LP formulations for mixed-integer polynomial optimization problems

Daniel Bienstock and Gonzalo Muñoz, Columbia University

An application: the Optimal Power Flow problem (ACOPF) Input: an undirected graph G.

- For every vertex i, **two** variables: e_i and f_i
- For every edge $\{k, m\}$, **four** (specific) quadratics:

Function F_k in the objective: convex quadratic

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

$$\min \sum_{k} F_{k} \left(\sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \right)$$
s.t. $L_{k}^{P} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{P} \quad \forall k$

$$L_{k}^{Q} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{Q} \quad \forall k$$

$$V_{k}^{L} \leq ||(e_{k}, f_{k})|| \leq V_{k}^{U} \quad \forall k.$$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

Reformulation of ACOPF:

min
$$F \bullet W$$

s.t. $A_i \bullet W \leq b_i \quad i = 1, 2, \dots$
 $W \succeq 0, \quad W \text{ of rank 1.}$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

min
$$F \bullet W$$

s.t. $A_i \bullet W \leq b_i \quad i = 1, 2, \dots$
 $W \succeq 0.$

Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on general graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many others)

SDP Relaxation of OPF:

$$\begin{array}{ll} \min \quad F \bullet W \\ \text{s.t.} \quad A_i \bullet W &\leq b_i \quad i = 1, 2, \dots \\ W \succeq 0. \end{array}$$

Fact: The SDP relaxation is often good! ("near" rank 1 solution).

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But...

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 1: A graph has treewidth $\leq w$ if it has a chordal supergraph with clique number $\leq w + 1$

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But...

Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

- Real-life grids $\rightarrow > 10^4$ vertices
- \bullet SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth $\leq w$ if it is a subgraph of an intersection graph of subtrees of a tree, with $\leq w + 1$ subtrees overlapping at any vertex

(Seymour and Robertson, late 1980s)

Tree-width

Let G be an undirected graph with vertices V(G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:

- T is a tree. Not a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex v of G, the set $\{t \in V(T) : v \in Q_t\}$ is a subtree of T, denoted T_v .
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.
- The width of (T, Q) is $\max_{t \in T} |Q_t| 1$.

 \rightarrow two subtrees T_u, T_v may overlap even if $\{u, v\}$ is **not** an edge of G

Tree-width

Let G be an undirected graph with vertices V(G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:

- T is a tree. Not a subtree of G, just a tree
- For each vertex t of T, Q_t is a subset of V(G). These subsets satisfy the two properties:
 - (1) For each vertex v of G, the set $\{t \in V(T) : v \in Q_t\}$ is a subtree of T, denoted T_v .
 - (2) For each edge $\{u, v\}$ of G, the two subtrees T_u and T_v intersect.
- The width of (T, Q) is $\max_{t \in T} |Q_t| 1$.

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^3$ vertices: $\rightarrow 20$ minutes runtime

- Real-life grids $\rightarrow > 10^4$ vertices
- SDP relaxation of OPF does not terminate

But... Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with $\approx 3 \times 10^3$ vertices: $\rightarrow 20$ minutes runtime

 \rightarrow Perhaps low tree-width yields **direct** algorithms for ACOPF itself? That is to say, not for a relaxation? Much previous work using structured sparsity

- Bienstock and Özbay
- \bullet Wainwright and Jordan
- Grimm, Netzer, Schweighofer
- Laurent
- \bullet Lasserre et al
- Waki, Kim, Kojima, Muramatsu

older work ...

- \bullet Lauritzen (1996): tree-junction theorem
- Bertele and Brioschi (1972): nonserial dynamic programming
- Bounded tree-width in combinatorial optimization (too many authors)
- \bullet Fulkerson and Gross (1965): matrices with consecutive ones

ACOPF, again

Input: an undirected graph G.

- For every vertex i, **two** variables: e_i and f_i
- For every edge $\{k, m\}$, **four** (specific) quadratics:

Function F_k in the objective: convex quadratic

ACOPF, again

Input: an undirected graph G.

