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Real-time control of networked structures governed by physics

control

center

tie line

= sensor

Today: control enforces separation by time domain
e.g. in power grids: governor reaction (10−3 sec), AGC (sec), OPF (mins)

Opportunity: fast sensors, algorithms
Challenges: “smart” loads, complex noise

Research Goals:

I Avoid separation
I Quickly recognize system structure. Time frame: seconds or less
I Quickly detect intrusion. Time frame: seconds or very few minutes
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Challenges:

How do we solve in near-real time hard problems that we cannot solve
offline? E.g. nonconvex, polynomial optimization problems

→ To do: warm restart of ADMM-like methods for bilinear
optimization.

How do we handle noise/structure that we do not really understand?

→ Now doing: learning real-time correlation (or covariance) from
noisy inputs. (NIPS Time series workshop 2017+)

How do we combine first-order optimization with poorly understood
“noise”?

→ Now doing: Variance-aware first-order optimization. (PSCC
2018)
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Noise is not just noise

(We have 28 TB of real data)
Voltage angle deviation histogram

Kolmogorov-Smirnoff gaussianity test strongly rejected, always
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Noise is not just noise

From real time series, voltage magnitude deviations

Strong and nontrivial autocorrelation structure
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Concrete problem: learning covariance in real time

PCA: principal component analysis.
I Covariance of real-world data usually has low rank.
I Fast PCA methods approximately capture the leading modes.

Streaming PCA:
I Old data gets stale
I Cannot hold a lot of data

Non-stationary regime for streaming PCA
I Goal: detect change
I Research question: what are fundamental computational limits?
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Tecnical! NIPS TSW 2017

with PhD student Apurv Shukla plus S. Kim (ex-LANL)

A streaming algorithm to identify PCA structure within time window

Generative Model
I Non-Stationary Spiked Covariance Model

Sample Complexity:
I Lower bound relating recovery error to number of samples

Algorithm:
I Two-phase iterative algorithm

F Phase-I: Iterative Eigenvector Computation
F Phase-II: Matrix Sketching

Theorems: See NIPS paper and forthcoming paper
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Application! Detecting intrusion through random physics

control

center

= sensor
attacked zone

= controllable asset

Atttacked zone is unknown to control center

Attacker causes physical damage and alters sensor signals

Defense:
I Use controllable assets to alter covariance of physics
I Changes unpredictable to attacker
I Attacker (if aware of defense) can learn variance
I But that takes time and sensor stream is continuous
I So defender can learn the true covariance matrix

BBGI (Columbia University, Stanford University) SR Physics July 2018 8 / 20



Distributionally Robust Optimization

Data-Driven Distributionally Robust Optimization

min
θ

sup
P:Dc (P,Pn)≤δ

EP (h (θ,X )) ← game formulation

Pn (dx) =
1

n

n∑
k=1

δ{Xk} (dx) = Empirical Data

EPn [h (θ,X )] =
1

n

n∑
k=1

h (θ,Xk) .

In words: Select the best response to model perturbations around the data
(need to specify Dc).
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Distributionally Robust Optimization (DRO)

Extensive literature on DRO (Scarf (1958), Dupuis, James, Petersen
(2000), Hansen and Sargent (2001), Ben-Tal, El Ghaoui, Nemirovski
(2009), Delange & Ye (2010),...).

Typical choices of D (P,Pn)

D (P,Pn) = EP

(
log

(
dP

dPn

))
.

Problem in data-driven setting: must preserve absolute continuity
with respect to Pn.

Choose D (·) based on optimal transport instead of divergence.
→ Works in practice and recovers exactly many machine learning

estimators (e.g. Lasso, SVMs, adaptive ridge etc.)
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Optimal Transport Metric and Wasserstein Distances

Definition of Optimal Transport Discrepancy:

Dc (P,Q) = min{Eπ (c (X ,Y )) : πX = P, πY = Q}.

