
Problems and solutions in nonlinear mixed-integer
programming

Daniel Bienstock
Columbia University

IMA, 2016

Talk outline

1. Some light entertainment

2. Some mathematics

3. Additional entertainment

Why we should study polynomial optimization:

cascading failures of power grids

• In August 2003, a cascading failure of the Eastern Interconnect caused a

large and long-lasting blackout

• The Eastern Interconnect is the electrical circuit that we are in

• The blackout affected some fifty million people for several days and cost

a lot of money

• In September, 2003, a similar blackout affected most of Italy

Recent cascades

• U.S. Northeast and Canada; Italy, 2003

• San Diego, 2011

• India, 2012

Rising concerns

• Increasing demand, increasing scope and complexity of grids

• Too expensive to add extensive capacity

• Use of renewables desirable but adds stochastic risk

•Malevolent action (?)

Cascade dynamics

(0) Stuff happens (“act of God”): some network elements

(power lines, generators, transformers, etc)

are disabled

Cascade dynamics

(0) Stuff happens (“act of God”): some network elements

(power lines, generators, transformers, etc)

are disabled

(1) Power flows are rearranged: mostly due to physics

Cascade dynamics

(0) Stuff happens (“act of God”): some network elements

(power lines, generators, transformers, etc)

are disabled

(1) Power flows are rearranged: mostly due to physics

(2) As a result some network elements become overloaded

Cascade dynamics

(0) Stuff happens (“act of God”): some network elements

(power lines, generators, transformers, etc)

are disabled

(1) Power flows are rearranged: mostly due to physics

(2) As a result some network elements become overloaded

(3) At a later time, some of these become tripped or outaged

Cascade dynamics

(0) Stuff happens (“act of God”): some network elements

(power lines, generators, transformers, etc)

are disabled

(1) Power flows are rearranged: mostly due to physics

(2) As a result some network elements become overloaded

(3) At a later time, some of these become tripped or outaged

(4) Go to (1).

Let’s go to the movies

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Simulated cascade of Eastern Interconnect

Back to reality:

why it is hard to simulate a power grid under distress

(1) We have to explain when and why equipment will fail

(2) This requires an understanding of the physics of power flows

(3) Additionally, there is noise, missing information, and more

→ let’s begin with (2).

The Grid

conductor

steam
magnetic

field

statorrotor

source
energy

ω

current, voltage

Voltage, Power, Current

Real-time voltage (potential energy) at bus (node) k:

Vk(t) = V̂k cos(ωt+ θk)

Steady-state (time average over one period of length 2π/ω): voltage

at bus k represented as: = V̂ke
jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

Voltage, Power, Current

Real-time voltage (potential energy) at bus (node) k:

Vk(t) = V̂k cos(ωt+ θk)

Steady-state (time average over one period of length 2π/ω): voltage

at bus k represented as: = V̂ke
jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

•Ohm’s law: Ikm = ykm(Vk − Vm) (ykm = admittance)

• Skm = VkI
∗
km

Steady-state (time average over one period of length 2π/ω): voltage at bus k represented as:
= V̂ke

jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

• Ohm’s law: Ikm = ykm(Vk − Vm) (ykm = admittance)

• Skm = VkI
∗
km

These are all complex quantities, but all are “real”

Steady-state (time average over one period of length 2π/ω): voltage at bus k represented as:
= V̂ke

jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

• Ohm’s law: Ikm = ykm(Vk − Vm) (ykm = admittance)

• Skm = VkI
∗
km

These are all complex quantities, but all are “real”

•Real part of Skm = Pkm = “active” power

• Imaginary part of Skm = Qkm = “reactive” power

Steady-state (time average over one period of length 2π/ω): voltage at bus k represented as:
= V̂ke

jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

• Ohm’s law: Ikm = ykm(Vk − Vm) (ykm = admittance)

• Skm = VkI
∗
km

These are all complex quantities, but all are “real”

•Real part of Skm = Pkm = “active” power

• Imaginary part of Skm = Qkm = “reactive” power

• If we write Vk = ek + jfk, then

Pkm = (ek − em)(g , b)(
ek
fk

) + (fk − fm)(−b , g)(
ek
fk

).