- For every vertex i, **two** variables: e_i and f_i
- For every edge $\{k, m\}$, **four** (specific) quadratics:

$$\begin{split} H^P_{k,m}(e_k,f_k,e_m,f_m), & H^Q_{k,m}(e_k,f_k,e_m,f_m) \\ H^P_{m,k}(e_k,f_k,e_m,f_m), & H^Q_{m,k}(e_k,f_k,e_m,f_m) \end{split} \qquad \begin{array}{c} \mathbf{e_k} \ \mathbf{f_k} & \mathbf{e_m} \ \mathbf{f_m} \\ \mathbf{k} & & \\ \end{array} \end{split}$$

$$\begin{split} \min & \sum_{k} w_{k} \\ \text{s.t.} & L_{k}^{P} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{P} \quad \forall k \\ & L_{k}^{Q} \leq \sum_{\{k,m\} \in \delta(k)} H_{k,m}^{Q}(e_{k}, f_{k}, e_{m}, f_{m}) \leq U_{k}^{Q} \quad \forall k \\ & V_{k}^{L} \leq \|(e_{k}, f_{k})\| \leq V_{k}^{U} \quad \forall k \\ & w_{k} = F_{k} \left(\sum_{\{k,m\} \in \delta(k)} H_{k,m}^{P}(e_{k}, f_{k}, e_{m}, f_{m})\right) \quad \forall k \end{split}$$

Graphical QCQP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a quadratic

$$H_e(x) = H_e(\{x_j : j \in I(k) \cup I(m)\}).$$

• For now, the sets I(k) are disjoint

min
$$\sum_{k} \sum_{j \in I(k)} c_{k,j} x_j$$

s.t.
$$\sum_{e \in \delta(k)} H_e(x) \leq b_k \quad \forall k$$

$$0 \leq x_j \leq 1, \quad \forall j$$

 \rightarrow Easy to solve if graph has small tree-width?

Subset-sum problem

Input: positive integers p_1, p_2, \ldots, p_n .

Problem: find a solution to:

$$\sum_{j=1}^{n} p_j x_j = \frac{1}{2} \sum_{j=1}^{n} p_j$$
$$x_j \in \{0, 1\}, \quad \forall j$$

(weakly) NP-hard (well...)

Subset-sum problem

Input: positive integers p_1, p_2, \ldots, p_n .

Problem: find a solution to:

$$\sum_{j=1}^{n} p_j x_j = \frac{1}{2} \sum_{j=1}^{n} p_j$$
$$x_j (1 - x_j) = 0, \quad \forall j$$

(weakly) NP-hard (well...)

This is a graphical QCQP on a star – so treewidth 1.

(Perhaps) approximate solutions?

 $\{0,1\}$ solutions with error $\left(\frac{1}{2}\sum_{j=1}^{n}p_{j}\right)\epsilon$ in time polynomial in ϵ^{-1} ?

Graphical QCQP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a quadratic

$$H_e(x) = H_e(\{x_j : j \in I(k) \cup I(m)\}).$$

• For now, the sets I(k) are disjoint

$$\min \quad c^T x \\ \text{s.t.} \quad \sum_{e \in \delta(k)} H_e(x) \leq b_k \quad \forall k \\ 0 \leq x_j \leq 1, \quad \forall j$$

Graphical PCLP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a **polynomial**

$$P_{e}(x) = P_{e}\left(\left\{\boldsymbol{x_{j}} : \boldsymbol{j} \in \boldsymbol{I}(\boldsymbol{k}) \cup \boldsymbol{I}(\boldsymbol{m})\right\}\right).$$

min $c^{T}x$
s.t. $\sum_{e \in \delta(\boldsymbol{k})} P_{e}(x) \leq b_{\boldsymbol{k}} \quad \forall \boldsymbol{k}$
 $0 \leq x_{j} \leq 1, \quad \forall j$

Density of a problem: size of **largest** set I(k)Density of ACOPF problems: 3

Graphical, mixed-integer PCLP – or GMIPCLP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a **polynomial**

$$P_e(x) = P_e(\{x_j : j \in I(k) \cup I(m)\}).$$

$$\begin{array}{ll} \min \quad c^T x \\ \text{s.t.} \quad \sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k \\ \\ x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \quad \text{otherwise} \\ \bullet \, \mathbf{Density} = \text{size of largest} \ \mathbf{I}(\mathbf{k}) \end{array}$$

Graphical, mixed-integer PCLP – or GMIPCLP

Input: an undirected graph G.

- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$
- For every edge $e = \{k, m\}$, a **polynomial**

$$P_e(x) = P_e(\{x_j : j \in I(k) \cup I(m)\}).$$

$$\begin{array}{rll} \min & c^T x\\ \mathrm{s.t.} & \displaystyle\sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k\\ & x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \quad \mathrm{otherwise}\\ \mathbf{Density} = \mathrm{size \ of \ largest} \quad \boldsymbol{I}(\boldsymbol{k}) \end{array}$$

Theorem 3

For any instance of **GMIPCLP** on a graph with **treewidth** w, **density** d, **max. degree** π , and any fixed $0 < \epsilon < 1$, there is a **linear program** of size (rows + columns) $O^*(\pi^{wd}\epsilon^{-w}n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

More general: MIPCLP (Basic polynomially-constrained mixed-integer LP)

min
$$c^T x$$

s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$
 $x_j \in \{0, 1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1,$ otherwise

Each $P_i(x)$ is a polynomial.

More general: MIPCLP (Basic polynomially-constrained mixed-integer LP)

min
$$c^T x$$

s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$
 $x_j \in \{0, 1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1,$ otherwise

Each $P_i(x)$ is a polynomial.

Theorem 2

For any instance of MIPCLP whose intersection graph has treewidth w, max. degree π , and any fixed $0 < \epsilon < 1$, there is a linear program of size (rows + columns) $O^*(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

More general: MIPCLP (Basic polynomially-constrained mixed-integer LP)

min
$$c^T x$$

s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$
 $x_j \in \{0, 1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1,$ otherwise

Each $P_i(x)$ is a polynomial.

Theorem 2

For any instance of MIPCLP whose intersection graph has treewidth w, max. degree π , and any fixed $0 < \epsilon < 1$, there is a linear program of size (rows + columns) $O^*(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Intersection graph of a constraint system: (Fulkerson? (1962?))

- Has a **vertex** for every variably x_j
- Has an edge $\{x_i, x_j\}$ whenever x_i and x_j appear in the same constraint

For any instance of MIPCLP whose intersection graph has treewidth w, max. degree π , and any fixed $0 < \epsilon < 1$, there is a linear program of size (rows + columns) $O^*(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Theorem 3

For any instance of **GMIPCLP** on a graph G with **treewidth** w, **density** d, **max. degree** π , and any fixed $0 < \epsilon < 1$, there is a **linear program** of size (rows + columns) $O^*(\pi^{wd} \epsilon^{-wd} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

For any instance of MIPCLP whose intersection graph has treewidth w, max. degree π , and any fixed $0 < \epsilon < 1$, there is a linear program of size (rows + columns) $O^*(\pi^w \epsilon^{-w-1} n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Theorem 3

For any instance of **GMIPCLP** on a graph G with **treewidth** w, **density** d, **max. degree** π , and any fixed $0 < \epsilon < 1$, there is a **linear program** of size (rows + columns) $O^*(\pi^{wd}\epsilon^{-w}n)$ whose feasibility and optimality error is $O(\epsilon)$ (abridged).

Two graphs:

- G, the graph of the instance
- H, the intersection graph of the constraints
- \rightarrow Even if **G** has small treewidth, **H** might not

Example: subset sum problem. G is a star, H is a clique.

