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Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses
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VEk :

VEk :

VEk :
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Basic problem

o

keV
Py = gkm(e% + fl?) - gkm(ek‘em + fkfm) + bkm(eszm - fkem)

ka — _bkm(ei + f]?) + bkzm(ekem + fkfm) + gkm(ekfm - fkem)

|Pkm|2+‘ka|2 S Ukm

prn < ¥ Py < PP
km € 0(k)

R <Y Qe < QR
km e §(k)

‘/kmin < 62 + fl? < ‘/;cmax,

Here, F} is a quadratic function for each k.
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Optimal power flow problem in rectangular coordinates, simplest form

Variables:

e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
st. VEm:  Pun = grm(es+ f2) — grmlerem + fifm) + brm(erfm — frem) (3a)
VEm:  Qrm = —brmle; + 7))+ brm(exem + fufm) + Grm(enfm — frem) (3b)
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vk min <Y Qg < QP (3¢)
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Optimal power flow problem in rectangular coordinates, simplest form

Variables:
e Complex voltages er + 3 fr, power flows Py, Qrm, auxiliary variables

Notation: For a bus k, d(k) = set of lines incident with k; V = set of buses

Basic problem

min Z Ch

keV
s.t. Vkm : Pin, = gkm(ez + fl?) - gkm(ek’em + fkfm) + bkm(ek’fm - fkem)

Vim | Punl® + |Qiml* < Ukm

Vk: PP < N Py, < PR
km € 0(k)

Vk: QP < Y Qe < QP
km e (k)

Vi - ‘/kmin < 6% + fl? < ‘/;cmax’

Here, F}, Gy are quadratic functions for each k. Many possibilities, all structurally similar.

These are QCQPs, quadratically constrained quadratic programs, with an underlying graph structure.



QCQPs

min "M% + 2clz + d (6a)
st. Vkm: o Mz + ZCZ-TZ' +d;, > 0, 1 <i<m, (6b)
r e R" (6¢)

Each matrix M* symmetric.
This description includes linear inequalities, bounds on individual variables, quadratic/linear equations.



QCQPs

min "M% + 2clz + d (7a)
st. Vkm: o Mz + 20?.75 +d;, > 0, 1 <i<m, (7h)
x € R". (7c)
Reformulation
observation: T M'z + 2cfz = (1 z7) 0 ¢ ) = (1 7)) !
' v c;, M?* T T
definition: for matrices A, B, AeB = ) .a;;jb;
so for vector y and matrix A, yTAy = Aeyy’
So QCQP can be rewritten as:
Q* = min M e X + d (3a

st. Yekm: M'eX + d > 0, 1<i<m, (

08
o
S—" ~—

X e ROFDX0HD X (0 of rank 1. (8¢
The semidefinite relaxation of this problem is:
Q = min M'eX + d (9a)
st. Vkm: MeX +d > 0, 1<i<m, (9b)
X e RiHDx(Hl) 0 X . (9¢)

Q < @
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The critical observation

e Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

e This spurred much research

e Jabr, Hiskens and Molzahn, others

e Under constrained conditions, the SDP relaxation can be weak
e The SDP relaxation can prove unsolvable for larger grids

e Factoid: there are polynomial-time algorithms for SDP, but require many
assumptions

e There is no exact algorithm for SDP

e Lavaei, Low, Hiskens-Molzahn:
when the underlying network has low tree-width, the SDP relaxation
can be solved much faster
why: standard SDP solvers can leverage low tree-width

e What exactly is tree-width?
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Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e T"is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G
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Fulkerson and Gross (1965), binary packing integer programs

[P = max c'x (10a)
st. Axr < b, (10b)
r e {0,1}" (10c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, G4, has:

e A vertex for each column of A.
e An edge between two columns g, k if thereisarow 2 with a;; # 0, a;, # 0.

1 2 3 4 5




History

Fulkerson and Gross (1965), binary packing integer programs

[P = max c'z (11a)
st. Axr < b, (11Db)
r e {0,1}" (11c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, G4, has:

e A vertex for each column of A.

e An edge between two columns 7, k if there is arow ¢ with a;; # 0, a;x # 0.
1 2 3 4 5

—
o

Each row of A induces a clique of G 4.



History

Fulkerson and Gross (1965), binary packing integer programs

IP = max ¢z (12a)
st. Az < b, (12b)
r €{0,1}" (12¢)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, G4, has:

e A vertex for each column of A.

e An edge between two columns j, k if there is a row % with a;; # 0, a;; # 0.

Theorem. If G4 is an interval graph, then

[P=LP = max c'z (13a)
st. Ax < b, (13b)
xr € 0, 1]". (13c)

(so IP = value of its continuous relaxation).