(Here, ykm = g + jb), a quadratic expression on ek, em, fk, fm.

• A similar quadratic yields Qkm

Steady-state (time average over one period of length 2π/ω): voltage at bus k represented as:
= V̂ke

jθk = V̂k(cos θk + j sin θk)

V
k

I
k m m k

I I
k m

V
m

= −

k m

km mk
S S

• Ikm = (complex) current injected into km at k

• Skm = (complex) power injected into km at k

• Ohm’s law: Ikm = ykm(Vk − Vm) (ykm = admittance)

• Skm = VkI
∗
km

These are all complex quantities, but all are “real”

•Real part of Skm = Pkm = “active” power

• Imaginary part of Skm = Qkm = “reactive” power

• If we write Vk = ek + jfk, then

Pkm = (ek − em)(g , b)(
ek
fk

) + (fk − fm)(−b , g)(
ek
fk

).

(Here, ykm = g + jb), a quadratic expression on ek, em, fk, fm.

• A similar quadratic yields Qkm

•What do we have at a given bus k?

k

1
2

3

total power injected by k =

injection into k1 +

injection into k2 +

injection into k3

Putting it all together: power flow problem

Vk = V̂ke
jθVk = ek + jfk, (1)

Ikm = y{k,m}(Vk − Vm), y{k,m} = admittance of km. (2)

pkm = Re(VkI
∗
km), qkm = Im(VkmI

∗
km) (3)

Network Equations

k

∑
km∈δ(k)

pkm = P̂k,
∑

km∈δ(k)

qkm = Q̂k ∀ k (4)

Generator: P̂k, |Vk| (= V̂k) given. Other buses: P̂k, Q̂k given.

Problem. Compute a solution of this system of quadratic equations.

More general problem: ACOPF

Vk = V̂ke
jθVk = ek + jfk, (5)

Ikm = y{k,m}(Vk − Vm), y{k,m} = admittance of km. (6)

pkm = Re(VkI
∗
km), qkm = Im(VkmI

∗
km) (7)

Network Inequalities

k

P̂min
k ≤

∑
km∈δ(k)

pkm ≤ P̂max
k , Q̂min

k ≤
∑

km∈δ(k)

qkm ≤ Q̂max
k ∀ k (8)

V̂ min
k ≤ |Vk| ≤ V̂ max

k ∀ k (9)

Problem

Solve an optimization problem subject to these quadratic inequalities.

How is ACOPF solved in industrial practice?

• Best practice #1:

How is ACOPF solved in industrial practice?

• Best practice #1: Don’t solve it and go for a beer instead

Solve a linearized version.
Why?
Should be that: |Vk| ≈ 1 for all k, so assume |Vk| = 1
and: θk ≈ θm, so sin(θk − θm)→ θk − θm and cos(θk − θm)→ 1

How is ACOPF solved in industrial practice?

• Best practice #1: Don’t solve it and go for a beer instead

Solve a linearized version.
Why?
Should be that: |Vk| ≈ 1 for all k, so assume |Vk| = 1
and: θk ≈ θm, so sin(θk − θm)→ θk − θm and cos(θk − θm)→ 1

• Sequential linearization. Replace all active constraints with their
linearizations, and iterate.

How is ACOPF solved in industrial practice?

• Best practice #1: Don’t solve it and go for a beer instead

Solve a linearized version.
Why?
Should be that: |Vk| ≈ 1 for all k, so assume |Vk| = 1
and: θk ≈ θm, so sin(θk − θm)→ θk − θm and cos(θk − θm)→ 1

• Sequential linearization. Replace all active constraints with their
linearizations, and iterate.

• IPOPT, et al. Use interior point (e.g. barrier) methods to obtain a
locally optimal solution.

→ But can we “certify” optimality?

→ But can we “certify” infeasibility?

