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Real-time control of networked structures governed by physics

fie line

m =sensor

@ Today: control enforces separation by time domain
e.g. in power grids: governor reaction (1073 sec), AGC (sec), OPF (mins)

@ Opportunity: fast sensors, algorithms
Challenges: “smart” loads, complex noise

@ Research Goals:

» Avoid separation
» Quickly recognize system structure. Time frame: seconds or less
» Quickly detect intrusion. Time frame: seconds or very few minutes
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Challenges:

@ How do we solve in near-real time hard problems that we cannot solve
offline? E.g. nonconvex, polynomial optimization problems

— To do: warm restart of ADMM-like methods for bilinear
optimization.

@ How do we handle noise/structure that we do not really understand?

— Now doing: learning real-time correlation (or covariance) from
noisy inputs. (NIPS Time series workshop 2017+)

@ How do we combine first-order optimization with poorly understood
“noise” ?

— Now doing: Variance-aware first-order optimization. (PSCC
2018)
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Noise is not just noise

(We have 28 TB of real data)
Voltage angle deviation histogram
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Noise is not just noise

From real time series, voltage magnitude deviations

Voltage Magnitude
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Strong and nontrivial autocorrelation structure
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Concrete problem: learning covariance in real time

@ PCA: principal component analysis.

» Covariance of real-world data usually has low rank.
» Fast PCA methods approximately capture the leading modes.

@ Streaming PCA:

» Old data gets stale
» Cannot hold a lot of data

o Non-stationary regime for streaming PCA

» Goal: detect change
> Research question: what are fundamental computational limits?
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Tecnical! NIPS TSW 2017

with PhD student Apurv Shukla plus S. Kim (ex-LANL)

A streaming algorithm to identify PCA structure within time window

@ Generative Model
» Non-Stationary Spiked Covariance Model
o Sample Complexity:
» Lower bound relating recovery error to number of samples

@ Algorithm:
» Two-phase iterative algorithm

* Phase-l: Iterative Eigenvector Computation
* Phase-ll: Matrix Sketching

@ Theorems: See NIPS paper and forthcoming paper
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Application! Detecting intrusion through random physics

m =sensor

© - controliable asset

control
center

@ Atttacked zone is unknown to control center

o Attacker causes physical damage and alters sensor signals
o Defense:

» Use controllable assets to alter covariance of physics
Changes unpredictable to attacker

Attacker (if aware of defense) can learn variance

But that takes time and sensor stream is continuous
So defender can learn the true covariance matrix

vy vy VvYy
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Distributionally Robust Optimization

Data-Driven Distributionally Robust Optimization

min sup Ep(h(6,X)) < game formulation
0 P:D(P,Py)<é

P, (dx) = Z‘S{Xk} (dx) = Empirical Data
"=

Ep, [h(6,X)] Zh (0, Xy) -

In words: Select the best response to model perturbations around the data
(need to specify D).
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Distributionally Robust Optimization (DRO)

o Extensive literature on DRO (Scarf (1958), Dupuis, James, Petersen
(2000), Hansen and Sargent (2001), Ben-Tal, El Ghaoui, Nemirovski
(2009), Delange & Ye (2010),...).

e Typical choices of D (P, P,)

o(p e ()

@ Problem in data-driven setting: must preserve absolute continuity
with respect to Pj,.

@ Choose D (-) based on optimal transport instead of divergence.
— Works in practice and recovers exactly many machine learning

estimators (e.g. Lasso, SVMs, adaptive ridge etc.)
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Optimal Transport Metric and Wasserstein Distances

@ Definition of Optimal Transport Discrepancy:
Dc (P, Q) = min{E; (c(X,Y)):mx = P,y = Q}.

@ Algorithmically D. (-) is obtained by solving an LP
min Z c(x,y)m(x,y) subject to
x,y

Y mlay)=P(x), > 7(xy)=Q(y)
m(x,y) >0 forall x,y .

