Robust Optimal Power Flow with Uncertain Renewables

Sean Harnett, Daniel Bienstock, Misha Chertkov

Columbia University, LANL

ISMP-Berlin

THE ENERGY CHALLENGE

Wind Energy Bumps Into Power Grid's Limits

The Maple Ridge Wind farm near Lowville, N.Y. It has been forced to shut down when regional electric lines become congested.

By MATTHEW L. WALD Published: August 26, 2008

When the builders of the Maple Ridge Wind farm spent \$320 million to put nearly 200 wind turbines in upstate New York, the idea was to get paid for producing electricity. But at times, regional electric lines have been so congested that Maple Ridge has been forced to shut down even with a brisk wind blowing.

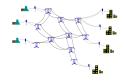
CIGRE -International Conference on Large High Voltage Electric Systems '09

- Large unexpected fluctuations in wind power can cause additional flows through the transmission system (grid)
- Large power deviations in renewables must be balanced by other sources, which may be far away
- Flow reversals may be observed control difficult
- A solution expand transmission capacity! Difficult (expensive), takes a long time
- Problems already observed when renewable penetration high

CIGRE -International Conference on Large High Voltage Electric Systems '09

- "Fluctuations" 15-minute timespan
- Due to turbulence ("storm cut-off")
- Variation of the same order of magnitude as mean
- Most problematic when renewable penetration starts to exceed 20 30%
- Many countries are getting into this regime

Optimal power flow (economic dispatch, tertiary control)



- Used periodically to handle the next time window (e.g. 15 minutes, one hour)
- Choose generator outputs
- Minimize cost (quadratic)
- Satisfy demands, meet generator and network constraints
- Constant load (demand) estimates for the time window

OPF:

min c(p) (a quadratic)

s.t.

$$B\theta = p - d \tag{1}$$

$$|y_{ij}(\theta_i - \theta_j)| \le u_{ij}$$
 for each line ij (2)

$$P_g^{min} \leq p_g \leq P_g^{max}$$
 for each bus g (3)

Notation:

 $p = ext{vector of generations } \in \mathcal{R}^n, \quad d = ext{vector of loads } \in \mathcal{R}^n$ $B \in \mathcal{R}^{n \times n}, \quad ext{(bus susceptance matrix)}$

$$\forall i, j: \quad B_{ij} = \left\{ \begin{array}{ccc} -y_{ij}, & ij \in \mathcal{E} \text{ (set of lines)} \\ \sum_{k; \{k, j\} \in \mathcal{E}} y_{kj}, & i = j \\ 0, & \text{otherwise} \end{array} \right.$$

s.t.
$$\begin{split} B\theta &= p - d \\ |y_{ij}(\theta_i - \theta_j)| &\leq u_{ij} \quad \text{for each line } ij \\ P_g^{min} &\leq p_g &\leq P_g^{max} \quad \text{for each bus } g \end{split}$$

How does OPF handle short-term fluctuations in **demand** (d)? **Frequency control**:

- Automatic control: primary, secondary
- Generator output varies up or down proportionally to aggregate change

How does OPF handle short-term fluctuations in renewable output? **Answer:** Same mechanism, now used to handle aggregate wind power change

s.t.
$$\begin{split} B\theta &= p - d \\ |y_{ij}(\theta_i - \theta_j)| &\leq u_{ij} \quad \text{for each line } ij \\ P_g^{min} &\leq p_g &\leq P_g^{max} \quad \text{for each bus } g \end{split}$$

How does OPF handle short-term fluctuations in **demand** (d)? **Frequency control**:

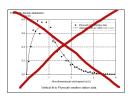
- Automatic control: primary, secondary
- Generator output varies up or down proportionally to aggregate change

How does OPF handle short-term fluctuations in renewable output? **Answer:** Same mechanism, now used to handle aggregate wind power change

Wind model?

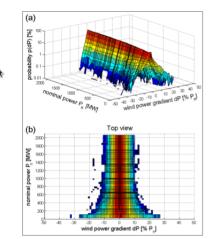
Need to model variation in wind power between dispatches

Wind at farm attached to bus *i* of the form $\mu_i + \mathbf{w_i}$ – Weibull distribution?



