 + \lambda_2 c_2)$$

1. Compute a polynomially large set of candidates for λ_1, λ_2 . 2. Given λ_1, λ_2 , solve Hx = y to obtain x.

$$\lambda_i (x^T Q_i x + c_i^T x + d_i) = 0, \quad i = 1, 2$$

is equivalent to

$$\lambda_i \det \begin{bmatrix} Q_i & -H & c_i \\ -H & 0 & y \\ c_i^T & y^T & d_i \end{bmatrix} = 0$$

So, two determinantal equations

$$\lambda_1 \det M_1(\lambda_1, \lambda_2) = \lambda_2 \det M_2(\lambda_1, \lambda_2) = 0.$$

$$\lambda_i (x^T Q_i x + c_i^T x + d_i) = 0, \quad i = 1, 2$$

is equivalent to

$$\lambda_i \det \begin{bmatrix} Q_i & -H & c_i \\ -H & 0 & y \\ c_i^T & y^T & d_i \end{bmatrix} = 0$$

So, two determinantal equations

$$\lambda_1 \det M_1(\lambda_1, \lambda_2) = \lambda_2 \det M_2(\lambda_1, \lambda_2) = 0.$$

Recall $H = Q_0 + \lambda_1 Q_1 + \lambda_2 Q_2$, $y = -(c_0 + \lambda_1 c_1 + \lambda_2 c_2)$

$$\lambda_i (x^T Q_i x + c_i^T x + d_i) = 0, \quad i = 1, 2$$

is equivalent to

$$\lambda_i \det \begin{bmatrix} Q_i & -H & c_i \\ -H & 0 & y \\ c_i^T & y^T & d_i \end{bmatrix} = 0$$

So, two determinantal equations

$$\lambda_1 \det M_1(\lambda_1, \lambda_2) = \lambda_2 \det M_2(\lambda_1, \lambda_2) = 0.$$

Theorem: If the two equations hold then: $det B(\lambda_1) = 0$.

Here, B, of the form $\lambda_1 E + F$, is the **Bézoutian**.

$$B$$
 is $n^2 \times n^2$.

Smale's 17^{th} problem

Can a zero of n polynomial equations on n unknowns be found **approximately**, **on the average** in polynomial time?

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

Smale's 17^{th} problem

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time?

(abridged; and we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

Smale's 17^{th} problem

Can a zero of *n* polynomial equations on *n* unknowns be found **approximately**, **on the average** in polynomial time?

(abridged; and we are cheating)

- Beltrán and Pardo (2009) a randomized (Las Vegas) uniform algorithm that computes an approximate zero in *expected* polynomial time
- Bürgisser, Cucker (2012) a deterministic $O(n^{\log \log n})$ (uniform) algorithm for computing approximate zeros
- **Techniques:** Homotopy (path-following method solving a sequence of problems), Newton's method

But we are cheating: All of this is over \mathbb{C}^n , not \mathbb{R}^n

So what can be done over the reals?

ACOPF

Input: an undirected graph G.

- For every vertex i, **two** variables: e_i and f_i
- For every edge $\{k, m\}$, **four** (specific) quadratics:

$$\begin{split} H^P_{k,m}(e_k,f_k,e_m,f_m), \quad H^Q_{k,m}(e_k,f_k,e_m,f_m) \\ H^P_{m,k}(e_k,f_k,e_m,f_m), \quad H^Q_{m,k}(e_k,f_k,e_m,f_m) \end{split} \qquad \begin{array}{c} \mathbf{e_k} \ \mathbf{f_k} & \mathbf{e_m} \ \mathbf{f_m} \\ \mathbf{k} & \mathbf{f_k} & \mathbf{f_m} \\ \end{array} \end{split}$$

$$\begin{split} \min & \sum_{k} w_{k} \\ \text{s.t.} & L_{k}^{P} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k},f_{k},e_{m},f_{m}) \leq U_{k}^{P} \quad \forall k \\ & L_{k}^{Q} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{Q}(e_{k},f_{k},e_{m},f_{m}) \leq U_{k}^{Q} \quad \forall k \\ & V_{k}^{L} \leq \|(e_{k},f_{k})\| \leq V_{k}^{U} \quad \forall k \\ & v_{k} = \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k},f_{k},e_{m},f_{m}) \quad \forall k \\ & w_{k} = F_{k}(v_{k}) \end{split}$$

Complexity

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is (weakly) NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

Fact: The SDP relaxation sometimes has a rank-1 solution!!Fact: And when not, sometimes it gives a good bound.

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But...

