Identifying and Controlling Risky Contingencies of Transmission Systems

Daniel Bienstock and Sean Harnett, Columbia University Taedong Kim and Steve Wright, U. of Wisconsin

FERC Software conference, 2015

 \rightarrow Thu.Jun.11.205236.2015@littleboy

Previous work: Salmeron and Wood, Donde et al, Turitsyin, Hines

 \bullet N - 1 criterion widely used.

- N 1 criterion widely used. But is it enough?
- How about N K, for K "larger"? Everybody knows that:
 - It is *too* slow. A very difficult combinatorial problem.

- N 1 criterion widely used. But is it enough?
- \bullet How about $~\mathbf{N}$ $\mathbf{K},$ for $~\mathbf{K}$ "larger"? Everybody knows that:
 - It is too slow. A very difficult combinatorial problem.

			(K)	
	N	K = 2	K = 3	K = 4
ĺ	1000	499500	166167000	41417124750
	4000	7998000	10658668000	10650673999000
	8000	31996000	85301336000	170538695998000
	10000	49995000	166616670000	416416712497500

Table 1: $\binom{N}{K}$

- N 1 criterion widely used. But is it enough?
- How about N K, for K "larger"? Everybody knows that:
 - It is too slow. A very difficult combinatorial problem.

		Table 2: $\binom{N}{K}$	
N	K = 2	K = 3	K = 4
1000	499500	166167000	41417124750
4000	7998000	10658668000	10650673999000
8000	31996000	85301336000	170538695998000
10000	49995000	166616670000	416416712497500

- It is too conservative. It is not conservative enough.

- N 1 criterion widely used. But is it enough?
- \bullet How about $~\mathbf{N}$ $\mathbf{K},$ for $~\mathbf{K}$ "larger"? Everybody knows that:
 - It is too slow. A very difficult combinatorial problem.

		Table 3: $\binom{N}{K}$	
N	K = 2	K = 3	K = 4
1000	499500	166167000	41417124750
4000	7998000	10658668000	10650673999000
8000	31996000	85301336000	170538695998000
10000	49995000	166616670000	416416712497500

- It is too conservative. It is not conservative enough.
 - (T. Boston) during Hurricane Sandy, **N 142** was observed.

- N 1 criterion widely used. But is it enough?
- \bullet How about ~N K, for ~K "larger"? Everybody knows that:
 - It is too slow. A very difficult combinatorial problem.

Table 4: $\binom{N}{K}$				
N	K = 2	K = 3	K = 4	
1000	499500	166167000	41417124750	
4000	7998000	10658668000	10650673999000	
8000	31996000	85301336000	170538695998000	
10000	49995000	166616670000	416416712497500	

- It is too conservative. It is not conservative enough.
 - (T. Boston) during Hurricane Sandy, N 142 was observed.
- Perhaps ${\bf N}$ ${\bf K}$ does not necessarily capture all interesting events?

Example: August 14 2003

U.S. - Canada report on blackout:

"Because it had been hot for several days in the Cleveland-Akron area, more air conditioners were running to overcome the persistent heat, and consuming relatively high levels of reactive power – further straining the area's limited reactive generation capabilities."

 \rightarrow A **system-wide** condition that impedes the system

 \longrightarrow Not a cause, but a contributor

 \longrightarrow Look for combined events ?

- N 1 criterion widely used. But is it enough?
- \bullet How about $~\mathbf{N}$ $\mathbf{K},$ for $~\mathbf{K}$ "larger"? Everybody knows that:
 - $-\operatorname{It}$ is too slow. A very difficult combinatorial problem.

		Table 5: $\binom{N}{K}$	
N	K = 2	K = 3	K = 4
1000	499500	166167000	41417124750
4000	7998000	10658668000	10650673999000
8000	31996000	85301336000	170538695998000
10000	49995000	166616670000	416416712497500

- It is too conservative. It is not conservative enough.
 - (T. Boston) during Hurricane Sandy, N 142 was observed.
- Perhaps ${\bf N}$ ${\bf K}$ does not necessarily capture all interesting events?
- How can we deal with both types of problems?