Quadratically constrained, quadratic programming problems
(QCQPs):

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,
fi(x) = xTMix + cTi x + di

is a general quadratic, with Mi n× n, wlog symmetric

Quadratically constrained, quadratic programming problems
(QCQPs):

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,
fi(x) = xTMix + cTi x + di

is a general quadratic, with Mi n× n, wlog symmetric

• Special case: Linear Programming
Mi = 0, 0 ≤ i ≤ m

• Special case: Convex Quadratic Programming:
Mi � 0, 0 ≤ i ≤ m

•Unfortunately, QCQP is NP-hard

Quadratically constrained, quadratic programming problems
(QCQPs):

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,
fi(x) = xTMix + cTi x + di

is a general quadratic, with Mi n× n, wlog symmetric

• Special case: Linear Programming
Mi = 0, 0 ≤ i ≤ m

• Special case: Convex Quadratic Programming:
Mi � 0, 0 ≤ i ≤ m

•Unfortunately, QCQP is NP-hard

a deep fact: xj(1− xj) = 0 is a quadratic constraint

OK, let’s take a step waaaaay back: the trust-region
(sub)problem

min xTQx + cTx

s.t. ‖x− µ‖2 ≤ r

OK, let’s take a step waaaaay back: the trust-region
(sub)problem

min xTQx + cTx

s.t. ‖x− µ‖2 ≤ r

• Control Theory

• Dynamical Systems

• Robust error estimation

• Robust optimization

• Olympic swimming

OK, let’s take a step waaaaay back: the trust-region
(sub)problem

min xTQx + cTx

s.t. ‖x− µ‖2 ≤ r

• Control Theory

• Dynamical Systems

• Robust error estimation

• Robust optimization

• . . .

• How about the antitrust region (sub)problem

min xTQx + cTx

s.t. ‖x− µ‖2 ≥ r

Digression: application of trust-region subproblem

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Algorithm

• Given an iterate xt, construct a quadratic “model” for f(x) which is approximately valid in a
neighborhood ‖x− xt‖ ≤ ∆.

• For example, use
f(xk) + 1

2
(x− xt)TH(xt)(x− xt)

where H(xt) is the Hessian of f at xt.

Digression: application of trust-region subproblem

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Algorithm

• Given an iterate xt, construct a quadratic “model” for f(x) which is approximately valid in a
neighborhood ‖x− xt‖ ≤ ∆.

• For example, get pairs (y1, f(y1)), (y2, f(y2)), . . . , (ym, f(ym))

= sample

∆

w t

• Using these samples, construct an approximation to f(x)
(model = spline, least squares estimate, etc).

• Call this model: Q(x)

• Solve: min{Q(x) : ‖x− xt‖ ≤ ∆}. This is the trust-region subproblem.

• The solution becomes wt+1.
Or (better): conduct a line-search from wt to the solution so as to compute wt+1.

• General purpose codes: KNITRO, LOQO have been used on OPF.

Summary

→ Unconstrained optimization min{f(x) : x ∈ Rn}
Algorithm

• Given an iterate xt, construct a quadratic “model” for f(x) which is
approximately valid in a neighborhood ‖x− xt‖ ≤ ∆.

• Call this model: Q(x)

• Solve: min{Q(x) : ‖x− xt‖ ≤ ∆}.
This is the trust-region subproblem.

• The solution becomes wt+1.
Or (better): conduct a line-search from wt to the solution so as to
compute wt+1.

•What does this algorithm produce?

• Does it solve the problem? Approximately?

How do we solve the trust region subproblem?

• Fast solution is crucial for the application

• This is a very mature problem that is considered well-solved

• Let us look at the problem from a broader perspective

Want to solve:

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Want to solve:

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Easier question:

Given a real θ, is it the the case that f∗ ≥ θ?

Want to solve:

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Easier question:

Given a real θ, is it the the case that f∗ ≥ θ?

Duality: true, iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x

(this is MAGIC)

Want to solve:

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Easier question:

Given a real θ, is it the the case that f∗ ≥ θ?

Duality: true, iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x

(this is MAGIC) i.e., iff there exists γ ≥ 0 with:

(xT , 1)

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

(x
1

)
≥ 0 ∀ x

Want to solve:

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Easier question:

Given a real θ, is it the the case that f∗ ≥ θ?

