Two Applications of Disjunctive Programming

Daniel Bienstock

Columbia University

CMU April 2018

 $\begin{array}{ll} \min \ c^{\mathcal{T}}x\\ \text{s.t.} & Ax\geq \mathbf{e}, \quad x \text{ binary} \end{array}$ A is a 0/1 matrix, $\mathbf{e}=(1,\ldots,1)^{\mathcal{T}}$

 $\begin{array}{ll} \mathsf{min} \ c^{\mathsf{T}}x\\ \mathsf{s.t.} \quad \mathsf{A}x \geq \mathbf{e}, \quad x \ \mathsf{binary}\\ \mathsf{A} \ \mathsf{is a} \ 0/1 \ \mathsf{matrix}, \ \mathbf{e} = (1,\ldots,1)^{\mathsf{T}} \end{array}$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

 $\begin{array}{ll} \min \ c^{\mathcal{T}}x\\ \text{s.t.} & \mathcal{A}x \geq \mathbf{e}, \quad x \text{ binary} \end{array}$ A is a 0/1 matrix, $\mathbf{e} = (1,\ldots,1)^{\mathcal{T}}$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

 \rightarrow There are examples with exponentially many such facets

 $\begin{array}{ll} \min \ c^{T}x\\ \text{s.t.} & Ax \geq \mathbf{e}, \quad x \text{ binary} \end{array}$ A is a 0/1 matrix, $\mathbf{e}=(1,\ldots,1)^{T}$

Starting point: Balas and Ng (1989), All facets with coefficients 0,1,2

 \rightarrow There are examples with exponentially many such facets

Can we account for all valid inequalities with small coefficients?

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0, 1, \ldots, k\}$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0, 1, \ldots, k\}$.

"compact:" of polynomial size (for fixed k) "extended:" uses additional variables, a lifted formulation Definition: An inequality $\alpha^T x \ge b$ for valid has pitch $\le k$ if:

the sum of the smallest \boldsymbol{k} positive $\alpha_{\boldsymbol{j}}$ is at least \boldsymbol{b}

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with coefficients in $\{0, 1, \ldots, k\}$.

"compact:" of polynomial size (for fixed k) "extended:" uses additional variables, a lifted formulation Definition: An inequality α^Tx ≥ b for valid has pitch ≤ k if: the sum of the smallest k positive α_j is at least b Hence, inequalities with coefficients in {0, 1, ..., k} have pitch < k

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for valid has pitch $\le k$ if: the sum of the smallest k positive α_j is at least b

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)
"extended:" uses additional variables, a lifted formulation

Definition: An inequality $\alpha^T x \ge b$ for valid has pitch $\le k$ if: the sum of the smallest k positive α_j is at least bHence, inequalities with coefficients in $\{0, 1, \dots, k\}$ have pitch $\le k$

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Corollary: For any fixed positive integer $r \geq 1$ and $0 < \epsilon < 1$,

there is a compact extended formulation for set-covering whose solutions satisfy the rank-r Gomory closure within multiplicative error ϵ

For any fixed integer $k \ge 1$ there exists a *compact, extended* formulation whose solutions satisfy all valid inequalities with pitch $\le k$.

"compact:" of polynomial size (for fixed k)

"extended:" uses additional variables, a lifted formulation

Corollary: For any fixed positive integer $r \geq 1$ and $0 < \epsilon < 1$,

there is a compact extended formulation for set-covering whose solutions satisfy the rank-r Gomory closure within multiplicative error ϵ

 $\forall c \in \mathbb{R}^n$:

 $\min c^{\mathsf{T}} x \quad \text{s.t. } x \in \text{projected formulation} \geq \\ (1 - \epsilon) \left(\min c^{\mathsf{T}} x \quad \text{s.t. } x \in \text{rank-r Gomory closure} \right)$

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)
- They point out that the B-Z formulation is 'complex'

Two recent, related papers:

- M. Mastrolilli (sum-of-squares mod 2)
- S. Fiorini, T. Huynh and S. Weltge (circuit complexity)
- They point out that the B-Z formulation is 'complex'

• Today, a shorter proof +

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem.