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).

- On line km, reactance x_{km} increased to $(1 + \lambda_{km})x_{km}$

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
 - On line km, reactance x_{km} increased to $(1 + \lambda_{km})x_{km}$,

 $-0 \leq \lambda_{km} \leq \lambda_{km}^{max}$ (per line limit)

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
 - On line km, reactance x_{km} increased to $(1 + \lambda_{km})x_{km}$,
 - $-0 \leq \lambda_{km} \leq \lambda_{km}^{max}$ (per line limit)
 - $-\sum_{km} \lambda_{km} \leq \Lambda$ (global limit)

- A fictitious adversary is trying to interdict the transmission system.
- This adversary negatively alters the physical parameters of equipment, e.g. transmission lines, so as to impede transmission.
- The adversary has a budget available (both system-wide and per-line).
- Adversary maximizes the impact (e.g. voltage loss) over the available budget.
- A continuous, non-convex optimization problem with **simple** constraints. **No emumeration!**

A blast from the past: Bienstock and Verma, 2007

- **DC** approximation to power flows.
- Adversary **increases reactances** of lines.
- Limit on total percentage-increase of reactances, and on per-line increase.
- Adversary maximizes the maximum **line overload**:

$$\max_{\boldsymbol{x},\boldsymbol{\theta}} \max_{km} \left\{ \frac{|\theta_k - \theta_m|}{u_{km} \boldsymbol{x_{km}}} \right\}$$

s.t.
$$B_x \theta = d$$

 x within budget

- Variables: reactances \boldsymbol{x} , phase angles $\boldsymbol{\pi}$ - $\boldsymbol{x_{km}}$ = reactance of \boldsymbol{km} , $\boldsymbol{u_{km}}$ = limit of \boldsymbol{km} , $\boldsymbol{B_x}$ = bus susceptance matrix, \boldsymbol{d} = net injections (given)
- Continuous, but non-smooth problem.

A blast from the past: Bienstock and Verma, 2007

- **DC** approximation to power flows.
- Adversary **increases reactances** of lines.
- Limit on total percentage-increase of reactances, and on per-line increase.
- Adversary maximizes the maximum **line overload**:

$$\begin{array}{ll}
\max_{\boldsymbol{x},\boldsymbol{\theta}} & \sum_{km} (\alpha_{km}^{+} - \alpha_{km}^{-}) \frac{(\theta_{k} - \theta_{m})}{u_{km} \ \boldsymbol{x}_{km}} \\
\text{s.t.} & \boldsymbol{B}_{\boldsymbol{x}} \boldsymbol{\theta} = d \\
& \boldsymbol{x} \text{ within budget} \\
& \sum_{km} (\alpha_{km}^{+} + \alpha_{km}^{-}) = 1, \quad \alpha^{+}, \alpha^{-} \geq 0.
\end{array}$$

A blast from the past: Bienstock and Verma, 2007

- **DC approximation** to power flows.
- Adversary **increases reactances** of lines.
- Limit on total percentage-increase of reactances, and on per-line increase.
- Adversary maximizes the maximum **line overload**:

$$\begin{array}{ll}
\max_{\boldsymbol{x},\boldsymbol{\theta},\boldsymbol{\alpha}} & \sum_{km} (\alpha_{km}^{+} - \alpha_{km}^{-}) \frac{(\theta_{k} - \theta_{m})}{u_{km} \ \boldsymbol{x}_{km}} \\
\text{s.t.} & \boldsymbol{B}_{\boldsymbol{x}} \boldsymbol{\theta} = d \\
& \boldsymbol{x} \text{ within budget} \\
& \sum_{km} (\alpha_{km}^{+} + \alpha_{km}^{-}) = 1, \quad \alpha^{+}, \alpha^{-} \geq 0.
\end{array}$$

• Continuous, smooth, **nonconvex**.

