Sample average approximation and cascading failures of power grids

Daniel Bienstock, Guy Grebla, Tingjun Chen, Columbia University GraphEx '15

August 142003

Approximately 50 million people affected

Other large-scale cascading failures

- Italy, 2003
- \bullet San Diego, 2011
- India, 2012

At fault:

unexpected event, cascading mechanism, noise and human error

A quote from:

Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations,

(U.S.-Canada Power System Outage Task Force)

Cause 1 of the blackout was "inadequate system understanding"

A quote from:

Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations,

(U.S.-Canada Power System Outage Task Force)

Cause 1 of the blackout was "inadequate system understanding"

(stated at least twenty times)

A quote from:

Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations,

(U.S.-Canada Power System Outage Task Force)

Cause 1 of the blackout was "inadequate system understanding"

(stated at least twenty times)

Cause 2 of the blackout was "inadequate situational awareness"

Very approximate cascade model

 \rightarrow Initial fault event takes place (an "act of God").

For t = 1, 2, ...,

1. Reconfigure demands and generator output levels (if islanding occurs).

Islanding

The "swing" equation

- A second-order differential equation used to explain swings in a motor's frequency in response to a change of loads.
- To properly analyize islanding, we need to consider systems of swing equations, plus physics of power flows.
- Which is a very difficult computational problem.
- Primary, secondary frequency response.

Very approximate cascade model

 \rightarrow Initial fault event takes place (an "act of God").

For t = 1, 2, ...,

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

Power flow problem in rectangular coordinates, simplest form

Variables: Complex voltages $e_k + jf_k$, power flows P_{km}, Q_{km}

Notation: For a bus k, $\delta(k)$ = set of lines incident with k; V = set of buses

$$\forall km : P_{km} = \boldsymbol{g_{km}}(e_k^2 + f_k^2) - \boldsymbol{g_{km}}(e_k e_m + f_k f_m) + \boldsymbol{b_{km}}(e_k f_m - f_k e_m)$$
(1a)
$$\forall km : Q_{km} = -\boldsymbol{b_{km}}(e_k^2 + f_k^2) + \boldsymbol{b_{km}}(e_k e_m + f_k f_m) + \boldsymbol{g_{km}}(e_k f_m - f_k e_m)$$
(1b)
$$\forall km : |P_{km}|^2 + |Q_{km}|^2 \leq \boldsymbol{U_{km}}$$
(1c)

$$\forall k: \mathbf{P}_{k}^{\min} \leq \sum_{km \in \delta(k)} P_{km} \leq \mathbf{P}_{k}^{\max}$$
(1d)

$$\forall k : \boldsymbol{Q}_{\boldsymbol{k}}^{\min} \leq \sum_{km \in \delta(k)} Q_{km} \leq \boldsymbol{Q}_{\boldsymbol{k}}^{\max}$$
(1e)

$$\forall k: \quad \boldsymbol{V_k^{\min}} \leq e_k^2 + f_k^2 \leq \boldsymbol{V_k^{\max}}. \tag{1f}$$

Solving AC power flow problems

- When considering a grid in stable operation, Newton-Raphson or similar works very well. Convergence in seconds
- But no theoretical foundation for this behavior exists.
- When studying a grid under distress, Newton-Raphson (or similar) does **not** work well. Non-convergence.
- Recently, renewed interest in semidefinite relaxations, and techniques from real algebraic geometry.
- These methodologies are much more accurate but also much slower.
- The mathematics is the same as that for systems of *polynomial equations*: Hilbert's and Smale's 17th problems.

Very approximate cascade model

 \rightarrow Initial fault event takes place (an "act of God").

For t = 1, 2, ...,

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3. The next set of faults takes place.

Line tripping

- **1.** If a power line carries too much power, it will overheat.
- **2.** At a critical temperature, the line will **fail**.
- **3.** Before that point, the line will **sag**. A physical contact would lead to immeadite **tripping**.
- **4.** If a line is overloaded for too long, it will be protectively **tripped**.
- **5.** Simplification: there is a **line limit** beyond which a line is considered overloaded.
- **5.** IEEE Standard 738. An adaptation of the heat equation so as to take into account ...

Line tripping

- **1.** If a power line carries too much power, it will overheat.
- **2.** At a critical temperature, the line will **fail**.
- **3.** Before that point, the line will **sag**. A physical contact would lead to immeadite **tripping**.
- **4.** If a line is overloaded for too long, it will be protectively **tripped**.
- **5.** Simplification: there is a **line limit** beyond which a line is considered overloaded.
- **5.** IEEE Standard 738. An adaptation of the heat equation so as to take into account ... the state of the universe, pretty much

(current work: appropriate stochastic variants of the heat equation)

Very approximate cascade model

 \rightarrow Initial fault event takes place (an "act of God").

For t = 1, 2, ...,

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3. The next set of faults takes place.