A graph G = (V, E) is an interval graph, if there is a path P, and a
family of subpaths P, (one for each v € V'), such that

e For each pair of vertices uw and v of G, we have {u,v} € E
whenever P, and P, intersect.

e The largest clique size of G is max,cp |[{v € V : p € P,}|.

(The maximum number of subpaths that simultaneously overlap anywere on P)



IP = max c'z (14a)

st.  Ax < b, (14b)
re{0,1}" (14c)

The intersection graph of A, G4, has:

e A vertex for each column of A, an edge between two columns j, k if there is a row ¢ with a;; # 0, a; # 0.

Definition: (Gavril, 1974) A graph G = (V, E) is chordal, if there

ex1sts
e A tree T, and a family of trees P, (one for each v € V), such that

e For each pair of vertices u and v of G, we have {u,v} € E
whenever T, and T, intersect.

e The largest clique size of G is maxer |[{v € V : t € T,}|.

(The maximum number of subtrees that simultaneously overlap anywere on T')

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).



Contrast with tree-decompositions

A tree-decomposition of G is a pair (T, Q) where:

e 1" is a tree. Not a subtree of G, just a tree.

e For each vertex tof T, Qy is a subset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u,v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

20 o ° °

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G

So: A graph G has a tree-decomposition of width aw iff there is a chordal
supergraph of G of clique number w + 1.



IP = max c'z (15a)

st.  Ax < b, (15b)
re{0,1}" (15¢)

The intersection graph of A, G4, has:

e A vertex for each column of A, an edge between two columns j, k if there is a row ¢ with a;; # 0, a; # 0.

Definition: (Gavril, 1974) A graph G = (V, E) is chordal, if there exists
e A tree T, and a family of subtrees P, (one for each v € V), such that
e For each pair of vertices w and v of G, we have {u,v} € E iff T, and T, intersect.

e The largest clique size of G is maxer |[{v € V : t € T, }|.
(The maximum number of subtrees that simultaneously overlap anywere on T')

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).

Theorem. If G4 is chordal, then

[P=LP=max c'z (16a)
st. Ax < b, (16h)
z € [0,1]". (16¢)

(so IP = value of its continuous relaxation).

Chordal graphs are “nice.” In fact, they are perfect.



Why small tree-width helps

Cholesky factorization of:




Cholesky factorization of:




Chordal supergraph:

Pivoting order: 1, 2, 5,6, 7, 8, 3, 4



Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph
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d graphs of max deg 3 and arbitrarily high tree-width
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Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph

e Algorithms community: small tree-width makes hard problems easy (late
1980s)

e Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

e Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

e Common thread: exploit tree-decomposition to obtain good algorithms

e So-called “non-sequential dynamic programming”
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Graph Minors Project: Robertson and Seymour, 1983 - 2004

— Tree-width as a measure of the complexity of a graph

e Algorithms community: small tree-width makes hard problems easy (late
1980s)

e Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

e Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

e Common thread: exploit tree-decomposition to obtain good algorithms

e So-called “non-sequential dynamic programming”

— Can we do the same for OPF ?



Theorem: Given an instance of AC-OPF on a graph with a tree-decomposition
of width w, and m buses, and 0 < € < 1,

there is a linear program LP such that:

22w

(a) The number of variables and constraints is O(2%” wn e !log, e ).

(b) An optimal solution to LP solves AC-OPF, within tolerance €.



Yk :

Yk :

Yk :

More generic statement for AC-OPF

Pem = gem(ei + f7) — gem(erem + fufm) + bem(erfn — frem)
Qk:m — _bkm(ez + f]?) + bkm(ekem + fkfm) + gkm<€k¢fm — fkem)

P.= Y P PM < B < Phx
km e (k)

Qv = Y Qum < Qr <P
km e o(k)

(‘/;cmin)2 < ez + fl? < <‘/k:max)2

Cr = Fyo(PrQrer fr) + Y Him(Pom, Qroms ks frs €ms fin)
kmed(k)

Here, the Fjy and Hyp,, are quadratics.



A generalization: graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for 3 € J(v) there is a real
variable ;.
Write V = U’UEV(H)J(U)°

(3) For each edge {v, u} denote by " the vector of all ; for 3 € J(v) U J(u).

(4) For each vertex v, and each edge {v, u} afamily of quadratics pﬁ, , (")
for k=1,...,N(v).

(5) A vector ¢ € RY.



A generalization: graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for j € J(v) there is a real variable x;.
Write v == UveV(H)J(U)-

(3) For each edge {v,u} denote by x”* the vector of all =, for j € J(v) U J(u).

(4) For each vertex v, and each edge {v,u} a family of quadratics pf (%) for k=1,..., N(v).

(5) A vector c € RY.

Problem:
(GQCQP): min ¢z
subject to: Z Pour(x”) >0, veV(H), k=1,...