Technical point

$$\begin{aligned} \max_{\boldsymbol{x},\boldsymbol{\theta},\boldsymbol{\alpha}} & \sum_{km} (\alpha_{km}^{+} - \alpha_{km}^{-}) \frac{(\boldsymbol{\theta}_{k} - \boldsymbol{\theta}_{m})}{u_{km} \ \boldsymbol{x}_{km}} \\ \text{s.t.} & \boldsymbol{B}_{\boldsymbol{x}} \boldsymbol{\theta} \ = \ d \\ & \boldsymbol{x} \text{ within budget} \\ & \sum_{km} (\alpha_{km}^{+} + \alpha_{km}^{-}) \ = \ 1, \quad \alpha^{+}, \alpha^{-} \ge 0. \end{aligned}$$

Function to maximize:
$$F(x, \alpha) \doteq \sum_{km} (\alpha_{km}^+ - \alpha_{km}^-) \frac{(\theta_k - \theta_m)}{u_{km} x_{km}}$$

Technical point

$$\begin{array}{ll} \displaystyle \max_{\boldsymbol{x},\boldsymbol{\alpha}} & \displaystyle \sum_{km} (\alpha_{km}^{+} - \alpha_{km}^{-}) \frac{(\theta_{k} - \theta_{m})}{u_{km} \ \boldsymbol{x}_{km}} \\ \mathrm{s.t.} & \boldsymbol{B}_{\boldsymbol{x}} \theta \ = \ d \\ & \boldsymbol{x} \ \mathrm{within} \ \mathrm{budget} \\ & \displaystyle \sum_{km} (\alpha_{km}^{+} + \alpha_{km}^{-}) \ = \ 1, \quad \alpha^{+}, \alpha^{-} \ \ge \ 0. \end{array}$$

Function to maximize: $F(x, \alpha) \doteq \sum_{km} (\alpha_{km}^+ - \alpha_{km}^-) \frac{(\theta_k - \theta_m)}{u_{km} x_{km}}$

- Fact: The gradient and the Hessian of $F(x, \alpha)$ can be efficiently computed
- Optimization problem solved using **LOQO** (**IPOPT** an option)

And what happens?

• Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.

And what happens?

- Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.
- Optimal * attack concentrated on a handful of lines

And what happens?

- Algorithm scales well (2007): CPU times of ~ 1 hour for studying systems with thousands of lines.
- Optimal * attack concentrated on a handful of lines
- \bullet Significant part of the budget expended on many lines, with visible impact

Table 6: Attack patterns					
single = 20	total = 60	single = 10	total = 30	single = 10	total = 40
Range	Count	Range	Count	Range	Count
[1, 1]	8	[1, 1]	1	[1, 1]	14
(1, 2]	72	(1, 2]	405	(1, 2]	970
(2,3]	4	(2, 9]	0	(2, 5]	3
(5,6]	1	(9, 10]	3	(5, 6]	0
(6,7]	1			(6, 7]	1
(7, 8]	4			(7, 9]	0
(8,20]	0			(9, 10]	2

"single" = max multiplicative increase of a line's reactance

"total" = max total multiplicative increase of line reactances

Today: the AC power flows setting

As before, adversary increases impedances, subject to budgets

Adversary wants to **maximize**:

- Phase angle differences across ends of a lines
- Voltage deviations (loss)

Alternative version:

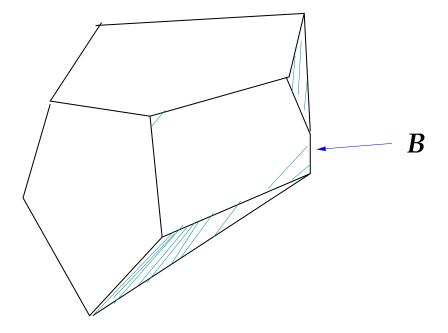
- There is a **recourse** action: shed load so as to maintain feasibility of all power flow constraints (limits)
- Adversary wants to maximize the amount of lost load