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}.$

Consider a (known) valid inequality

$$\sum_{j\in S}a_jx_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}$. Then

• $x_{j_1} = 1$, or

Consider a (known) valid inequality

$$\sum_{j\in S}a_jx_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1} = 1$, or
- $x_{j_1}=0$ and $x_{j_2}=1$, or

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1} = 1$, or
- $x_{j_1} = 0$ and $x_{j_2} = 1$, or
- $x_{j_1} = x_{j_2} = 0$ and $x_{j_3} = 1$, or

Consider a (known) valid inequality

$$\sum_{j\in S}a_jx_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}$. Then

• $x_{j_1} = 1$, or

•
$$x_{j_1} = 0$$
 and $x_{j_2} = 1$, or

•
$$x_{j_1} = x_{j_2} = 0$$
 and $x_{j_3} = 1$, or

• . . .

•
$$x_{j_1} = \ldots = x_{j_{t-1}} = 0$$
 and $x_{j_t} = 1$,

is a valid disjunction

Consider a (known) valid inequality

$$\sum_{j\in S} a_j x_j \geq a_0 \quad (>0)$$

for a **binary** optimization problem. Let $S = \{j_1, j_2, \dots, j_t\}$. Then

- $x_{j_1} = 1$, or
- $x_{j_1} = 0$ and $x_{j_2} = 1$, or

•
$$x_{j_1} = x_{j_2} = 0$$
 and $x_{j_3} = 1$, or

- . . .
- $x_{j_1} = \ldots = x_{j_{t-1}} = 0$ and $x_{j_t} = 1$,

is a valid disjunction

Gives rise to an alternate scheme for branch-and-bound

Theorem

Given a set-covering problem, suppose we apply vector branching to a given constraint

$$\sum_{j\in H} x_j \geq 1$$

Theorem

Given a set-covering problem, suppose we apply vector branching to a given constraint

$$\sum_{j\in H} x_j \ge 1$$

Then, the solution to any **node** of the branch-and-bound (sub)tree thus created satisfies every valid inequality

$$\alpha^{T}x \geq 2$$

where

•
$$\alpha_j \in \{0, 1, 2\}$$
 for $j = 1, \dots, n$

• *H* contained in the support of α

Consider a valid inequality

 $\sum_{j\in S} x_j \geq 2 \tag{1}$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1, \quad \text{with } H \subseteq S$$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But:

Consider a valid inequality

 $\sum_{j\in S} x_j \geq 2 \tag{1}$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1,$$
 with $H\subseteq S$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_k} x_j \geq 1 \tag{2}$$

But, set-covering,

Consider a valid inequality

 $\sum_{j\in S} x_j \geq 2 \tag{1}$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1,$$
 with $H\subseteq S$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_k} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) must be implied by a set-covering constraint.

Consider a valid inequality

 $\sum_{j\in S} x_j \geq 2 \tag{1}$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1,$$
 with $H\subseteq S$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_k} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) **must** be implied by a set-covering constraint. So the solution to the node must satisfy (1).

Consider a valid inequality

 $\sum_{j\in S} x_j \geq 2 \tag{1}$

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \geq 1,$$
 with $H\subseteq S$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (1) is valid, so is:

$$\sum_{j \in S - j_k} x_j \geq 1 \tag{2}$$

But, set-covering, so (2) **must** be implied by a set-covering constraint. So the solution to the node must satisfy (1). **Related: Letchford 2001**

Consider a valid inequality of pitch k:

 $\sum_{j\in S} lpha_j x_j \geq lpha_0$

(3)

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \ \geq \ 1, \qquad ext{with} \ H\subseteq S$$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But:

Consider a valid inequality of pitch k:

 $\sum_{j\in S} lpha_j x_j \geq lpha_0$

(3)

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \ \geq \ 1, \qquad ext{with} \ H\subseteq S$$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S-j_k} \alpha_j x_j \geq \alpha_0 - \alpha_{j_k} \tag{4}$$

But,

Consider a valid inequality of pitch k:

