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Empirical Risk Minimization problem

Given:

D data points (xi , yi ), i = 1, . . . ,D
xi ∈ Rn, yi ∈ Rm all i

A “loss” function ` : Rn × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1

D

D∑
i=1

`(f (x i ), y i ) (+ optional regularizer Φ(f ))

f ∈ F (some class)

BMP (Columbia. PolyMontréal, GT) LPNN Training Bordeaux July 2018 2 / 15



Empirical Risk Minimization problem

Given:

D data points (xi , yi ), i = 1, . . . ,D
xi ∈ Rn, yi ∈ Rm all i

A “loss” function ` : Rn × Rm → R (not necessarily convex)

Compute f : Rn → Rm to solve

min
f

1

D

D∑
i=1

`(f (x i ), y i ) (+ optional regularizer Φ(f ))

f ∈ F (some class)
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Approximate optimization of well-behaved functions

Prototype problem:

min cT x

s.t. fi (x) ≤ 0, i = 1, . . . ,m

x ∈ [0, 1]n

Each fi is “well-behaved”: Lipschitz constant Li

Toolset:

Intersection graph
A vertex for each variable and an edge whenever two variables appear
in the same fi
Tree-width Min clique number (minus one) over all chordal
supergraphs of G
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Prototype problem:

min cT x

s.t. fi (x) ≤ 0, i = 1, . . . ,m

x ∈ [0, 1]n

An extension of work in B. and Muñoz 2015, SIOPT 2018.

Suppose:

the intersection graph has tree-width ω and fi has Lipschitz constant
Li ≤ L.

Then, for every 0 < ε < 1 there is an LP relaxation with

O
(
(L/ε)ω+1 n log(L/ε)

)
variables and constraints

Optimality and feasibility errors O(ε)
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Application to ERM problem

min
f ∈F

1

D

D∑
i=1

`(f (x i ), y i )

Linearize objective using epigraph trick

min
f ∈F

1

D

D∑
i=1

Li

Li ≥ `(f (x i ), y i ) 1 ≤ i ≤ D
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Function parameterization

min
f ∈F

1

D

D∑
i=1

Li

Li ≥ `(f (x i ), y i ) 1 ≤ i ≤ D

Examples:

Neural Networks with k layers.
f (x) = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1(x), each Tj affine,
parameterized by its coefficients.

Linear Regression. f (x) = Ax + b with `2-loss.

Binary Classification. Varying f architectures and cross-entropy
loss: `(p, y) = −y log(p)− (1− y) log(1− p)

We assume F = {f (x , θ) for θ ∈ Θ ⊆ [−1, 1]N}
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We now apply the LP approximation result to:

min
θ∈Θ

1

D

D∑
i=1

Li

Li ≥ `(f (x i , θ), y i ) 1 ≤ i ≤ D

Let θ∗ be an optimal solution. For every 0 < ε < 1 there is an LP of size

O
(
(L/ε)2N+2 (N + D) log(L/ε)

)

such that its optimal solution θ̂ satisfies:

1

D

D∑
i=1

`(f (x i , θ̂), y i ) ≤ 1

D

D∑
i=1

`(f (x i , θ∗), y i ) + ε

L is an upper bound on the Lipschitz constant of g i (θ)
.

= `(f (x i , θ), y i ).
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Proof sketch:

min
θ∈Θ

1

D

D∑
i=1

Li , s.t. Li ≥ `(f (x i , θ), y i ) 1 ≤ i ≤ D

1
2

3

D

θ

θ, L1 θ, L2 · · · θ, LD
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Application: training of Deep Neural Networks with ReLUs

As per Arora Basu Mianjy Mukherjee ICLR ’18

The setup:

D data points (xi , yi ), 1 ≤ i ≤ D, xi ∈ Rn, yi ∈ R
Task: compute a function f : Rn → R to minimize

1

D

∑
i=1

(yi − f (xi ))2

f = Tk+1 ◦ σ ◦ Tk ◦ σ . . . ◦ σ ◦ T1 (“◦” = composition)

σ(t) = max{0, t}
Each Th affine: Th(y) = Ahy + bh,

For some w , A1 is n × w , Ak+1 is w × 1, Ah is w × w otherwise.
Similarly with the bh.
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Theorem (Arora et al 2018).
If k = 1 (one “hidden layer”) there is an exact algorithm of complexity

O ( 2wDnwpoly(D, n,w) )

Polynomial in the size of the data set, for fixed n,w
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Our result: if the entries of Ai , bi are required to be in [−1, 1], for any
k, n,w , ε there is an LP of size

O
(
(w/ε)poly(n,k,w) (poly(n, k,w) + D) log(w/ε)

)

poly(n, k ,w) = quadratic in w , in k , linear in n

Treewidth independent of D

Number of variables linear in D
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The Arora-Blum setup (Binarized Neural Networks)

Activation units:

a
1

a a
m2

b..., ,, ,

z

z

z
m

1

2 y

With z ∈ {0, 1}m,

y =

{
1, if aT z > b
0, otherwise.

Network with n binary inputs, m binary outputs, k layers
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Binarized Neural Networks, 2

Training data: Set of D pairs (x i , y i ), 1 ≤ i ≤ D
x i ∈ {0, 1}n, y i ∈ {0, 1}m

Problem: Compute the activation function at each node to

min
1

D

D∑
i=1

`(f (x i ), y i )

(f = network function)

When ` ∈ (absolute value, 2-norm squared) NP-hard if k = 3 and D = n,
m = 1

But we are interested in the case D very large compared to n

And also other loss functions, e.g. smooth convex
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Our result on Binarized Neural Networks

Training data: Set of D pairs (x i , y i ), 1 ≤ i ≤ D
x i ∈ {0, 1}n, y i ∈ {0, 1}m

ERM problem: Compute the activation function at each node to

min
1

D

D∑
i=1

`(f (x i ), y i )

(f = network function)

Theorem. When ` ∈ (absolute value, 2-norm squared) there is an LP of
encoding length

O(2poly(k,n,m)(poly(k , n,m) + D))

that solves the ERM problem exactly in absolute case, and within O(ε) additive
error in the 2-norm case.
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Extensions
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