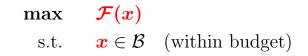
Generically:

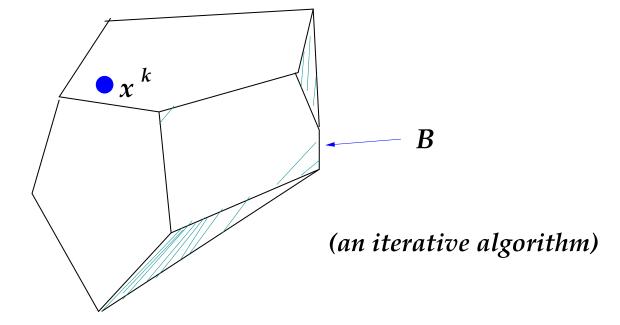
$$\begin{array}{ll} \max & \mathcal{F}(\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \in \mathcal{B} \end{array}$$

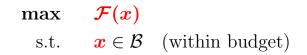
- \boldsymbol{x} = impedances, $\boldsymbol{\mathcal{B}}$ = budget constraints
- $\mathcal{F}(x)$ = meausure of phase angle differences, voltage loss, load loss
- Challenge 1: $\mathcal{F}(x)$ is implicitly defined

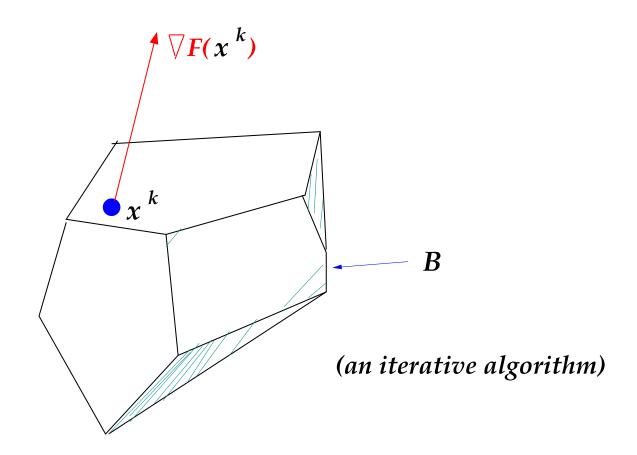
 $\begin{array}{ll} \max & \quad \mathcal{F}(\boldsymbol{x}) \\ \text{s.t.} & \quad \boldsymbol{x} \in \mathcal{B} \quad (\text{within budget}) \end{array}$

