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Can we account for all valid inequalities with small coefficients?
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(B. and Mark Zuckerberg, 2004)
For any fixed integer k > 1 there exists a compact, extended
formulation whose solutions satisfy all valid inequalities with pitch < k.
of polynomial size (for fixed k)

uses additional variables, a formulation

For any fixed positive integer r > 1 and 0 < € < 1,

there is a compact extended formulation for set-covering whose solutions
satisfy the closure within multiplicative error €

Ve e R":

minc’x st x€ projected formulation >

(1—¢ (min c"x st x € rank-r Gomory cIosure>



Two recent, related papers:

e M. Mastrolilli (sum-of-squares mod 2)

e S. Fiorini, T. Huynh and S. Weltge (circuit complexity)
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e S. Fiorini, T. Huynh and S. Weltge (circuit complexity)

e They point out that the B-Z formulation is 'complex’

e Today, a shorter proof +
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Vector Branching (from Z’s PhD thesis)

Consider a (known) valid inequality

Y ax = a (>0)
Jjes
for a binary optimization problem.
Let S = {ji,/2,-.-,Jt}. Then
e x, =1, or

e xi =0 and x; =1, or
%l o

e x,=x,=0 and x; =1, or




Consider a (known) valid inequality

Zanj > ap (>0)

JjES

for a binary optimization problem.
Let S = {j17j2, 700 ,jt}. Then

° XJ'1=1'

* x; =0 xp =1,
'XJ'1:XJ'2:0 X.i3=1'

O so0o0

®* X =...=Xx;,_, =0 xj, =1,

is a valid disjunction
Gives rise to an alternate scheme for branch-and-bound



Theorem

Given a set-covering problem, suppose we apply vector branching to a

> % 2 1

jeH

given constraint




Given a set-covering problem, suppose we apply vector branching to a

given constraint

2% = 1

JjeH
Then, the solution to any node of the branch-and-bound (sub)tree thus
created satisfies every valid inequality

ax > 2

where
e aj € {0,1,2}forj=1,...,n
e H contained in the of a
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(1)
and suppose we vector-branch on a set covering constraint
ij > 1, with HC S
JEH
And now consider a node where x;, = 1 with jx € H. But:
Since (1) is valid,
Yjes—j X 2 1 (2)

But, set-covering, so (2) must be implied by a set-covering constraint.
So the solution to the node must satisfy (1). Related: Letchford 2001
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and suppose we vector-branch on a set covering constraint

ij- > 1, with HC S
JjeEH

And now consider a node where x;, =1 with j, € H. But:
Since (3) is valid,

djes—j, XiXj = oo — ajy (4)

But, (4) has pitch < k —1
So all we need is a construction
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Construction — a few corners are cut

Set-covering system Ax > e.
Pitch p > 2
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all valid inequalities of pitch < p — 1.
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Set-covering system Ax > e.
Pitch p > 2

ZP~1: recursively constructed formulation whose solutions satisfy
all valid inequalities of pitch < p — 1.

For p =2, 2Pl s the original formulation Ax > e

Now we will consider a row i of Ax > e and, effectively,
vector-branch on it

Actually we will write the corresponding disjunction

Let the row be

2% 21

JjES

where S’ = {J'l,jz,---,f\sq}-
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X, = 1 (5)
X, = 0 V1<h<t, and (6)
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Row iof Ax > e: ZjeSin > 1, where §' = {jl,...,j|5;|}.

For 1 <t < |S'|, polyhedron DP(t) C R" given by

Xj, = 1 (5)
xj,, = 0 V1<h<t, and (6)
x € zpt (7)

Polyhedron Df = conv{DP(t) : 1 <t < |S|}

Finally: 2P = (; D"

ZP can be described by a polynomial-size formulation for fixed p, and
its feasible solutions satisfy all valid inequalities of pitch < p.
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J
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e “FPTAS" exists (the one | know requires a disjunction)

e Problem not well understood

Given w, b is there a compact extended
formulation that yields a constant factor approximation, V c?

constant whatsoever?
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min ¢’ x

s.t. Z wix; > b
J

w>0 b>0,

Well-known result: equivalent to set-covering problem, with constraints

x> 1, VS Sw>wt =Y w-bt1
=) =) J

But exponentially many constraints
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Using equivalence with set-covering,

e Compact, extended formulation that yields valid inequalities of
pitch < k, for fixed k?

o Compact, extended formulation that yields valid inequalities with
coefficients in 0,1,...,k, for fixed k?

e Polynomial-time separation over valid inequalities with coefficients
in 0,1,...,k, for fixed k?

e Polynomial-time near separation over valid inequalities with
coefficients in 0,1,..., k, for fixed k.

Given y, either

e Find a valid inequality with coefficients in 0,1,..., k, violated by

y, or

o Certify that aTy > ag — o(1) for all valid a”x > ag with
aj €{0,1,...,k} forall j. eg. o(1) = O(1/n)
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Given y, does it satisfy every valid inequality } ;- x > 27

What is S here?
e Inequality is valid iff Vk € S, Zjes-k wj > w*
e Sameas: ) .., w; > w™ for specific k : argmax;cs{w;}
e For k=1,2,...,n, solve minimum-knapsack problem

min Zyjzj
J
s.t. ijzj > w, z binary
7k
zr =1, Zj:OVjWith wj > wi

Wait, how do we solve?
In objective round up y;, to next multiple of 1/n2

So, get approximate separation, with violation if objective < 2
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Second warmup
Given y, does it satisfy every valid inequality 2Ej€TXj + Zjesxi > 27
What are T, S here?

e Inequality is valid iff Vk € S, EjGTUS—k wj > w*
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knapsack: > . wjx; > b, w* = 3w —b+1

Given y, does it satisfy every valid inequality ZZJETXJ' + Zjes xj > 27
What are T, S here?
e Inequality is valid iff Vk € S, ZjeTUS—k wj > w*
e Same as: ) i r s_x Wj = w" for specific k : argmax;c s{w;}
e To separate y, for k =1,2,...,n, solve minimum-knapsack problem
min 22)7ij 4 Z)ZZJ (y = y “rounded up” )
j€B jeL
s.t. ijzj > wh, z binary
7k
ze=1 L={j:wj<w} B={j:w>w}
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Polynomial optimization:

min ¢’ x

s.t. fi(x) <0, i=1,...,m (polynomial ineq.)
0<x<1, allj

(B. and Mufioz 2015, SIOPT 2018).
Suppose:
the intersection graph has tree-width w and the f; of degree < p.

Then, for every 0 < € < 1 there is a disjunctive LP relaxation with
O ((2p/€)**! nlog(p/€)) variables and constraints

Optimality and feasibility errors O(e) (additive)
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