Duality: true, iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x

(this is MAGIC) i.e., iff there exists γ ≥ 0 with:

(xT , 1)

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

(x
1

)
≥ 0 ∀ x

and it turns out that this is equivalent to: A− γB a− γb

(a− γb)T a0 − γb0 − θ

 � 0 (proof?)

f∗ = min f (x)
.
= xTAx + 2aTx + a0

s.t. g(x)
.
= xTBx + 2bTx + b0 ≥ 0

Rewrite it as:

max θ

s.t. f ∗ ≥ θ

Duality:

maxθ,γ θ

s.t.

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

 � 0

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix X = (1, xT)

(
1
x

)
feasible for SR and with the same

value

So the value of problem SR is a lower bound for QCQP

Back to general QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix X = (1, xT)

(
1
x

)
feasible for SR and with the same

value

So the value of problem SR is a lower bound for QCQP

But we need to go backwards: given a solution X to SR, does it give us a solution to QCQP?

Only if X has rank-1. Unfortunately, SR typically does not have a rank-1 solution.

It’s pretty bad ...

Theorem (Pataki, 1998):

An SDP

(SR): min M •X
s.t. N i •X ≥ bi i = 1, . . . ,m

X � 0, X an n× n matrix,

always has a solution of rank ≈ m1/2, and this bound is attained.

Observation (Lavaei and Low):
The SDP relaxation of practical AC-OPF instances can have a rank-1 solu-
tion, or the solution can be relatively easy to massage into rank-1 solutions
(also see earlier work of Bai et al)

Current research thrust: Can we leverage this observation into practi-
cal, globally optimal algorithms for AC-OPF?

I need to solve a complicated QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

... what do I do?

I need to solve a complicated QCQP

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

... what do I do? run away

General techniques

• McCormick reformulation.
Each xixj, where xLi ≤ xi ≤ xUi and xLj ≤ xj ≤ xUj is replaced by Xij plus

Xij ≥ xLi xj + xLj xi − xLi xLj
Xij ≥ xUi xj + xUj xi − xUi xUj
Xij ≤ xUi xj + xLj xi − xUi xLj
Xij ≤ xLi xj + xUj xi − xLi xUj

Yields a linear programming relaxation

• Spatial branching, e.g. if 0 ≤ xj ≤ 1 you branch as: 0 ≤ xj ≤ 1/2 and 1/2 ≤ xj ≤ 1.

• Widely implemented in many high-quality codes.

Let’s take a computing break

A nice generalization of the trust-region subproblem

Solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, 2

provided the two (two!) linear constraints are parallel:

1
x

1
x

two linear constraints

ball constraint

= u

= d

A nice generalization of the trust-region subproblem

Solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖2 ≤ 1

aTi x ≤ bi i = 1, 2

provided the two (two!) linear constraints are parallel:

1
x

1
x

two linear constraints

ball constraint

= u

= d

→min {xTQx+ cTx : d ≤ x1 ≤ u, ‖x‖ ≤ 1 }

restate as: min
∑
i,j

qijXij + cTx

s.t. X11 + du ≤ (d+ u)x1

‖X.1 − dx‖ ≤ x1 − d
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1

X � xxT

Lemma: This problem has an optimal solution with X = xxT , i.e. a rank-1 solution.

Many theoretically nice generalizations

•More than one ball constraint (but not too many) and more than one
linear inequality (but not too many)

• A “small” number of general quadratic constraints

• The algorithms are theoretically efficient but computationally very chal-
lenging

• I did some of this, so let’s move on

Back to semidefinite relaxation

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri b

T
i

bi A
i

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

And let’s make it worse. How about the moment relaxation?

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Moment Relaxations

• Introduce a variable Xπ used to represent each monomial xπ of order ≤ d, for some integer d.

• This set of monomials includes all of those appearing in the polynomial optimization problem as
well as x0 = 1.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Moment Relaxations

• Introduce a variable Xπ used to represent each monomial xπ of order ≤ d, for some integer d.

• This set of monomials includes all of those appearing in the polynomial optimization problem as
well as x0 = 1.

• If we replace each xπ in the formulation with the corresponding Xπ we obtain a linear relaxation.

Higher-order SDP relaxations

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Moment Relaxations

• Introduce a variable Xπ used to represent each monomial xπ of order ≤ d, for some integer d.

• This set of monomials includes all of those appearing in the polynomial optimization problem as
well as x0 = 1.