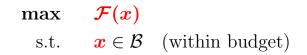


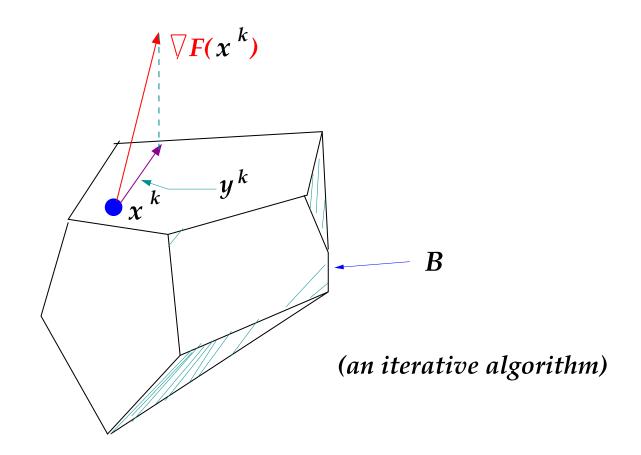


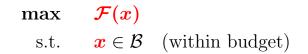


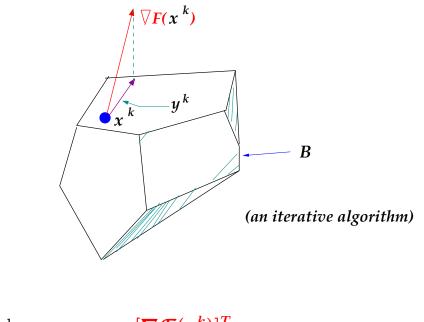


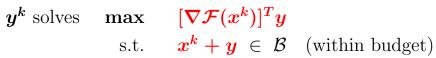


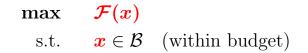


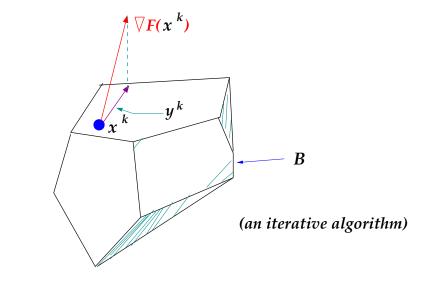








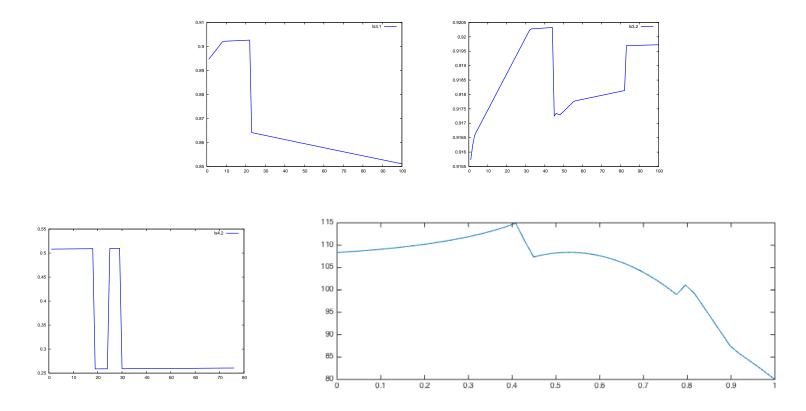


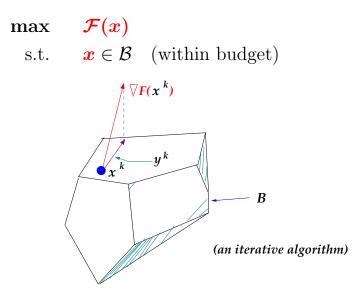


 $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$

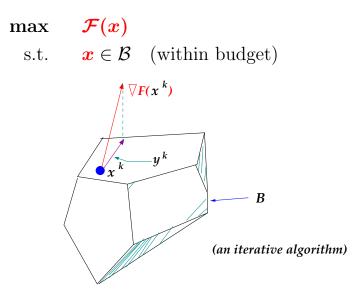
Final step is a line search: $x^{k+1} = x^k + \alpha y^k$, where $0 \le \alpha \le 1$ is the stepsize.

Line searches

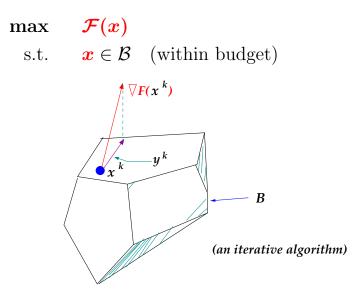




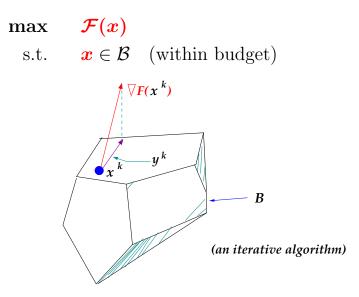
- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances x
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?