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth $\leq w$ if it has a chordal supergraph with clique number $\leq w + 1$

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

(Seymour and Robertson, early 1980s)

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^3$ vertices: $\rightarrow 20$ minutes runtime

Much previous work using treewidth

- Bienstock and Özbay (Sherali-Adams + treewidth)
- Wainwright and Jordan (Sherali-Adams + treewidth)
- \bullet Grimm, Netzer, Schweighofer
- Laurent (Sherali-Adams + treewidth)
- Lasserre et al (moment relaxation + treewidth)
- Waki, Kim, Kojima, Muramatsu

older work ...

- Lauritzen (1996): tree-junction theorem
- Bertele and Brioschi (1972) (Nemhauser 1960s): nonserial dynamic programming
- Bounded tree-width in combinatorial optimization (early 1980s) (Arnborg et al plus too many authors)

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^3$ vertices: $\rightarrow 20$ minutes runtime

 \rightarrow Perhaps low tree-width yields **direct** algorithms for ACOPF itself? That is to say, not for a relaxation?

A classical problem: fixed-charge network flows

Setting: a directed graph G, and

- \forall arc (i, j) a capacity u_{ij} , a fixed cost k_{ij} and a variable cost c_{ij} .
- At each vertex *i*, a *net supply* b_i . We assume $\sum_i b_i = 0$.
- By paying k_{ij} the capacity of (i, j) becomes u_{ij} else zero.
- The per-unit flow cost on (i, j) is c_{ij} .

Problem: At minimum cost, send flow b_i out of each node i.

Knapsack problem (subset sum) is a special case where G is a caterpillar.

Input: an undirected graph G.

• Each variable is associated with some vertex.

 X_u = variables associated with u

Input: an undirected graph G.

- Each variable is associated with some vertex. X_u = variables associated with u
- Each constraint is associated with some vertex. A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

Input: an undirected graph G.

- Each variable is associated with some vertex. X_u = variables associated with u
- Each constraint is associated with some vertex. A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

- For any x_j , $\{u \in V(G) : x_j \in X_u\}$ induces a *connected* subgraph of G
- All variables in [0, 1], or binary
- Linear objective

Input: an undirected graph G.

- Each variable is associated with some vertex. X_u = variables associated with u
- Each constraint is associated with some vertex. A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

- For any x_j , $\{u \in V(G) : x_j \in X_u\}$ induces a *connected* subgraph of G
- All variables in [0, 1], or binary
- Linear objective

Density: max number of variables + constraints at any vertex

ACOPF: density = 4, FCNF: density = 4

Theorem

Given a problem on a graph with

- treewidth w,
- density d,
- max. degree of a polynomial p_{uv} : π ,
- *n* vertices,

and any fixed $0 < \epsilon < 1$,

there is a **linear program** of size (rows + columns) $O(\pi^{wd} \epsilon^{-w} n)$ whose feasibility and optimality error is $O(\epsilon)$

Theorem

Given a problem on a graph with

- treewidth w,
- density d,
- max. degree of a polynomial p_{uv} : π ,
- *n* vertices,

and any fixed $0 < \epsilon < 1$,

there is a **linear program** of size (rows + columns) $O(\pi^{wd} \epsilon^{-w} n)$ whose feasibility and optimality error is $O(\epsilon)$

- Problem feasible \rightarrow LP ϵ -feasible additive error = ϵ times L_1 norm of constraint **and** objective value changes by ϵ times L_1 norm of objective
- And viceversa
- Unless P = NP, need $\Omega(\epsilon)$ error and $\Omega(\epsilon^{-1})$ complexity

More general: (Basic polynomially-constrained mixed-integer LP)

min
$$c^T x$$

s.t. $p_i(x) \ge 0$ $1 \le i \le m$
 $x_j \in \{0, 1\} \quad \forall j \in I, \quad 0 \le x_j \le 1,$ otherwise

Each $p_i(x)$ is a polynomial.

Theorem

For any instance where

- the intersection graph has treewidth \boldsymbol{w} ,
- max. degree of any $p_i(x)$ is π ,
- *n* variables,

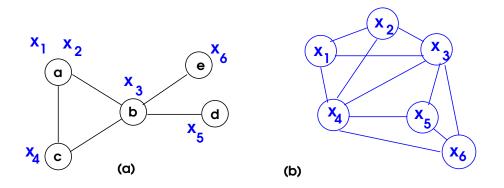
and any fixed $0 < \epsilon < 1$, there is a **linear program** of size (rows + columns) $O(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Intersection graph of a constraint system: (Fulkerson? (1962?))