 $\sum_{j\in S} lpha_j x_j \geq lpha_0$

(3)

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \ \geq \ 1, \qquad ext{with} \ H\subseteq S$$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S - j_k} \alpha_j x_j \geq \alpha_0 - \alpha_{j_k} \tag{4}$$

But, (4) has pitch $\leq k-1$

Consider a valid inequality of pitch k:

 $\sum_{j\in S} lpha_j x_j \geq lpha_0$

(3)

and suppose we vector-branch on a set covering constraint

$$\sum_{j\in H} x_j \ \geq \ 1, \qquad ext{with} \ H\subseteq S$$

And now consider a node where $x_{j_k} = 1$ with $j_k \in H$. But: Since (3) is valid, so is:

$$\sum_{j \in S - j_k} \alpha_j x_j \geq \alpha_0 - \alpha_{j_k} \tag{4}$$

But, (4) has pitch $\leq k - 1$ So all we need is a recursive construction

Construction – a few corners are cut

- Set-covering system $Ax \ge e$.
- Pitch $p \ge 2$
- \mathcal{Z}^{p-1} : recursively constructed formulation whose solutions satisfy all valid inequalities of pitch $\leq p 1$.
- For **p** = 2,

Construction – a few corners are cut

- Set-covering system $Ax \ge e$.
- Pitch $p \ge 2$
- \mathcal{Z}^{p-1} : recursively constructed formulation whose solutions satisfy all valid inequalities of pitch $\leq p 1$.
- For p=2, \mathcal{Z}^{p-1} is the original formulation $Ax\geq e$
- Now we will consider a row *i* of *Ax* ≥ *e* and, effectively, vector-branch on it
- Actually we will write the corresponding disjunction

Let the row be

$$\sum_{j\in S^i} x_j \geq 1$$

where $S^{i} = \{j_{1}, j_{2}, \dots, j_{|S^{i}|}\}.$

Row i of $Ax \ge e$: $\sum_{j\in S^i} x_j \ge 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$. (a) For $1 \le t \le |S^i|$, polyhedron $D^p_i(t) \subseteq \mathbb{R}^n$ given by

$$\begin{array}{rcl} x_{j_t} &=& 1 \\ x_{j_h} &=& 0 \quad \forall \ 1 \leq h < t, \ \text{ and } \\ x &\in \ \mathcal{Z}^{p-1} \end{array} \tag{5}$$

(b) Polyhedron $D_i^p \doteq \operatorname{conv} \{ D_i^p(t) : 1 \le t \le |S^i| \}$

Row i of $Ax \ge e$: $\sum_{j\in S^i} x_j \ge 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$. (a) For $1 \le t \le |S^i|$, polyhedron $D^p_i(t) \subseteq \mathbb{R}^n$ given by

$$\begin{array}{rcl} x_{j_t} &=& 1 \\ x_{j_h} &=& 0 \quad \forall \ 1 \leq h < t, \quad \text{and} \\ x &\in \ \mathcal{Z}^{p-1} \end{array} \tag{5}$$

(b) Polyhedron $D_i^p \doteq \operatorname{conv} \{ D_i^p(t) : 1 \le t \le |S^i| \}$ Finally: $Z^p \doteq \bigcap_i D_i^{p-1}$ Row i of $Ax \ge e$: $\sum_{j \in S^i} x_j \ge 1$, where $S^i = \{j_1, \dots, j_{|S^i|}\}$. (a) For $1 \le t \le |S^i|$, polyhedron $D_i^p(t) \subseteq \mathbb{R}^n$ given by

$$\begin{array}{rcl} x_{j_t} &=& 1 \\ x_{j_h} &=& 0 \quad \forall \ 1 \leq h < t, \quad \text{and} \\ x &\in \ \mathcal{Z}^{p-1} \end{array} \tag{5}$$

(b) Polyhedron $D_i^p \doteq \operatorname{conv} \{ D_i^p(t) : 1 \le t \le |S^i| \}$ Finally: $Z^p \doteq \bigcap_i D_i^{p-1}$