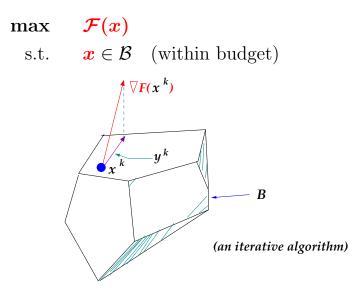
- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances x
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences



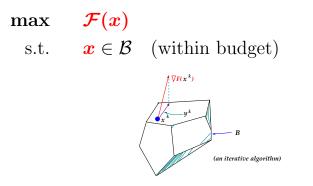
- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances x
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system it is a **big** vector



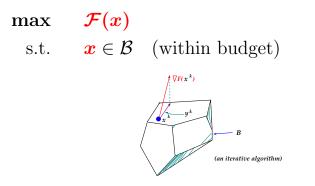
- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances x
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system it is a **big** vector
- "Solution": Estimate $\nabla \mathcal{F}(x)$ in parallel over several cores



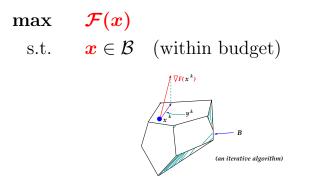
- Recall: $\mathcal{F}(x)$ measures e.g. the largest phase angle difference using reactances x
- Q: exactly how do we get $\nabla \mathcal{F}(x)$?
- A: We estimate $\nabla \mathcal{F}(x)$ using finite differences
- But $\nabla \mathcal{F}(x)$ is a vector with an entry for each line of the transmission system it is a **big** vector
- "Solution": Estimate $\nabla \mathcal{F}(x)$ in parallel over several cores
- Alternative: only estimate some of the components of $\nabla \mathcal{F}(x)$:
 - -**Random** subset of small size
 - Most promising subset



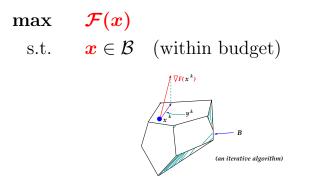
- $\mathcal{F}(x)$ measures e.g. the sum of voltage losses with reactances x
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances x?



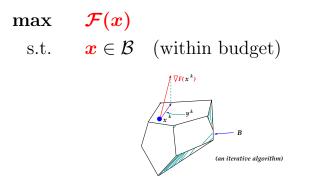
- $\mathcal{F}(x)$ measures e.g. the sum of voltage losses with reactances x
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances x?
- \bullet A: Ideally, a \mathbf{PF} (load flow) calculation



- $\mathcal{F}(x)$ measures e.g. the sum of voltage losses with reactances x
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances x?
- \bullet A: Ideally, a \mathbf{PF} (load flow) calculation
- Challenge! PF often does not converge for interesting *x*



- $\mathcal{F}(x)$ measures e.g. the sum of voltage losses with reactances x
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances x?
- \bullet A: Ideally, a \mathbf{PF} (load flow) calculation
- Challenge! PF often does not converge for interesting \boldsymbol{x}
- solution: solution OPF-like problem: minimize sum of square of all violations (load mismatch, line limits, etc)



- $\mathcal{F}(x)$ measures e.g. the sum of voltage losses with reactances x
- And we estimate $\nabla \mathcal{F}(x)$ using finite differences
- Q: How do we compute $\mathcal{F}(x)$, for given reactances x?
- \bullet A: Ideally, a \mathbf{PF} (load flow) calculation
- Challenge! PF often does not converge for interesting \boldsymbol{x}
- **solution:** solution OPF-like problem: minimize sum of square of all violations (load mismatch, line limits, etc)
- **solution?** violations still observed
- solution? Add to definition of $\mathcal{F}(x)$ sum of weighted square violations

→ Currently using **IPOPT** within Matpower (fastest for **our** purposes) → Infeasible cases verified using SDP relaxation

Example: phase angle attack on Polish grid (from Matpower)

1 obj=2620.72 step=1.00 [**263** 8.00; **300** 8.00; **728** 8.00;]

2 obj=2641.52 step=1.00 [**305** 8.00; **306** 8.00; **309** 8.00;]