4. STOP if no more faults

Simulation of 2011 San Diego Event

Joint work with A. Bernstein, D. Hay, G. Zussman, M. Uzunoglu (EE Dept. Columbia)

• Initiating event: human error

• We do not have complete or exact data

• Nevertheless, in our simulations a cascade does take place, with similar characteristics at the initial stages

• "inadequate system understanding"

Beginning (partial picture: 13K buses total)

More

More

More

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

For $t = 1, 2, \ldots, T$

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

For $t = 1, 2, \ldots, T$

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3a. Obtain measurements.

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

For $t = 1, 2, \ldots, T$

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3a. Obtain measurements.

3b. Apply control.

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

For $t = 1, 2, \ldots, T$

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3a. Obtain measurements.

3b. Apply control.

3. The next set of faults takes place.

 \rightarrow Initial fault event takes place (an "act of God").

0. Compute control on the basis of initial data.

For $t = 1, 2, \ldots, T$

1. Reconfigure demands and generator output levels (if islanding occurs).

2. New power flows are instantiated.

3a. Obtain measurements.

3b. Apply control.

3. The next set of faults takes place.

4. If t = T proportionally shed enough load to stop cascade.

A basic form of affine control

- Control consists of nonnegative parameters u^1, u^2, \ldots, u^T .
- At time t, on an island C with max line overload κ^{C} , scale demands by

 $1 \ + \ u^t \, (1 \ - \ \kappa^C)$

- $\kappa^C > 1$ implies loss of demand
- Easy to apply?

Clairvoyant control

- For any island C that exists at time t, a parameter $u^{t,C}$.
- At time t, on island C with max line overload κ^{C} , scale demands by

$$1 \;+\; u^{t,C} \left(1 \;-\; \kappa^C
ight)$$

• Easy to apply? Does it even make sense?

A basic form of affine control

- Control consists of nonnegative parameters u^1, u^2, \ldots, u^T .
- At time t, on an island C with max line overload κ^{C} , scale demands by

 $1 \ + \ u^t \, (1 \ - \ \kappa^C)$

- $\kappa^C > 1$ implies loss of demand
- Easy to apply?

An even simpler form of affine control

- Control consists of nonnegative parameters $\lambda^1, \lambda^2, \ldots, \lambda^T$.
- At time t, all demands scaled by λ^t
- Easy to apply.
- But conservative?

Theorem

On a network with m arcs, an optimal control of the above form can be computed in time

 $O\left(rac{m^T}{(T-1)!}
ight)$

Theorem

On a network with m arcs, an optimal control of the above form can be computed in time

$$oldsymbol{O}\left(rac{m^T}{(T\!-\!1)!}
ight)$$

 \rightarrow What is the mathematics to explain "games" of this sort?

One-parameter control: s

• At time t, on an island C with max line overload κ^{C} , scale demands by $1 + s (1 - \kappa^{C})$.

One-parameter control: s

• At time t, on an island C with max line overload κ^{C} , scale demands by $1 + s (1 - \kappa^{C})$.

One-parameter control: stochastic line failures

• At time t, on an island C with max line overload κ^{C} , scale demands by $1 + s (1 - \kappa^{C})$.

• Let \hat{L}_j be the **limit** of line $j, j = 1, \ldots, m$ (= number of lines).

- Let \hat{L}_j be the **limit** of line $j, j = 1, \ldots, m$ (= number of lines).
- For $s = 1, \ldots, S$, sample values $L_j^{t,s}$, $1 \le t \le T$.
- Here, $EL_j^{t,s} = \hat{L}_j$ for all t and s.
- Interpretation: $L_j^{t,s}$ is a noisy estimate for \hat{L}_j .

- Let \hat{L}_j be the **limit** of line $j, j = 1, \ldots, m$ (= number of lines).
- For $s = 1, \ldots, S$, sample values $L_j^{t,s}$, $1 \le t \le T$.
- Here, $EL_j^{t,s} = \hat{L}_j$ for all t and s.
- Interpretation: $L_j^{t,s}$ is a noisy estimate for \hat{L}_j .
- For a given s, the values $\{L_j^{t,s}\}$ are called a sample of the line limits.

- Let \hat{L}_j be the **limit** of line $j, j = 1, \ldots, m$ (= number of lines).
- For $s = 1, \ldots, S$, sample values $L_j^{t,s}$, $1 \le t \le T$.
- Here, $EL_j^{t,s} = \hat{L}_j$ for all t and s.
- Interpretation: $L_j^{t,s}$ is a noisy estimate for \hat{L}_j .
- For a given s, the values $\{L_j^{t,s}\}$ are called a sample of the line limits.

Optimization problem

Compute a control that maximizes the yield **averaged** across all samples.

Theorem. Can be done in O(S) power flow computations.

Experiment: robust vs. non-robust solutions (Table shows **yield**)

$oldsymbol{T}$	2	3	4	5
Non-robust solution and <i>non-robust model</i>	65.46%	65.46%	74.44%	$\mathbf{86.84\%}$
Non-robust solution and <i>robust model</i>	31.92%	30.46%	47.75%	23.07%
robust solution and <i>robust model</i>	62.19%	62.19%	70.73%	78.36%