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An application: the Optimal Power Flow problem (ACOPF)
Input: an undirected graph G.
e [or every vertex ¢, two variables: e; and f;

e For every edge {k, m}, four (specific) quadratics:

Hk]:?m(ek7fk7em7fm)7 H]gm(ekafkaemafm)

Hnﬁ,k(ek’fk‘vem7fm)a Hrg,k(ekafkaemafm) @ @

min ZFk Z H£m<ek7fkaem7fm>
k

{k,m}yed(k)

S.1. Lf < Z H]fm ek,fk,em,fm) < Uk}:) A
{k;m}ed(k)

LY < Y HY (e frem fn) < UZ VEk
{k;m}ed(k)

VE < e, f)ll < VY VE.

Function Fj in the objective: convex quadratic



Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.
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Reformulation of ACOPF:
min FeW
st. A, oW < b, 1=1,2,...
W >0, W of rank 1.
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Complexity
Theorem (2011) Lavaei and Low: OPF is (weakly) NP-hard on trees.

Theorem (2014) van Hentenryck et al: OPF is NP-hard on trees.

Theorem (2007) B. and Verma (2009): OPF is strongly NP-hard on gen-
eral graphs.

Recent insight: use the SDP relaxation (Lavaei and Low, 2009 + many
others)

SDP Relaxation of OPF:

min FeW
st. A, oW < b, 1=1,2,...
W = 0.

Fact: The SDP relaxation is often good! (“near” rank 1 solution).
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with clique number < w + 1
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Definition 2: A graph has treewidth < w if it is a subgraph of an inter-
section graph of subtrees of a tree, with < w —+ 1 subtrees overlapping at
any vertex

(Seymour and Robertson, late 1980s)



Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e 1" is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.

(2) For each edge {u, v} of G, the two subtrees Ty, and T, intersect.
e The width of (7, Q) is maxcr Q] — 1.

WA ||

— two subtrees Ty, Ty, may overlap even if {u, v} is not an edge of G



Tree-width
Let G be an undirected graph with vertices V' (G) and edges E(G).

A tree-decomposition of G is a pair (T, Q) where:
e 1" is a tree. Not a subtree of G, just a tree

e For cach vertex t of T, Q;is asubset of V(G). These subsets satisfy
the two properties:

(1) For each vertex v of G, theset {t € V(T') : v € Q:} isasubtree
of T, denoted T,.
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But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem

gives fast SDP implementations:

Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime



But: the SDP relaxation is always slow on large graphs

e Real-life grids — > 10 vertices

e SDP relaxation of OPF does not terminate

But...
Fact? Real-life grids have small tree-width

Matrix-completion Theorem
gives fast SDP implementations:
Real-life grids with ~ 3 x 10° vertices: — 20 minutes runtime

— Perhaps low tree-width yields direct algorithms for ACOPF itselt?

That is to say, not for a relaxation?



Much previous work using structured sparsity
e Bienstock and Ozbay
e Wainwright and Jordan
e Grimm, Netzer, Schweighofer
e Laurent
e Lasserre et al

e Waki, Kim, Kojima, Muramatsu
older work ...

e Lauritzen (1996): tree-junction theorem
e Bertele and Brioschi (1972): nonserial dynamic programming
e Bounded tree-width in combinatorial optimization (too many authors)

e Fulkerson and Gross (1965): matrices with consecutive ones



ACOPF, again
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ACOPF, again

Input: an undirected graph G.

e For every vertex ¢, two variables:

€é; and _fz

e For every edge {k, m}, four (specific) quadratics:

min

S.t.

H.f,m(ebfk?em?fm)? ngm(ehfkvem?fm)

Hrﬁ,k(ekafkaemafm), Hg

2w
k

,k(€k> frs €ms fm)

Lkp S Z Hk{im(ekafhem?fm) S Ukp
{km}ed(k)
Lg = Z H/?m ekafkaemafm> < Ul?
{k,m}ed(k)
VE < e f)ll <V Yk
= F; Z H£m<€kafkaem7fm>

{k,m}es(k)

VE

VE

VE



Graphical QCQP
Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}

e For every edge e = {k, m}, a quadratic
H(x) = H.({x; :ge€l(k)uUl(m)}).
e For now, the sets I(k) are disjoint

min g g ck]:v]

ko jel(k

ZH ) < by Yk

ecd(k

OSCIZ‘]‘SL \V/]

— Easy to solve if graph has small tree-width?