Wind model

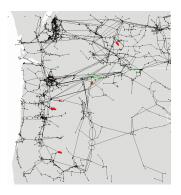
From CIGRE report, aggregated over Germany:



Experiment

Bonneville Power Administration data, Northwest US

- data on wind fluctuations at planned farms
- with standard OPF, 7 lines exceed limit $\geq 8\%$ of the time



Line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised and may 'trip'. But process is complex and time-averaged:

- Thermal limit is most common
- Thermal limit may be in terms of terminal equipment, not line itself
- Wind strength and wind direction contributes to line temperature
- In medium-length lines (\sim 100 miles) the line limit is due to voltage drop, not thermal reasons
- In long lines, it is due to phase angle change (stability), not thermal reasons
- In 2003 U.S. blackout event, many critical lines tripped due to thermal reasons, but well short of their line limit

Line trip model

summary: exceeding limit for too long is bad, but complicated want: "fraction time a line exceeds its limit is small" proxy: prob(violation on line i) $< \epsilon$ for each line i

Goals

- simple control
- aware of limits
- not too conservative
- computationally practicable

Control

For each generator i, two parameters:

- $\overline{p_i} = \text{mean output}$
- $\alpha_i = \text{response parameter}$

Real-time output of generator i:

$$p_i = \overline{p}_i - \alpha_i \sum_j \Delta \omega_j$$

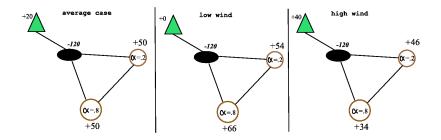
where $\Delta\omega_j =$ change in output of renewable j (from mean).

$$\sum_{i} \alpha_{i} = 1$$

 \sim primary + secondary control

Set up

control



Computing line flows

wind power at bus i: $\mu_i + \mathbf{w}_i$

DC approximation

■
$$B\theta = \overline{p} - d$$

 $+(\mu + \mathbf{w} - \alpha \sum_{i \in G} \mathbf{w}_i)$

$$\bullet \theta = B^+(\bar{p} - d + \mu) + B^+(I - \alpha e^T)\mathbf{w}$$

• flow is a linear combination of bus power injections:

$$\mathbf{f_{ij}} = y_{ij}(\boldsymbol{\theta}_i - \boldsymbol{\theta}_j)$$

Computing line flows

$$\mathbf{f}_{ij} = y_{ij} \left((B_i^+ - B_j^+)^T (\bar{p} - d + \mu) + (A_i - A_j)^T \mathbf{w} \right),$$
$$A = B^+ (I - \alpha e^T)$$

Given distribution of wind can calculate moments of line flows:

- $\bar{f}_{ij} = y_{ij}(B_i^+ B_j^+)^T(\bar{p} d + \mu)$
- $var(\mathbf{f_{ij}}) := s_{ij}^2 \ge y_{ij}^2 \sum_k (A_{ik} A_{jk})^2 \sigma_k^2$ (assuming independence)
- and higher moments if necessary

Chance constraints to deterministic constraints

- lacksquare recall chance constraints: $P(|\mathbf{f_{ij}}| > f_{ij}^{max}) < \epsilon_{ij}$
- from moments of f_{ij} , can get conservative approximations using e.g. Chebyshev's inequality
- lacktriangle for Gaussian wind, can do better, since f_{ij} is Gaussian :

$$f_{ij}^{max} \pm \bar{f}_{ij} \ge s_{ij}\phi^{-1}\left(1 - \frac{\epsilon_{ij}}{2}\right)$$

Chance constraints to deterministic constraints

- lacksquare recall chance constraints: $P(|\mathbf{f_{ij}}| > f_{ij}^{max}) < \epsilon_{ij}$
- from moments of f_{ij} , can get conservative approximations using e.g. Chebyshev's inequality
- lacktriangle for Gaussian wind, can do better, since f_{ij} is Gaussian :

$$f_{ij}^{max} \pm \bar{f}_{ij} \ge s_{ij}\phi^{-1}\left(1 - \frac{\epsilon_{ij}}{2}\right)$$