Lemma:

 Z^{p} can be described by a polynomial-size formulation for fixed **p**, and its feasible solutions satisfy all valid inequalities of pitch $\leq p$.

win
$$c^T x$$

w.t. $\sum_j w_j x_j \ge \boldsymbol{b}, \quad x$ binary

 $w \geq 0$, b > 0

• "FPTAS" exists

min
$$c^T x$$

s.t. $\sum_j w_j x_j \ge \boldsymbol{b}, \quad x$ binary

 $m{w} \geq m{0}, \ m{b} > m{0}$

• "FPTAS" exists (the one I know requires a disjunction)

s.t.
$$\sum_{j}^{min} c^T x$$

 $\sum_{j} w_j x_j \ge b$, x binary

 $w \geq 0$, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

s.t.
$$\sum_{j}^{min} c^T x$$

 $\sum_{j} w_j x_j \ge b$, x binary

 $m{w} \geq m{0}, \ m{b} > m{0}$

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question:

s.t.
$$\sum_{j}^{min} c^T x$$

 $\sum_{j} w_j x_j \ge b$, x binary

 $w \ge 0$, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question: Given w, b is there a compact extended formulation that yields a constant factor approximation, $\forall c$?

s.t.
$$\sum_{j}^{min} c^T x$$

 $\sum_{j} w_j x_j \ge b$, x binary

 $\overline{w} \geq 0$, b > 0

- "FPTAS" exists (the one I know requires a disjunction)
- Problem not well understood

Open question: Given w, b is there a compact extended formulation that yields a constant factor approximation, $\forall c$?

ANY constant whatsoever?

s.t.
$$\sum_{j}^{\min} c^T x$$

 $\sum_{j} w_j x_j \ge b$

 $w \geq 0$, b > 0, integral

Well-known result: equivalent to set-covering problem,

s.t.
$$\sum_{j}^{\min} c^{\mathsf{T}} x$$

 $\sum_{j} w_{j} x_{j} \geq b$

 $w \geq 0$, b > 0, integral

Well-known result: equivalent to set-covering problem, with constraints

$$\sum_{j\in \mathcal{S}} x_j \ \geq \ 1, \quad orall \ \mathcal{S} \quad ext{with} \quad \sum_{j\in \mathcal{S}} w_j \ \geq \ w^* \ \doteq \ \sum_j w_j - b + 1$$

s.t.
$$\sum_{j}^{\min} c^{\mathsf{T}} x$$

 $\sum_{j} w_{j} x_{j} \geq b$

 $w \ge 0$, b > 0, integral

Well-known result: equivalent to set-covering problem, with constraints

$$\sum_{j\in S} x_j \ \geq \ 1, \quad orall \ S \quad ext{with} \quad \sum_{j\in S} w_j \ \geq \ w^* \ \doteq \ \sum_j w_j - b + 1$$

But exponentially many constraints

Using equivalence with set-covering,

 Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k?

Using equivalence with set-covering,

 Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k?

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k?

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k? (implied)

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k.

Using equivalence with set-covering,

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k.

Given y, either

- Find a valid inequality with coefficients in $0, 1, \ldots, k$, violated by y, or
- Certify that $\alpha^T y \ge \alpha_0 o(1)$ for all valid $\alpha^T x \ge \alpha_0$ with $\alpha_j \in \{0, 1, \dots, k\}$ for all j.

Using equivalence with set-covering,

- Compact, extended formulation that yields valid inequalities of pitch ≤ k, for fixed k? X
- Compact, extended formulation that yields valid inequalities with coefficients in 0, 1, ..., k, for fixed k? X
- Polynomial-time separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k? (implied)
- Polynomial-time near separation over valid inequalities with coefficients in 0, 1, ..., k, for fixed k.

Given y, either

- Find a valid inequality with coefficients in $0, 1, \ldots, k$, violated by y, or
- Certify that $\alpha^T y \ge \alpha_0 o(1)$ for all valid $\alpha^T x \ge \alpha_0$ with $\alpha_j \in \{0, 1, \dots, k\}$ for all j. e.g. o(1) = O(1/n)

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$?