Subset-sum problem

Input: positive integers p1, po, ..., Pn.

Problem: find a solution to:

n 1 n
S = 130
j=1 j=1
Lj € {07 1}7 V]
(weakly) NP-hard (well...)



Subset-sum problem

Input: positive integers p1, po, ..., Pn.

Problem: find a solution to:

n 1 n
S = 130
j=1 j=1
ZCJ<1 — .CCj) = O, \V/]
(weakly) NP-hard (well...)

This is a graphical QCQP on a star — so treewidth 1.

(Perhaps) approximate solutions?

{0, 1} solutions with error (1 Z?Zl pj) € in time polynomial in €17

2



Graphical QCQP
Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}

e For every edge e = {k, m}, a quadratic

He(z) = He({z;:jecI(k)UI(m)}).
e For now, the sets I(k) are disjoint
min ¢’z
8.t H.(z) < by Vk
ecd(k)

OSIjSl, \V/]



Graphical PCLP

Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}

e For every edge e = {k, m}, a polynomial

P(z) = P.({z;:jecI(k)UI(m)}).
min ' x
s.t. Pe(:zc) < b, Vk
ecd(k)

Oéﬂjjgl, \V/]

Density of a problem: size of largest set I (k)
Density of ACOPF problems: 3



Graphical, mixed-integer PCLP - or GMIPCLP

Input: an undirected graph G.
e For every vertex k, a set of variables: {z; : 7 € I(k)}

e For every edge e = {k, m}, a polynomial

P(z) = P.({z;:jecI(k)UI(m)}).
min 'z
s.t. Pe(az) < b. Vk

ecd(k)

z; €{0,1} Vjel, 0<uz;<1, otherwise

e Density = size of largest I(k)



Graphical, mixed-integer PCLP — or GMIPCLP

Input: an undirected graph G.
e For every vertex k, a set of variables: {x; : 7 € I(k)}

e For every edge e = {k, m}, a polynomial

P(z) = P({x;:3e€l(k)uUlI(m)}).
min 'z
s.t. Pe(a:) < b. VEk

ecd(k)

z;€{0,1} Vjel, 0<az; <1, otherwise

e Density = size of largest I (k)

Theorem 3

For any instance of GMIPCLP on a graph with treewidth w, density
d, max. degree 7. and any fixed 0 < € < 1, thereis alinear program
of size (rows + columns) O*(w¥%e~* n) whose feasibility and optimality

error is O(€)
(abridged).



More general: MIPCLP (Basic polynomially-constrained
mixed-integer LP)

min ¢z

st. Pr) < b 1<i<m
r; €{0,1} Vjel, 0<uz;<1, otherwise

Each P;(x) is a polynomial.
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More general: MIPCLP (Basic polynomially-constrained
mixed-integer LP)

min ¢z

st. Pr) < b 1<i<m
r; €{0,1} Vjel, 0<uz;<1, otherwise

Each P;(x) is a polynomial.
Theorem 2

For any instance of MIPCLP whose intersection graph has treewidth
w, max. degree 7, and any fixed 0 < € < 1, there is a linear pro-
gram of size (rows + columns) O*(7w%e *~!n) whose feasibility and
optimality error is O(e€) (abridged).

Intersection graph of a constraint system: (Fulkerson? (19627))

e Has a vertex for every variably x;

e Has an edge {z;, =, } whenever x; and z; appear in the same constraint



Theorem 2

For any instance of MIPCLP whose intersection graph has treewidth
w, max. degree 7, and any fixed 0 < € < 1, there is a linear pro-
gram of size (rows + columns) O*(w%e *~!n) whose feasibility and
optimality error is O(€) (abridged).

Theorem 3

For any instance of GMIPCLP on a graph G with treewidth w, den-
sity d, max. degree m, and any fixed 0 < € < 1, there is a linear
program of size (rows + columns) O*(w¥%e~*% n) whose feasibility and
optimality error is O(€) (abridged).