3 obj=2649.34 step=1.00 **168** 8.00; **263** 8.00; **321** 8.00; **]**

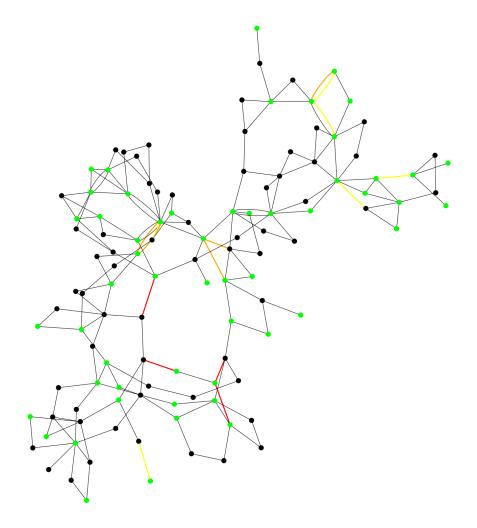
5 obj=2765.47 step=0.50 [**51** 4.00; **261** 4.00; **263** 4.00; **300** 4.00; **321** 4.00; **322** 4.00;]

13 obj=2944.01 step=0.12 [**305** 2.60; **168** 2.32; **322** 2.17; **169** 1.90; **321** 1.85; **263** 1.57; **309** 1.50; **32** 1.15; **51** 1.08; **261** 1.08; **170** 1.00; **171** 1.00; **306** 0.85; **39** 0.75; **281** 0.75; **166** 0.57; **310** 0.57; **8** 0.43; **264** 0.43; **300** 0.42;]

20 obj=2950.54 step=0.03 [**169** 2.53; **305** 2.38; **168** 1.88; **322** 1.77; **321** 1.76; **309** 1.74; **166** 1.44; **170** 1.28; **263** 1.28; **261** 1.14; **32** 0.93; **51** 0.88; **171** 0.81; **306** 0.69; **39** 0.61; **281** 0.61; **264** 0.59; **260** 0.51; **310** 0.46; **8** 0.35; **300** 0.34;]

27 obj=2958.08 **step=0.00** [**169** 2.80; **305** 2.53; **321** 2.00; **309** 1.97; **168** 1.63; **263** 1.58; **322** 1.53; **166** 1.38; **261** 1.11; **170** 1.11; **32** 0.81; **51** 0.76; **264** 0.76; **281** 0.75; **171** 0.71; **306** 0.60; **39** 0.53; **260** 0.44; **310** 0.40; **8** 0.30; **300** 0.30;]

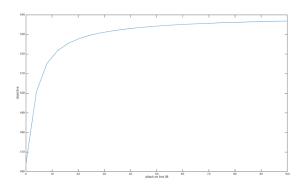
Example: phase angle attack on 118-bus Three top-attacked lines in red:



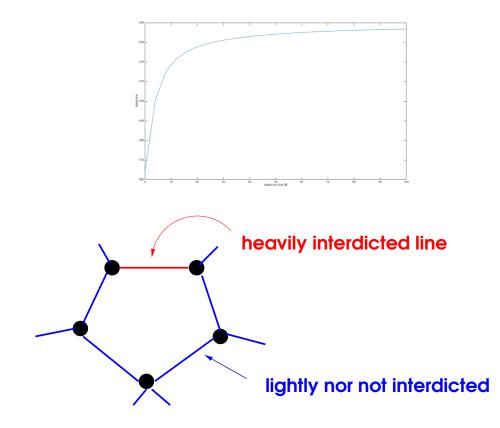
- (1) Take line most heavily interdicted: line $\mathbf{38}$
- (2) Let the reactance of this line increase to infinity
- (3) What happens? Phase angle difference $\rightarrow \pi/2$?

- (1) Take line most heavily interdicted: line $\mathbf{38}$
- (2) Let the reactance of this line increase to infinity
- (3) What happens? Phase angle difference $\rightarrow \pi/2$? No.