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

• Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \ge w^*$ for specific $k : \operatorname{argmax}_{j \in S} \{w_j\}$

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

min
$$\sum_{j} y_j z_j$$
 (8)

s.t.
$$\sum_{j \neq k} w_j z_j \geq w^*, \quad z \text{ binary}$$
 (9)

$$z_k = 1, \ z_j = 0 \ \forall j \text{ with } w_j > w_k$$
 (10)

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

min
$$\sum_{j} y_j z_j$$
 (8)

s.t.
$$\sum_{j \neq k} w_j z_j \geq w^*$$
, z binary (9)

$$\boldsymbol{z_k} = \boldsymbol{1}, \ \boldsymbol{z_j} = \boldsymbol{0} \ \forall j \text{ with } w_j > w_k$$
 (10)

Wait, how do we solve?

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

min
$$\sum_{j} y_j z_j$$
 (8)

s.t.
$$\sum_{j \neq k} w_j z_j \geq w^*, \quad z \text{ binary}$$
 (9)

$$\mathbf{z_k} = \mathbf{1}, \ \mathbf{z_j} = \mathbf{0} \ \forall j \text{ with } w_j > w_k$$
 (10)

Wait, how do we solve? In objective round up y_i , to next multiple of $1/n^2$

Warmup

Given y, does it satisfy every valid inequality $\sum_{j \in S} x_j \ge 2$? What is S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in S-k} w_j \geq w^*$
- Same as: $\sum_{j \in S-k} w_j \geq w^*$ for specific $k: \operatorname{argmax}_{j \in S} \{w_j\}$
- For k = 1, 2, ..., n, solve minimum-knapsack problem

min
$$\sum_{j} y_j z_j$$
 (8)

s.t.
$$\sum_{j
eq k} w_j z_j \geq w^*, \qquad z \text{ binary}$$
 (9)

$$z_k = 1, \ z_j = 0 \ \forall j \text{ with } w_j > w_k$$
 (10)

Wait, how do we solve?

In objective round up y_j , to next multiple of $1/n^2$ So, get approximate separation, with violation if objective < 2

knapsack: $\sum_{j} w_{j} x_{j} \ge b$, $\boldsymbol{w}^{*} \doteq \sum_{j} w_{j} - b + 1$ Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$?

knapsack: $\sum_j w_j x_j \ge b$, $\boldsymbol{w}^* \doteq \sum_j w_j - b + 1$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

• Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

 $\begin{array}{rrrr} \hline Example: & 10x_1 + 10x_2 + 5x_3 + 7x_4 + 6x_5 \geq & 10 \\ \hline Valid: & 2(x_1 + x_2 + x_3) + x_4 + x_5 \geq & 2 \\ \hline \textbf{Stronger:} & 2(x_1 + x_2) + x_3 + x_4 + x_5 \geq & 2 \end{array}$

The stronger inequality is **monotone** in the knapsack weights: (bigger weight in knapsack \rightarrow bigger coefficient in inequality)

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

Example: $10x_1 + 10x_2 + 5x_3 + 7x_4 + 6x_5 \ge 10$

Stronger: $2(x_1 + x_2) + x_3 + x_4 + x_5 \ge 2$

The stronger inequality is **monotone** in the knapsack weights: (bigger weight in knapsack \rightarrow bigger coefficient in inequality)

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

 $\begin{array}{rll} \textit{Example:} & 10x_1 + 10x_2 + 5x_3 + 7x_4 + 6x_5 \geq 10 \\ \textit{Valid:} & 2(x_1 + x_2 + x_3) + x_4 + x_5 \geq 2 \\ \textit{Stronger:} & 2(x_1 + x_2) + x_3 + x_4 + x_5 \geq 2 \end{array}$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

 $\begin{array}{rll} \textit{Example:} & 10x_1 + 10x_2 + 5x_3 + 7x_4 + 6x_5 \geq 10 \\ \textit{Valid:} & 2(x_1 + x_2 + x_3) + x_4 + x_5 \geq 2 \\ \textit{Stronger:} & 2(x_1 + x_2) + x_3 + x_4 + x_5 \geq 2 \end{array}$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