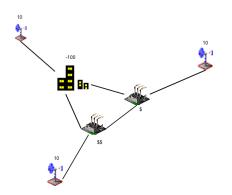
Formulation:

Choose mean generator outputs and response parameters to minimize expected cost, so that the probability that any given line overloads is small.

$$\begin{split} \min_{\overline{p},\alpha} \mathbb{E}[c(\overline{p})] : \\ \text{s.t.} \quad B\delta &= \alpha, \delta_n = 0 \\ s_{ij}^2 \geq y_{ij}^2 \sum_{k \in W} \sigma_k^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \\ B\overline{\theta} &= \overline{p} + \mu - d, \ \overline{\theta}_n = 0 \\ \overline{f}_{ij} &= y_{ij} (\overline{\theta}_i - \overline{\theta}_j), \ f_{ij}^{max} \pm \overline{f}_{ij} \geq s_{ij} \phi^{-1} (1 - \frac{\epsilon_{ij}}{2}) \\ \sum_{i \in \mathcal{G}} \overline{p}_i + \sum_{i \in W} \mu_i = \sum_{i \in D} d_i \\ \sum_{i \in \mathcal{G}} \alpha_i &= 1, \ \alpha \geq 0 \end{split}$$

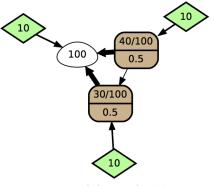
Toy example

- What if no line limits?
- What if tight limit on line connecting generators?



Answer 1

What if no line limits?

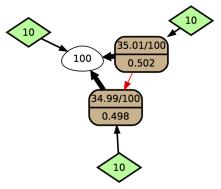


total demand: 100

cost: 5720

Answer 2

What if small limit on line connecting generators?



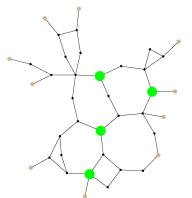
total demand: 100

cost: 5774.8

Experiment

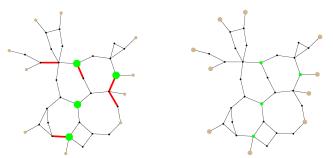
How much wind penetration can we handle? And how much money does this save?

39-bus New England system from MATPOWER



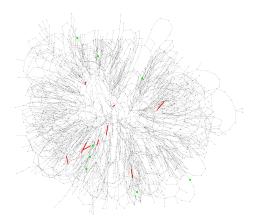
Experiment

'standard' OPF solution with 10% buffer on line limits feasible only up to 5% penetration (right)



Cost 1,275,000 - almost 5 times greater than chance-constrained

Polish system - winter 2003-04 evening peak



Polish 2003-2004 winter peak case

- 2746 buses, 3514 branches, 8 wind sources
- 5% penetration and $\sigma = .3\mu$ each source

CPLEX: the optimization problem has

- 36625 variables
- 38507 constraints, 6242 conic constraints
- 128538 nonzeros, 87 dense columns

Polish 2003-2004 winter peak case

- 2746 buses, 3514 branches, 8 wind sources
- 5% penetration and $\sigma = .3\mu$ each source

CPLEX: the optimization problem has

- 36625 variables
- 38507 constraints, 6242 conic constraints
- 128538 nonzeros, 87 dense columns

CPLEX:

- total time on 16 threads = 3393 seconds
- "optimization status 6"
- solution is wildly infeasible

Gurobi:

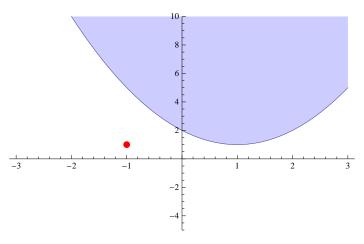
- time: 31.1 seconds
- "Numerical trouble encountered"

overview

Cutting-plane algorithm:

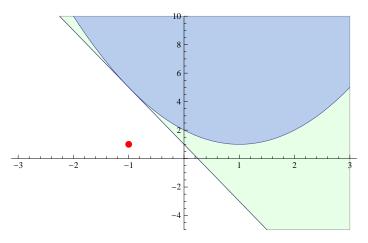
```
remove all conic constraints
repeat until convergence:
    solve linearly constrained problem
    if no conic constraints violated: return
    find separating hyperplane for maximum violation
    add linear constraint to problem
```

Candidate solution violates conic constraint

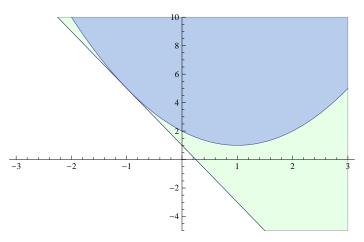


Harnett, Bienstock, Chertkov

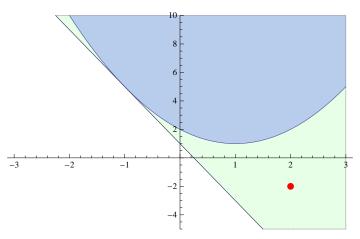
Separate: find a linear constraint also violated



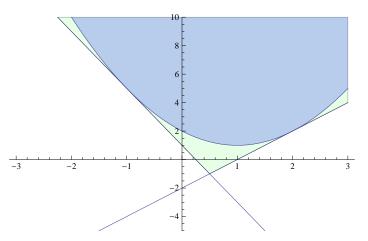
Solve again with linear constraint



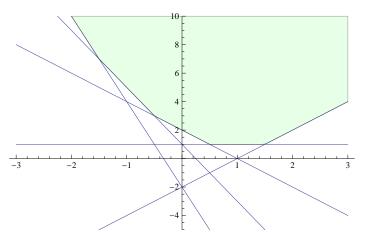
New solution still violates conic constraint



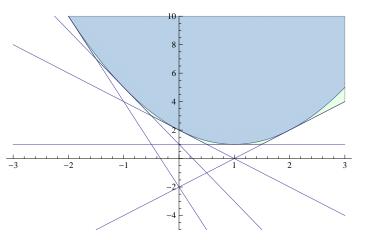
Separate again



We might end up with many linear constraints



... which approximate the conic constraint



conic constraint:

$$\sqrt{x_1^2 + x_2^2 + \dots + x_k^2} = ||x||_2 \le y$$

candidate solution:

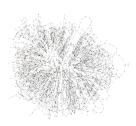
$$(x^*, y^*)$$

cutting-plane (linear constraint):

$$||x^*||_2 + \frac{{x^*}^T}{||x^*||_2}(x - x^*) = \frac{{x^*}^T x}{||x^*||_2} \le y$$

Polish 2003-2004 case CPLEX: "opt status 6"

Gurobi: "numerical trouble"



Example run of cutting-plane algorithm:

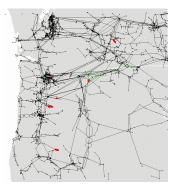
Iteration	Max rel. error	Objective
1	1.2e-1	7.0933e6
4	1.3e-3	7.0934e6
7	1.9e-3	7.0934e6
10	1.0e-4	7.0964e6
12	8.9e-7	7.0965e6

Total running time: 32.9 seconds

Back to motivating example

BPA case

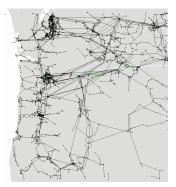
- standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time
- CC-OPF: cost 237297, every line safe \geq 98% of the time
- run time = 9.5 seconds (one cutting plane!)



Back to motivating example

BPA case

- standard OPF: cost 235603, 7 lines unsafe ≥ 8% of the time
- CC-OPF: cost 237297, every line safe \geq 98% of the time
- run time = 9.5 seconds (one cutting plane!)



Conclusion

Our chance-constrained optimal power flow:

- safely accounts for variability in wind power between dispatches
- uses a simple control which is easily integrable into existing system
- is fast enough to be useful at the appropriate time scale