- Has a **vertex** for every variably x_j
- Has an edge $\{x_i, x_j\}$ whenever x_i and x_j appear in the same constraint

Example. Consider the NPO

$$\begin{aligned}
x_1^2 + x_2^2 + 2x_3^2 &\leq 1 \\
x_1^2 - x_3^2 + x_4 &\geq 0, \\
x_3x_4 + x_5^3 - x_6 &\geq 1/2 \\
0 &\leq x_j \leq 1, \quad 1 \leq j \leq 5, \quad x_6 \in \{0, 1\}
\end{aligned}$$



Main technique: approximation through pure-binary problems

Glover, 1975 (abridged)

Let x be a variable, with bounds $0 \le x \le 1$. Let $0 < \gamma < 1$. Then we can approximate

$$x~pprox~\sum_{h=1}^L 2^{-h} y_h$$

where each y_h is a **binary variable**. In fact, choosing $L = \lceil \log_2 \gamma^{-1} \rceil$, we have

$$x ~\leq~ \sum_{h=1}^L 2^{-h} y_h ~\leq~ x+\gamma.$$

 \rightarrow Given a mixed-integer polynomially constrained LP apply this technique to each continuous variable x_j

(P) min $c^T x$ s.t. $p_i(x) \ge 0$ $1 \le i \le m$ $x_j \in \{0, 1\} \quad \forall j \in I, \quad 0 \le x_j \le 1, \text{ otherwise}$ substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0, 1\}$ $L \approx \log_2 \gamma^{-1}$

(P) min
$$c^T x$$

s.t. $p_i(x) \ge 0$ $1 \le i \le m$
 $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \le x_j \le 1, \text{ otherwise}$
substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0,1\}$

 $Lpprox \log_2\gamma^{-1}$

 $p(\hat{x}) \geq 0, \, |\hat{x}_j - \sum_{h=1}^L 2^{-h} \, \hat{y}_{h,j}| \leq \gamma \, \Rightarrow \, p(\hat{y}) \geq - \|p\|_1 (1 - (1 - \gamma)^{\pi})$

- $\boldsymbol{\pi} = \text{degree of } p(x)$
- $\|\boldsymbol{p}\|_1 = 1$ -norm of coefficients of p(x)
- $ullet \|p\|_1 (1 (1 \gamma)^\pi) ~pprox ~- \|p\|_1 \pi \gamma$

(P) min
$$c^T x$$

s.t. $p_i(x) \ge 0$ $1 \le i \le m$
 $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \le x_j \le 1, \text{ otherwise}$
substitute: $\forall j \notin I, \ x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}, \text{ where each } y_{h,j} \in \{0,1\}$
 $L \approx \log_2 \gamma^{-1}$

Approximation: pure-binary polynomially-constrained LP:

(Q) min
$$\bar{c}^T y$$

s.t. $\bar{p}_i(z) \ge -\|p_i\|_1 (1 - (1 - \gamma)^\pi)$ $1 \le i \le m$
 $z \doteq$ vector consisting of x_j for $j \in I$ and all added y variables
 $z_j \in \{0, 1\} \quad \forall j$

(P) min
$$c^T x$$

s.t. $p_i(x) \ge 0$ $1 \le i \le m$
 $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \le x_j \le 1, \text{ otherwise}$
substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0,1\}$
 $L \approx \log_2 \pi \epsilon^{-1}$

Approximation: pure-binary polynomially-constrained LP:

(Q) min
$$\bar{c}^T y$$

s.t. $\bar{p}_i(y) \ge -\|p_i\|_1 (1 - (1 - \gamma)^\pi)$ $1 \le i \le m$
 $z \doteq$ vector consisting of x_j for $j \in I$ and all added y variables
 $z_j \in \{0, 1\} \quad \forall j$

- n binary variables and m constraints.
- Constraint *i* is given by $k[i] \subseteq \{1, \ldots, n\}$ and $S^i \subseteq \{0, 1\}^{k[i]}$.
 - 1. Constraint states: subvector $x_{k[i]} \in S^i$.
 - 2. S^i given by a *membership oracle*
- The problem is to minimize a linear function $c^T x$, over $x \in \{0, 1\}^n$, and subject to all constraints i, $1 \leq i \leq m$.

- n binary variables and m constraints.
- Constraint *i* is given by $k[i] \subseteq \{1, \ldots, n\}$ and $S^i \subseteq \{0, 1\}^{k[i]}$.
 - 1. Constraint states: subvector $x_{k[i]} \in S^i$.
 - 2. S^i given by a *membership oracle*
- The problem is to minimize a linear function $c^T x$, over $x \in \{0, 1\}^n$, and subject to all constraints i, $1 \leq i \leq m$.