 $\begin{array}{rrrr} \hline Example: & 10x_1 + 10x_2 + 5x_3 + 7x_4 + 6x_5 \geq & 10 \\ \hline Valid: & 2(x_1 + x_2 + x_3) + x_4 + x_5 \geq & 2 \\ \hline \textbf{Stronger:} & 2(x_1 + x_2) + x_3 + x_4 + x_5 \geq & 2 \end{array}$

The stronger inequality is **monotone** in the knapsack weights: (bigger weight in knapsack \rightarrow bigger coefficient in inequality)

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$?

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

• Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific k : $\operatorname{argmax}_{j \in S} \{w_j\}$

Second warmup

Given y, does it satisfy every valid inequality $2\sum_{j\in T} x_j + \sum_{j\in S} x_j \ge 2$? What are T, S here?

- Inequality is valid iff $\forall k \in S$, $\sum_{j \in T \cup S-k} w_j \geq w^*$
- Same as: $\sum_{j \in T \cup S-k} w_j \ge w^*$ for specific $k : \operatorname{argmax}_{j \in S} \{w_j\}$
- To separate y, for $k = 1, 2, \ldots, n$, solve minimum-knapsack problem

$$\begin{array}{ll} \min \ 2\sum_{j\in B}\tilde{y}_jz_j &+ \sum_{j\in L}\tilde{y}_jz_j & (\tilde{y}=y \ \text{``rounded up''}\)\\ \text{s.t.} \ \sum_{j\neq k}w_jz_j \geq w^*, \quad z \ \text{binary}\\ \mathbf{z}_k = \mathbf{1}, \quad \mathbf{L} \doteq \{ \ \mathbf{j}: \mathbf{w}_j \leq \mathbf{w}_k \} \quad \mathbf{B} \doteq \{ \ \mathbf{j}: \mathbf{w}_j > \mathbf{w}_k \} \end{array}$$

Example: $8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \ge 13$ (the knapsack)Valid: $x_1 + 2x_2 + x_3 + x_4 + x_5 \ge 3$ (non-monotone)Notvalid: $x_1 + x_2 + x_3 + x_4 + x_5 \ge 3$

A non-monotone "transposition" or "error"

 $\begin{array}{rrrr} \textit{Example:} & 8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \geq 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + 2x_2 + x_3 + x_4 + x_5 \geq 3 & (\text{non-monotone}) \\ \textbf{Not valid:} & x_1 + x_2 + x_3 + x_4 + x_5 \geq 3 \end{array}$

A non-monotone "transposition" or "error"

 $\begin{array}{rll} \textit{Example:} & 6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 & \geq & 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + x_2 + 2x_3 + x_4 + x_5 & \geq & 3 & (\text{non-monotone, 2 errors}) \\ \textbf{Yes valid:} & x_1 + x_2 + x_3 + x_4 + x_5 & \geq & 3 \end{array}$

 $\begin{array}{rrrr} \textit{Example:} & 8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \geq 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + 2x_2 + x_3 + x_4 + x_5 \geq 3 & (\text{non-monotone}) \\ \textbf{Not valid:} & x_1 + x_2 + x_3 + x_4 + x_5 \geq 3 \end{array}$

A non-monotone "transposition" or "error"

 $\begin{array}{rll} \textit{Example:} & 6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 &\geq & 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + x_2 + 2x_3 + x_4 + x_5 &\geq & 3 & (\text{non-monotone, 2 errors}) \\ \textbf{Yes valid:} & x_1 + x_2 + x_3 + x_4 + x_5 &\geq & 3 \end{array}$

 \rightarrow When right-hand side = 3, at most one error

 $\begin{array}{rrrr} \textit{Example:} & 8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \geq 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + 2x_2 + x_3 + x_4 + x_5 \geq 3 & (\text{non-monotone}) \\ \textbf{Not valid:} & x_1 + x_2 + x_3 + x_4 + x_5 \geq 3 \end{array}$