Algorithmically Dc (·) is obtained by solving an LP

min
∑
x ,y

c (x , y)π (x , y) subject to∑
y

π (x , y) = P (x) ,
∑
x

π (x , y) = Q (y)

π (x , y) ≥ 0 for all x , y .

Formulation includes Wasserstein and earth-mover’s distance.
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Applications of Data-Driven DRO

We briefly explain fundamental connections to machine learning.

Consider linear regression: Estimate β∗ ∈ Rm for model

Yi = β∗Xi + ei ,

where {(Yi ,Xi )}ni=1 is a set of data points.

Optimal Least Squares approach: Estimate β∗ via

min
β

MSE (β) := min
β

n−1
n∑

k=1

(
Yk − βTXk

)2
We now apply the DRO formulation via optimal transport...
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Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2017)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′
.

Then,

max
P:Dc (P,Pn)≤δ

E
1/2
P

((
Y − βTX

)2)
=
√
MSE (β) +

√
δ ‖β‖p .

Remark: This form of Lasso is called sqrt-Lasso (Belloni et al. (2011)).
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Enhance Out-of-Sample Performance

More general adversaries → better decisions!

Intuitive choice:

Generalized Mahalanobis:c (x , y) = (y − x)T A (x) (y − x) ,

A (·) positive definite.

We assume ` (·) is a convex loss function to be minimized.

Affine decision rules βT x (so empirical risk minimization insolves
minimizing EPn

[
`(βTX )

]
over β).

We explore distributionally robust version of this problem.
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A Class of DRO Problems with Affine Policies

Theorem (B., Fan, Murthy ’18)

Under natural assumptions

inf
β∈Rd

sup
P:Dc (P,Pn)≤δ

EPn

[
`(βTX )

]
= inf

β,λ≥0
EPn [f (β, λ,X )],

for a tractable f (·) which is strongly convex in β, λ for δ ∈ [0, δ0] and
some δ0 > 0. So, robust problem is not harder to solve than non-robust
counterpart. Also, the worst case adversary can be computed.
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Consequence: Should robustify. Challenge: Calibrate the function c (x , y).
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Two-stage Adjustable Robust problem

zAR(U) = min cTx + max
h∈U

min
y(h)

dTy(h)

Ax + By(h) ≥ h
x , y(h) ∈ Rn

+

Demand uncertainty in unit commitment, facility location . . .

Hard to approximate within a factor better than O(log n/ log log n) (Feige et

al. 2007).
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Approximate Solution Policies

Static robust solution:
I Single solution (x , y) feasible for all scenarios.
I Easy to compute.
I Good approximation for symmetric sets (Bertsimas, G and Sun (2011)).
I Worst case performance bound is Ω(m).

Piecewise static policies:
I Also known as K-adaptibility policies.
I Divide uncertainty set into pieces and a static solution for each piece.
I Optimal pieces may be exponentially many (El Housni and G (2017))
I Even designing small number of optimal pieces is NP-hard. (Bertsimas

and Caramanis (2012)).
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Approximate Solution Policies

Affine policy:
I y(h) = Ph + q.
I Introduced by Ben-Tal et al. (2004)
I Can be computed efficiently and have good empirical performance.
I Optimal for simplex uncertainty sets
I Tight O(

√
m)-approximation for general sets (Bertsimas and G

(2010)).

Piecewise affine policies
I Chen and Zhang (2009), Bertsimas and Georghiou (2014), Bertsimas

and Dunning (2014), Postek and Den Hertog (2016), Ben-Tal, El
Housni and G (2016).

I Optimal for convex uncertainty sets (Zhen et al. (2016))
I Hard to compute the optimal pieces that may be exponentially many.
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Current Work

Characterization of performance of affine policies for important
classes of uncertainty sets

Budget uncertainty sets:

U =

{
h ∈ [0, 1]m

∣∣∣∣ m∑
i=1

wihi ≤ Γ

}

I Very commonly used class of uncertainty sets.
I Captures confidence interval sets and CLT sets.
I Adjustable problem is Ω(log n/ log log n)-hard even for these sets

Intersection of Budget uncertainty sets
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