Theorem 2

For any instance of MIPCLP whose intersection graph has treewidth
w, max. degree 7, and any fixed 0 < € < 1, there is a linear pro-
gram of size (rows + columns) O*(w%e *~!n) whose feasibility and
optimality error is O(€) (abridged).

Theorem 3

For any instance of GMIPCLP on a graph G with treewidth w, den-
sity d, max. degree 7, and any fixed 0 < € < 1, there is a linear
program of size (rows + columns) O*(7w“%e~* n) whose feasibility and
optimality error is O(€) (abridged).

Two graphs:

e (&, the graph of the instance

e H  the intersection graph of the constraints

— Even if G has small treewidth, H might not

Example: subset sum problem. G is a star, H is a clique.



Theorem O

Given an instance of graphical mixed-integer PCLP
e On a graph G of treewidth w,
e with density d,

e For every vertex k, a set of variables: {z; : j € I(k)}, for every edge e = {k,m}, a polynomial

P(z) = P.({zx;:gel(k)ul(m)}).

min Tx

st. Y Puz) < by Vk
ecd(k)

r; €{0,1}, Vjel, 0<z; <1, otherwise.

Density of a problem: size of largest set I(k)

There is an equivalent
mixed-integer polynomial optimization problem

whose intersection graph has tree-width O(wd).



Theorem 0

Given an instance of graphical mixed-integer PCLP
e On a graph G of treewidth w,
e with density d,

There is an equivalent mixed-integer polynomial optimization problem whose intersection

graph has tree-width O(wd).

ACOPF problem on small treewidth graph — (generalize)
Graphical QCQP on small treewidth graph and small density —> (generalize)
GMIPCLP on small treewidth graph and small density — (generalize, reduce)

Mixed-integer PCLP with small treewidth intersection graph

Basic theorem:

There is a polynomial-time e-approximate algorithm for such problems



Main technique: approximation through pure-binary
problems

Glover, 1975 (abridged)

Let « be a variable, with bounds 0 < & < 1. Let 0 < v < 1. Then we
can approximate

L _
Tr = Zh:12 hyh

where each yp, is a binary variable. In fact, choosing L = [log, e '],
we have

x < Zﬁzl 27y, < x4 e

— Given a mixed-integer polynomially constrained LP (MIPCLP),
apply this technique to each continuous variable x;



Mixed-integer polynomially-constrained LP:
(P) min 'z
st. Pr) < b 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27y, ;. where cach yp, ; € {0,1}

L =~ log, e !



Mixed-integer polynomially-constrained LP:
(P) min 'z
st. Pr) < b 1<i<m
r; €{0,1} Vjel, 0<uz,;<1, otherwise
substitute: V5 ¢ I, x; — Zﬁzl 27y, ;. where cach yp, ; € {0,1}

L =~ log, e !

obtain pure binary problem:

(Q) min é'z
s.t. PL(Z) < ?;Z 1<i1<m
~ {O, 1} Vk

If (P) has intersection graph of treewidth w,
then (Q) has intersection graph of treewidth Law.



Mixed-integer polynomially-constrained LP:
(P) min 'z
st. Plr) < b 1<i<m
z; €{0,1} Vjel, 0<uz,;<1, otherwise

substitute: V5 ¢ I, x; — Zﬁzl 27"y, ;. where each yp; € {0,1}

L =~ log, e !

obtain pure binary problem:

(Q) min é'z

st. P(z) < b 1<i<m

2L € {O, 1} Vk

If (P) has intersection graph of treewidth w,
then (Q) has intersection graph of treewidth Law.

Theorem

Consider a pure-binary PCLP with m variables.
[f the intersection graph has treewidth < W then there is an exact linear
programming formulation with

O(2"n) variables and constraints.



Conclusion

Given an ACOPF problem on a graph of treewidth < w and n edges, and
0 <€ <1 there is an LP formulation with the following properties:

e It has O(poly(e 1)2°")n) variables and constraints

e [t produces e-optimal and -feasible solutions.

Talk on Friday by (onzalo on the pure-binary problems.