Given an instance of graphical mixed-integer PCLP

- On a graph G of treewidth \boldsymbol{w} ,
- with density **d**,
- For every vertex k, a set of variables: $\{x_j : j \in I(k)\}$, for every edge $e = \{k, m\}$, a **polynomial**

$$P_e(x) = P_e(\{x_j : j \in I(k) \cup I(m)\})$$

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & \displaystyle \sum_{e \in \delta(k)} P_e(x) \leq b_k \quad \forall k \\ & \displaystyle x_j \in \{0,1\}, \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \quad \text{otherwise.} \end{array}$

Density of a problem: size of **largest** set I(k)

There is an **equivalent**

mixed-integer polynomial optimization problem

whose intersection graph has tree-width O(wd).

Given an instance of graphical mixed-integer PCLP

- On a graph G of treewidth w,
- with density d,

There is an equivalent mixed-integer polynomial optimization problem whose intersection graph has tree-width O(wd).

ACOPF problem on small treewidth graph \rightarrow (generalize) Graphical QCQP on small treewidth graph and small density \rightarrow (generalize) GMIPCLP on small treewidth graph and small density \rightarrow (generalize, reduce) Mixed-integer PCLP with small treewidth intersection graph

Basic theorem:

There is a polynomial-time ϵ -approximate algorithm for such problems

Main technique: approximation through pure-binary problems

Glover, 1975 (abridged)

Let x be a variable, with bounds $0 \le x \le 1$. Let $0 < \gamma < 1$. Then we can approximate

$$x~pprox~\sum_{h=1}^L 2^{-h} y_h$$

where each y_h is a **binary variable**. In fact, choosing $L = \lceil \log_2 e^{-1} \rceil$, we have

$$x ~\leq~ \sum_{h=1}^L 2^{-h} y_h ~\leq~ x+\epsilon.$$

 \rightarrow Given a mixed-integer polynomially constrained LP (MIPCLP), apply this technique to each continuous variable x_j Mixed-integer polynomially-constrained LP:

(P) min $c^T x$ s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$ $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \text{ otherwise}$ substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0,1\}$

 $L pprox \log_2 \epsilon^{-1}$

Mixed-integer polynomially-constrained LP:

(P) min $c^T x$ s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$ $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \text{ otherwise}$ substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0,1\}$

 $L pprox \log_2 \epsilon^{-1}$

obtain **pure binary problem**:

(Q) min
$$\hat{c}^T z$$

s.t. $\hat{P}_i(z) \leq \hat{b}_i \quad 1 \leq i \leq m$
 $z_k \in \{0, 1\} \quad \forall k$

If (\mathbf{P}) has intersection graph of treewidth \boldsymbol{w} , then (\mathbf{Q}) has intersection graph of treewidth $\boldsymbol{L}\boldsymbol{w}$. Mixed-integer polynomially-constrained LP: (P) min $c^T x$ s.t. $P_i(x) \leq b_i$ $1 \leq i \leq m$ $x_j \in \{0,1\} \quad \forall j \in I, \quad 0 \leq x_j \leq 1, \text{ otherwise}$ substitute: $\forall j \notin I, \quad x_j \rightarrow \sum_{h=1}^{L} 2^{-h} y_{h,j}$, where each $y_{h,j} \in \{0,1\}$

 $Lpprox \log_2 \epsilon^{-1}$

obtain **pure binary problem**:

(Q) min
$$\hat{c}^T z$$

s.t. $\hat{P}_i(z) \leq \hat{b}_i \quad 1 \leq i \leq m$
 $z_k \in \{0, 1\} \quad \forall k$

If (\mathbf{P}) has intersection graph of treewidth \boldsymbol{w} , then (\mathbf{Q}) has intersection graph of treewidth $\boldsymbol{L}\boldsymbol{w}$.

Theorem

Consider a pure-binary PCLP with n variables. If the intersection graph has treewidth $\leq W$ then there is an **exact** linear programming formulation with

 $O(2^W n)$ variables and constraints.

Conclusion

Given an ACOPF problem on a graph of treewidth $\leq w$ and n edges, and $0 \leq \epsilon \leq 1$ there is an LP formulation with the following properties:

- It has $O(\text{poly}(\epsilon^{-1})2^{O(w)}n)$ variables and constraints
- It produces ϵ -optimal and -feasible solutions.

Talk on Friday by Gonzalo on the pure-binary problems.