A non-monotone "transposition" or "error"

 $\begin{array}{rll} \textit{Example:} & 6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 &\geq & 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + x_2 + 2x_3 + x_4 + x_5 &\geq & 3 & (\text{non-monotone, 2 errors}) \\ \textbf{Yes valid:} & x_1 + x_2 + x_3 + x_4 + x_5 &\geq & 3 \end{array}$

 \rightarrow When right-hand side = 3, at most **one** error Separation by **enumeration** of errors; each case is a knapsack;

 $\begin{array}{rrrr} \textit{Example:} & 8x_1 + 5x_2 + 4x_3 + 4x_4 + 4x_5 \geq 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + 2x_2 + x_3 + x_4 + x_5 \geq 3 & (\text{non-monotone}) \\ \textbf{Not valid:} & x_1 + x_2 + x_3 + x_4 + x_5 \geq 3 \end{array}$

A non-monotone "transposition" or "error"

 $\begin{array}{rll} \textit{Example:} & 6x_1 + 6x_2 + 5x_3 + 4x_4 + 4x_5 &\geq & 13 & (\text{the knapsack}) \\ \textit{Valid:} & x_1 + x_2 + 2x_3 + x_4 + x_5 &\geq & 3 & (\text{non-monotone, 2 errors}) \\ \textbf{Yes valid:} & x_1 + x_2 + x_3 + x_4 + x_5 &\geq & 3 \end{array}$

 \rightarrow When right-hand side = 3, at most one error Separation by enumeration of errors; each case is a knapsack; $O(n^2)$ cases

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

so (11) is valid iff

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

so (11) is valid iff its covers are also covers for the original knapsack

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

so (11) is valid **iff** its covers are **also** covers for the original knapsack

Corollary: can show that (11) can have at most $< \mathbf{k}$ errors

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

so (11) is valid **iff** its covers are **also** covers for the original knapsack

Corollary: can show that (11) can have at most < k errors or else it is dominated, or invalid Separation by enumeration of errors; each case is a knapsack;

Basic principle: an inequality

$$k x(S_k) + (k-1) x(S_{k-1}) + \ldots + x(S_1) \geq k$$
(11)

is equivalent to its set of covers -

so (11) is valid **iff** its covers are **also** covers for the original knapsack

Corollary: can show that (11) can have at most $\langle \mathbf{k} \rangle$ errors or else it is dominated, or invalid Separation by enumeration of errors; each case is a knapsack; $O(n^{F(k)})$ cases

Application 2: polynomial optimization problems and NN training

Application 2: polynomial optimization problems and NN training

Polynomial optimization:

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j (12)

Intersection graph

Application 2: polynomial optimization problems and NN training

Polynomial optimization:

$$\begin{array}{ll} \min \ c^{\mathsf{T}} x \\ \text{s.t.} & f_i(x) \leq 0, \qquad i = 1, \dots, m \quad (\text{polynomial ineq.}) \\ & 0 \leq x_j \leq 1, \qquad \text{all } j \end{array}$$
 (12)

Intersection graph

A vertex for each variable and an edge anytime two variables appear in the same f_i

• Tree-width

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

• Intersection graph

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

• Intersection graph

A vertex for each variable and an edge anytime two variables appear in the same f_i

• Tree-width of a graph G

Minimum clique number (minus one) over all chordal supergraphs of G

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width ω and the f_i of degree $\leq \rho$.

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width ω and the f_i of degree $\leq \rho$. Then, for every $0 < \epsilon < 1$ there is a disjunctive LP relaxation with

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width ω and the f_i of degree $\leq \rho$. Then, for every $0 < \epsilon < 1$ there is a disjunctive LP relaxation with

 $O\left((2
ho/\epsilon)^{\omega+1}\, n \log(
ho/\epsilon)
ight)$ variables and constraints

min
$$c^T x$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$ (polynomial ineq.)
 $0 \le x_j \le 1$, all j

Theorem (B. and Muñoz 2015, SIOPT 2018).