Theorem. If intersection graph has treewidth $\leq W$, then: there is an LP formulation with $O(2^W n)$ variables and constraints.

- n binary variables and m constraints.
- Constraint *i* is given by $k[i] \subseteq \{1, \ldots, n\}$ and $S^i \subseteq \{0, 1\}^{k[i]}$.
 - 1. Constraint states: subvector $x_{k[i]} \in S^i$.
 - 2. S^i given by a *membership oracle*
- The problem is to minimize a linear function $c^T x$, over $x \in \{0, 1\}^n$, and subject to all constraint i, $1 \leq i \leq m$.

Theorem. If intersection graph has treewidth $\leq W$, then: there is an LP formulation with $O(2^W n)$ variables and constraints.

- Not explicitly stated, but can be obtained using methods from Laurent (2010)
- "Cones of zeta functions" approach of Lovasz and Schrijver.
- Poly-time algorithm: **old result**.

min
$$c^T x$$

s.t. $x_{k[i]} \in S^i \quad 1 \le i \le m,$
 $x \in \{0, 1\}^n$

Theorem. If intersection graph has treewidth $\leq W$, then: there is an LP formulation with $O(2^W n)$ variables and constraints.

min
$$c^T x$$

s.t. $x_{k[i]} \in S^i \quad 1 \le i \le m,$
 $x \in \{0, 1\}^n$

min
$$c^T x$$

s.t. $x_{k[i]} \in S^i \quad 1 \le i \le m,$
 $x \in \{0, 1\}^n$

 $\operatorname{conv} \{ y \in \{0,1\}^{k[i]} : y \in S^i \}$ given by $A^i x \ge b^i$

min
$$c^T x$$

s.t. $x_{k[i]} \in S^i$ $1 \le i \le m$,
 $x \in \{0,1\}^n$

 $\operatorname{conv} \{ y \in \{0,1\}^{k[i]} : y \in S^i \}$ given by $A^i x \ge b^i$

min
$$c^T x$$

s.t. $A^i x_{k[i]} \ge b^i$ $1 \le i \le m$,
 $x \in \{0, 1\}^n$

min
$$c^T x$$

s.t. $x_{k[i]} \in S^i$ $1 \le i \le m$,
 $x \in \{0,1\}^n$

 $\operatorname{conv}\{y \in \{0,1\}^{k[i]} : y \in S^i\}$ given by $A^i x \ge b^i$

min
$$c^T x$$

s.t. $A^i x_{k[i]} \ge b^i$ $1 \le i \le m$,
 $x \in \{0, 1\}^n$

But: Bárany, Pór (2001):

for d large enough, there exist 0,1-polyhedra in \mathbb{R}^d with

$$\left(\frac{d}{\log d}\right)^{d/4}$$
 facets

Corollary: (polynomially-constrained mixed-integer LP)

min
$$c^T x$$

s.t. $p_i(x) \ge 0$ $1 \le i \le m$
 $x_j \in \{0, 1\}$ $\forall j \in I, 0 \le x_j \le 1$, otherwise

Each $p_i(x)$ is a polynomial.

Theorem

For any instance where

- the intersection graph has treewidth \boldsymbol{w} ,
- max. degree of any $p_i(x)$ is π ,
- *n* variables,

and any fixed $0 < \epsilon < 1$, there is a **linear program** of size (rows + columns) $O(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Application? Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Variables and constraints associated with vertices.
- X_u = variables associated with u.
- A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

- All variables in [0, 1], or binary.
- Linear objective
- Interesting case: G of bounded treewidth.

Application? Mixed-integer Network Polynomial Optimization problems

Input: an undirected graph G.

- Variables and constraints associated with vertices.
- X_u = variables associated with u.
- \bullet A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

- All variables in [0, 1], or binary.
- Linear objective
- Interesting case: G of bounded treewidth.

Trouble! Treewidth of $G \neq$ treewidth of intersection graph of constraints

Application? Mixed-integer Network Polynomial Optimization problems

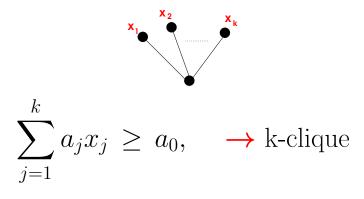
Input: an undirected graph G.

- Variables and constraints associated with vertices.
- X_u = variables associated with u.
- \bullet A constraint associated with $u \in V(G)$ is of the form

$$\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$$

where $p_{uv}()$ is a polynomial

- All variables in [0, 1], or binary.
- Linear objective
- Interesting case: G of bounded treewidth.