• If we replace each xπ in the formulation with the corresponding Xπ we obtain a linear relaxation.

• LetX denote the vector of all such monomials. Then XXT � 0 and of rank one. The semidefinite
constraint strengthens the formulation.

• Further semidefinite constraints are obtained from the constraints.

I need to solve a large nontrivial SDP

(SDP): min F0 •X
s.t. Fi •X ≥ bi i = 1, . . . ,m

X � 0

... what do I do?

I need to solve a large nontrivial SDP

(SDP): min F0 •X
s.t. Fi •X ≥ bi i = 1, . . . ,m

X � 0

... what do I do? run away even faster

Answer: use structured sparsity, if you can

I need to solve a large nontrivial SDP

(SDP): min F0 •X
s.t. Fi •X ≥ bi i = 1, . . . ,m

X � 0

... what do I do? run away even faster

Answer: use structured sparsity, if you can

→ How did power grids develop over time?

→ Modern grids are very sparse, and “tree-like”

Informal definition

A graph has small treewidth if it can be formed by glueing together small
blobs (subnetworks) in a tree-like fashion.

•Modern grids have “small” tree-width

• SDP relaxations reflect this fact

Back to ACOPF

Vk = V̂ke
jθVk = ek + jfk,

Ikm = y{k,m}(Vk − Vm), y{k,m} = admittance of km.

pkm = Re(VkI
∗
km), qkm = Im(VkmI

∗
km)

V̂ min
k ≤ |Vk| ≤ V̂ max

k ∀ k

Network Inequalities

k

P̂min
k ≤

∑
km∈δ(k)

pkm ≤ P̂max
k ∀ k

Q̂min
k ≤

∑
km∈δ(k)

qkm ≤ Q̂max
k ∀ k

Informal definition

A graph has small treewidth if it can be formed by glueing together small
blobs (subnetworks) in a tree-like fashion.

•Modern grids have “small” tree-width

• SDP relaxations reflect this fact

• SDP algorithms can leverage this fact

Crimes against computers

max y

s.t. 1000 y + x ≤ 1000 (10a)

10000 δ ≥ 1 (10b)

δ ≤ 10 a (10c)

a ≤ 10 b (10d)

b ≤ 10 c (10e)

c ≤ 10 d (10f)

d ≤ 10x (10g)

y binary, all other variables ≥ 0

Crimes against computers

max y

s.t. 1000 y + x ≤ 1000 (11a)

10000 δ ≥ 1 (11b)

δ ≤ 10 a (11c)

a ≤ 10 b (11d)

b ≤ 10 c (11e)

c ≤ 10 d (11f)

d ≤ 10x (11g)

y binary, all other variables ≥ 0

Value = 0

More crimes against computers

max 20x2 − 20s5 − 20s6 + 2s7 + s2
5

s.t. (x1 − 1)2 + x2
2 ≥ 3 +

φ

10
(12a)

(x1 + 1)2 + x2
2 ≥ 3 (12b)

1

10
x2

1 + x2
2 ≤ 2 (12c)

10 δ + 10φ2 ≥ 1 (12d)

−10 a + δ + 10φ2 ≤ 0

−10 b + a + 10φ2 ≤ 0

−10 c + b + 10φ2 ≤ 0

−10 d + c + 10φ2 ≤ 0

−10 e + d + 10φ2 + 10 s2
5 = 0 (12e)

−10 f + e + 10φ2 + 10 s2
6 = 0

−10 g + f + 10φ2 + 10 s2
7 = 0

−10φ + g + 10φ2 ≤ 0 (12f)

What’s going on?

max x2

s.t. (x1 − 1)2 + x2
2 ≥ 3

(x1 + 1)2 + x2
2 ≥ 3

x2
1

10
+ x2

2 ≤ 2

2)(0 ,

2)(0 , −

What’s going on?

max x2

s.t. (x1 − 1)2 + x2
2 ≥ 3 + φ (φ > 0)

(x1 + 1)2 + x2
2 ≥ 3

x2
1

10
+ x2

2 ≤ 2

2)(0 ,

2)(0 , −

-> Thu.Aug.11.190441.2016@rabbitchaser