@ Formulation includes Wasserstein and earth-mover's distance.
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Applications of Data-Driven DRO

@ We briefly explain fundamental connections to machine learning.

o Consider linear regression: Estimate 8, € R™ for model
Yi = B Xi + e,

where {(Y;, Xi)}_; is a set of data points.

@ Optimal Least Squares approach: Estimate (5, via
n 2
min MSE (8) := min n~t <Y ~BTX )
! (B8) i k§=:1 k — B X

@ We now apply the DRO formulation via optimal transport...
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Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2017)) Suppose that
oYY HX_XIHE, if y=y
e (). (o)) = { I Xlo =

Then,

2 —
P:Dcr(T’]Da,én)S(; E;/z ((Y - ﬂTX) ) = VMSE(5)+ 0 1l

Remark: This form of Lasso is called sqrt-Lasso (Belloni et al. (2011)).
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Enhance Out-of-Sample Performance

More general adversaries — better decisions!

Intuitive choice:

Generalized Mahalanobis:c (x,y) = (y — x)T A(x) (y — x),
A(-) positive definite.

We assume £ (-) is a convex loss function to be minimized.
Affine decision rules 37 x (so empirical risk minimization insolves
minimizing Ep, [((87 X)] over ).

We explore distributionally robust version of this problem.
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A Class of DRO Problems with Affine Policies

Theorem (B., Fan, Murthy '18)
Under natural assumptions

inf g Ep [4(BTX)| = inf Ep [f (B, X)],
oS80 Ep [ABT0] = i Erulf (8,4 X)

for a tractable f () which is strongly convex in 3, \ for & € [0, o] and
some &g > 0. So, robust problem is not harder to solve than non-robust
counterpart. Also, the worst case adversary can be computed.
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Consequence: Should robustify. Challenge: Calibrate the function ¢ (x, y).
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Two-stage Adjustable Robust problem

— . T . T h
zar(U) = min ¢ x+r’r71€a&< Jr/rzlhr} d'y(h)

Ax + By(h) > h
x,y(h) € RL

—— ——m

‘ Adversary picks h ‘

@ Demand uncertainty in unit commitment, facility location ...

@ Hard to approximate within a factor better than O(log n/ loglog n) (Feige et
al. 2007).
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Approximate Solution Policies

e Static robust solution:

Single solution (x, y) feasible for all scenarios.

» Easy to compute.

» Good approximation for symmetric sets (Bertsimas, G and Sun (2011)).
» Worst case performance bound is Q(m).

v

o Piecewise static policies:
» Also known as K-adaptibility policies.
» Divide uncertainty set into pieces and a static solution for each piece.
» Optimal pieces may be exponentially many (El Housni and G (2017))
» Even designing small number of optimal pieces is NP-hard. (Bertsimas
and Caramanis (2012)).
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Approximate Solution Policies

o Affine policy:

y(h)=Ph+q.

Introduced by Ben-Tal et al. (2004)

Can be computed efficiently and have good empirical performance.
Optimal for simplex uncertainty sets

Tight O(y/m)-approximation for general sets (Bertsimas and G
(2010)).

v

vV vyVvYyy

o Piecewise affine policies

» Chen and Zhang (2009), Bertsimas and Georghiou (2014), Bertsimas
and Dunning (2014), Postek and Den Hertog (2016), Ben-Tal, El
Housni and G (2016).

» Optimal for convex uncertainty sets (Zhen et al. (2016))

» Hard to compute the optimal pieces that may be exponentially many.

BBGI (Columbia University, Stanford Univers SR Physics July 2018 19 /20



Current Work

@ Characterization of performance of affine policies for important
classes of uncertainty sets

o Budget uncertainty sets:

u—{hepum

m
Z W,'h,' S F}
i=1

» Very commonly used class of uncertainty sets.
» Captures confidence interval sets and CLT sets.
» Adjustable problem is Q(log n/ log log n)-hard even for these sets

o Intersection of Budget uncertainty sets
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