Vertex splitting

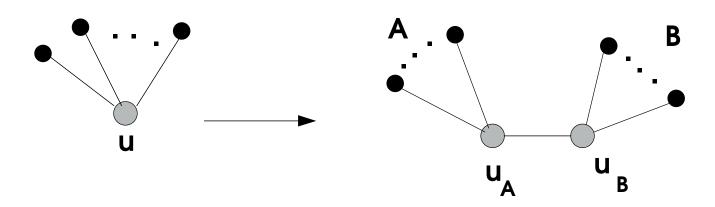
How do we deal with

 $\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$ when $|\delta(u)|$ large?

Vertex splitting

How do we deal with

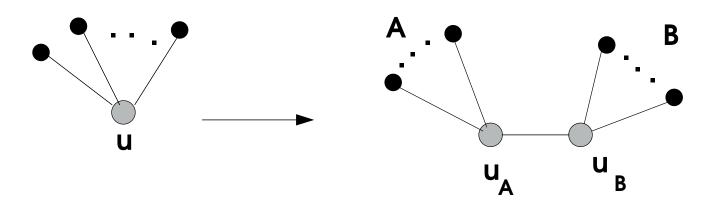
 $\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$ when $|\delta(u)|$ large?



Vertex splitting

How do we deal with

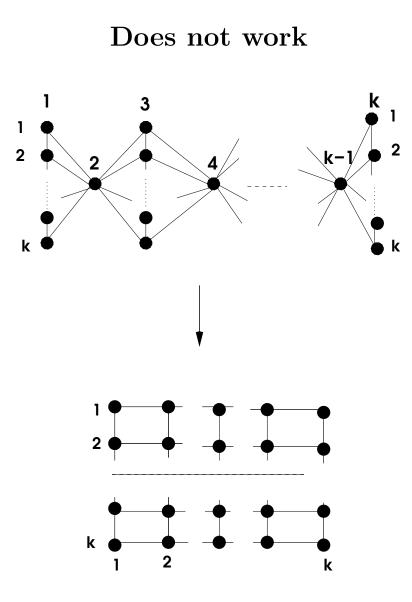
 $\sum_{\{u,v\}\in\delta(u)} p_{uv}(X_u\cup X_v) \ge 0$ when $|\delta(u)|$ large?

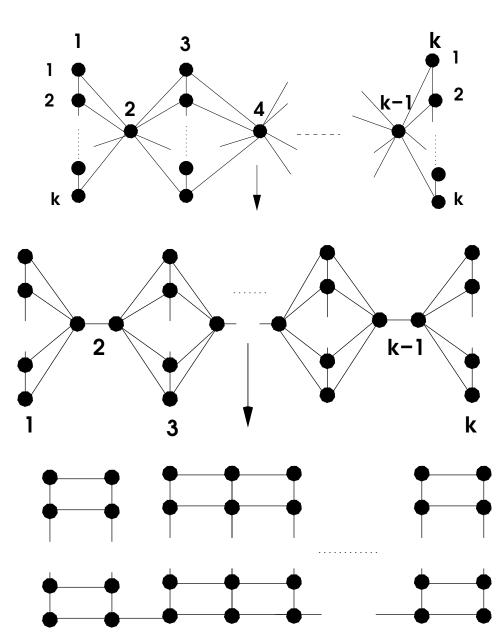


 $\sum_{\{u,v\}\in A} p_{u,v}(X_u \cup X_v) + y \ge 0 \quad \text{assoc. with } u_A$ $\sum_{\{u,v\}\in A} p_{u,v}(X_u \cup X_v) + y \ge 0 \quad \text{assoc. with } u_A$

 $\sum_{\{u,v\}\in B} p_{u,v}(X_u \cup X_v) - y = 0. \text{ assoc. with } u_B$

 $(y \text{ is a new variable associated with either } u_A \text{ or } u_B)$





A better idea

Theorem

Given a graph of treewidth $\leq \omega$, there is a sequence of vertex splittings such that the resulting graph

- Has treewidth $\leq O(\omega)$
- Has maximum degree ≤ 3 .

Theorem

Given a graph of treewidth $\leq \omega$, there is a sequence of vertex splittings such that the resulting graph

- Has treewidth $\leq O(\omega)$
- Has maximum degree ≤ 3 .

Perhaps known to graph minors people?

Corollary (abridged)

Given a network polynomial optimization problem on a graph G, with treewidth $\leq \omega$ there is an **equivalent** problem on a graph H with treewidth $\leq O(\omega)$ and max degree 3.

Corollary. The intersection graph has treewidth $\leq O(\omega)$.

Thu. Jan..7.144755.2016 @babyborder