Suppose:

the intersection graph has tree-width ω and the f_i of degree $\leq \rho$. Then, for every $0 < \epsilon < 1$ there is a disjunctive LP relaxation with

 $|O\left((2
ho/\epsilon)^{\omega+1}\, \textit{n}\log(
ho/\epsilon)
ight)$ variables and constraints

Optimality and feasibility errors $O(\epsilon)$ (additive)

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

• **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

• $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

• $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ ("o" = composition) • $\sigma(t) = \max\{0, t\}$

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

• $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)

- $\sigma(t) = \max\{0, t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\sigma(t) = \max\{0, t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherwise.

As per Arora Basu Mianjy Mukherjee ICLR '18

The setup:

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}(y_i - f(x_i))^2$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\sigma(t) = \max\{0, t\}$
- Each T_h affine: $T_h(y) = A_h y + b_h$,
- For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherwise. Similarly with the b_h .

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}\left(y_{i}\,-\,f(x_{i})\right)^{2}$$

- $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)
- $\sigma(t) = \max\{0, t\}$

• Each
$$T_h$$
 affine: $T_h(y) = A_h y + b_h$,

• For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}\left(y_{i}\,-\,f(x_{i})\right)^{2}$$

• $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)

•
$$\sigma(t) = \max\{0, t\}$$

• Each
$$T_h$$
 affine: $T_h(y) = A_h y + b_h$,

• For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

Theorem (Arora et al 2018). If k = 1 (one "hidden layer") there is an exact algorithm of complexity

- **D** data points $(x_i, y_i), \ 1 \leq i \leq D, \ x_i \in \mathbb{R}^n, \ y_i \in \mathbb{R}$
- Task: compute a function $f : \mathbb{R}^n \to \mathbb{R}$ to minimize

$$\frac{1}{D}\sum_{i=1}^{}\left(y_{i}\,-\,f(x_{i})\right)^{2}$$

• $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ (" \circ " = composition)

•
$$\sigma(t) = \max\{0, t\}$$

• Each
$$T_h$$
 affine: $T_h(y) = A_h y + b_h$,

• For some w, A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise. Similarly with the b_h .

Theorem (Arora et al 2018). If $\mathbf{k} = \mathbf{1}$ (one "hidden layer") there is an exact algorithm of complexity

 $O(2^w D^{nw} \operatorname{poly}(D, n, w))$

Polynomial in the size of the data set, for fixed **n**, **w**

- **D** data points $(x_i, y_i), 1 \leq i \leq D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i - f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

- **D** data points $(x_i, y_i), 1 \leq i \leq D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i - f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

Application of B. and Muñoz poly-opt result:

- **D** data points $(x_i, y_i), 1 \le i \le D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i - f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

Application of B. and Muñoz poly-opt result:

• Weakening: Assume that a bound on the absolute value of the entries in the *A_h*, *b_h* is known

- **D** data points $(x_i, y_i), 1 \le i \le D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i - f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

Application of B. and Muñoz poly-opt result:

- Weakening: Assume that a bound on the absolute value of the entries in the *A_h*, *b_h* is known
- Weakening: For any $0 < \epsilon < 1$, additive errors $O(\epsilon)$

- **D** data points $(x_i, y_i), 1 \leq i \leq D, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$
- Task: compute $f = T_{k+1} \circ \sigma \circ T_k \circ \sigma \ldots \circ \sigma \circ T_1$ to minimize $\frac{1}{D} \sum_{i=1} (y_i - f(x_i))^2$
- A_1 is $n \times w$, A_{k+1} is $w \times 1$, A_h is $w \times w$ otherise.

Application of B. and Muñoz poly-opt result:

- Weakening: Assume that a bound on the absolute value of the entries in the *A_h*, *b_h* is known
- Weakening: For any $0 < \epsilon < 1$, additive errors $O(\epsilon)$

Theorem. For any k, n, w, ϵ approximate LP of size

$$O\left(\left(rac{4}{\epsilon}
ight)^{O((k-1)w^2+nw)} \operatorname{poly}(D,n,w,k)
ight)$$