A generalization: mixed-integer graphical QCQPs (abridged)
Inputs:
(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for 3 € J(v) there is a real
variable ;.
Write V = UUEV(H)J(U)°

(3) For each edge {v, u} denote by a¥* the vector of all ; for 3 € J(v) U J(u).

(4) For each vertex v, and each edge {v, u} afamily of quadratics pﬁ, (")
for k=1,...,N(v).

(5) A vector ¢ € RY.

(6) A partition ¥V = Vz U Vj.



Problem:

(MGP): min ¢’z
subject to: Z Pouir(@”) > 0, veV(H), k=1,...,N(v)
ued(v)

0<z;, <1 VjeVp z;=0o0rl VjecVs.



(1) An undirected graph H.

(2) For each vertex v of H aset J(v), and for j € J(v) there is a real variable x;.
Write VYV = UveV(H)J('U)-

3) For each edge {v,u} denote by x* the vector of all x; for j € J(v) U J(u).
4

5) A vector ¢ € RV.

6) A partition V = VzU Vg.

(3)
(4)
(5)
(6)

(MGP): min ¢’z

subject to: Z Pour(z™) >0, veV(H), k=1,...,N(v)

0<uz; <1 VjeVp a2 =00rl VjecVy.

For each vertex v, and each edge {v,u} a family of polynomials p% (x**) for k=1,..., N(v).

Theorem: Given an instance of M GP on a graph with a tree-decomposition

of width w, there is an equivalent instance of MGP on a graph
e With tree-width < 2w + 1

e Of maximum degree 3.

Remark. If we start with an instance of AC-OPF', the equivalent problem

is no longer an AC-OPF problem.



Approximation (Glover, 1975)(abridged)

Let x be a variable, with bounds 0 < & < 1. Let 0 < v < 1. Then we
can approximate

Tr = Zle 2 %y,

where each y; is a binary variable. In fact, choosing L = [log,~y '],
we have

r < Zf:1 27'y; < x4 7.

So: given an instance of M G P, approximate each continuous variable x;
in this manner.



Theorem: Consider an instance Z of problem MGP, with mn variables.
Then there is another instance, B of MGP, with

(1) B is defined on the same graph as Z.

(2) all variables in B are binary.

(3) For each continuous variable @; of Z, we now have log, J* loge™*

binary variables used to approximate ;.

(4) Solving B to exact optimality yields a solution to Z within tolerance e.

J* = size of largest set J(v). (AC-OPF = J* = 2)
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Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph
with a tree-decomposition of width w.

|

(2) An equivalent mixed-integer, graphical polynomial optimization problem
on a graph with a tree-decomposition of width O(w) and degree < 3.

|

(3) An all-binary, graphical polynomial optimization problem on the same

graph which is equivalent to the problem in (2) within tolerance €. The

sets J(v) have grown by a factor of log, J* log, e~ 1.



Ancient History of this Talk

Fulkerson and Gross (1965), binary packing integer programs
IP = max c'z (21a)

st. Az < b, (21b)

z € {0,1}" (21c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, G4, has:

e A vertex for each column of A.
e An edge between two columns j, k if there is a row ¢ with a;; # 0, a;; # 0.

Each row of A induces a clique of G 4.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition
of width w.

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-
decomposition of width O(w) and degree < 3.

(3) An all-binary, graphical polynomial optimization problem on the same graph which is equivalent

to the problem in (2) within tolerance €. The sets J(v) have grown by a factor of log, J* log, €.

(4) Corollary. The intersection graph of the problem in (3) has a tree-decomposition of width at
most

O(w J*log, J* log, €7 1)

Note: There are two graphs. The initial graph used to define the problem, and the intersection graph
for the constraints in (3).



Piece de Résistance

Theorem. Given an all-binary problem on m variables and whose inter-
section graph has a tree-decomposition of width £k, then there is an exact
linear programming representation using

O(2Fn)

variables and constraints.

Construction similar to Lovasz-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg
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Piece de Résistance

Theorem. Given an all-binary problem on m variables and whose inter-
section graph has a tree-decomposition of width £k, then there is an exact
linear programming representation using

O(2%n)

variables and constraints.

Construction similar to Lovasz-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with IN
variables, on a graph with a tree-decomposition of width w.

J* = size of largest set J(v). (AC-OPF J* = 2)

|

(B) A linear program that solves the problem in (A) within tolerance e,
of size

O (20«7 o J* eI N)



Should we able to do better?

Probably.

But.

e There are trivial AC-OPF problems where there is a unique feasible solu-
tion and it is irrational.
Under the bit model of computing we cannot produce an “exact” answer.

a 1more

)

e AC-OPF is weakly NP-hard on trees. Lavaei and Low (2011)
recent proof by Coffrin and van Hentenryck.

e AC-OPF is strongly NP-hard on general graphs. A. Verma (2009). So no
strong approximation algorithms exist unless P = NP.