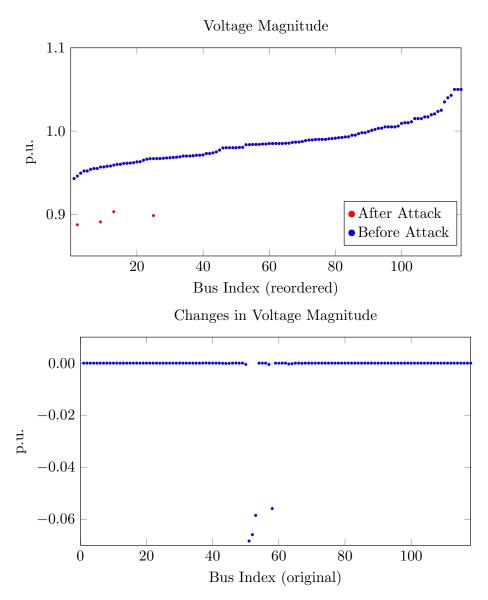
- (1) Take line most heavily interdicted: line $\mathbf{38}$
- (2) Let the reactance of this line increase to infinity
- (3) What happens? Phase angle difference $\rightarrow \pi/2$? No. From ≈ 10 to ≈ 40 .

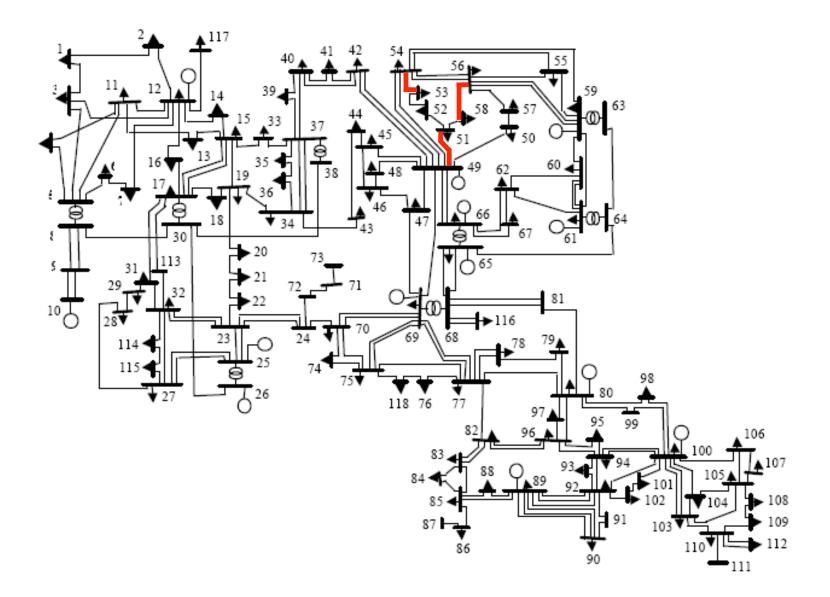


- (1) Take line most heavily interdicted: line $\mathbf{38}$
- (2) Let the reactance of this line increase to infinity
- (3) What happens? Phase angle difference $\rightarrow \pi/2$? No. From ≈ 10 to ≈ 40 .

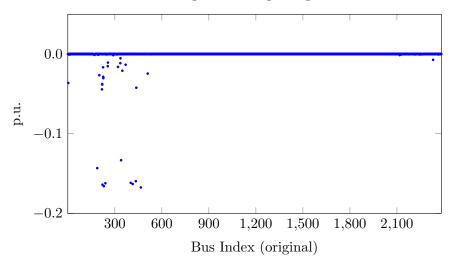


Voltage attack on 118-bus "Triple the reactance of at most three lines"





Voltage attack on 2383-bus Polish "Double the reactance of at most three lines" Voltage Magnitude 1.1 1.0p.u. 0.90.8• After Attack • Before Attack 0.7300 900 1,200 1,500 1,800 2,100 600 Bus Index (reordered)



 \rightarrow Primarily 4 lines interdicted